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Measuring Significant Wave Height fields in two
dimensions at kilometric scales with SWOT.
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Matthias Raynal, Bryan Stiles, Fabrice Ardhuin, Andrea Hay, Benoı̂t Legresy, Luc Lenain and Ana B. Villas Bôas

Abstract—We demonstrate that spatial maps of Significant
Wave Height (SWH) with kilometric resolutions can be derived
from the data acquired by the KaRIn instrument on-board
the SWOT mission by exploiting the measured interferomet-
ric decorrelation. We discuss the sensitivity to errors in the
volumetric decorrelation estimates and show that a succesful
inversion of SWH, particularly in the outer part of KaRIn’s
swath and for low values of SWH, requires factoring out all
sources of decorrelation of instrumental origin to an exquisite
precision. We then validate KaRIn’s SWH measurement against
independent data, namely GPS buoys, airborne lidar, Sentinel3,
SWOT’s nadir altimeter and the ECMWF global wave model.
We show that biases between KaRIn and the other sensors are
centimetric and that KaRIn is able to capture features in the two
dimensional SWH field of only a few kilometers. While KaRIn’s
SWH measurement error is difficult to fully characterize due the
absence of two-dimensional ground truth data valid at such fine
spatial scales and spanning a wide range of sea states, we argue
that the retrieved fields are dominated by signal rather than noise,
except possibly in the last few kilometers of the swath at low
SWH. We briefly discuss the implications in terms of advancing
our understanding of the phenomena that shape the wave fields
at small scales. The algorithm and calibration described in this
paper will be the basis for version D of the operational SWOT
products.

Index Terms—Significant Wave Height (SWH), Surface Water
Ocean Topography (SWOT), Ka-Band Radar Interferometer
(KaRIn)

I. INTRODUCTION

THe Surface Water and Ocean Topography (SWOT) mis-
sion [1]–[3] is primarily designed to measure Sea Sur-

face Height (SSH) in two dimensions at an unprecedented
resolution (see for instance [4]) thanks to its innovative Ka-
band radar interferometer KaRIn. In addition to the topography
measurements derived from the phase difference between the
images acquired at each of the two antennas separated by
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Laboratoire d’Océanographie Physique et Spatiale (LOPS), Plouzané, France.
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approximately 10 meters, KaRIn can also provide information
about sea state, by exploiting the measured power in each
of the SAR images and the interferometric correlation be-
tween both acquisition channels. This last quantity, sometimes
referred to as interferometric coherence, is directly affected
by the presence of surface waves. This in turn provides an
opportunity to measure, for the first time at a global scale,
significant wave height at kilometric resolutions (well below
the reach of nadir altimeters) and in two dimensions. This,
however, requires estimating all other sources of decorrelation
of instrumental origin with an exquisite precision to avoid mis-
interpreting instrumental effects as geophysical signals. In this
paper, we first describe in section II how the interferometric
acquisitions by KaRIn are calibrated and processed to obtain
SWH spatial maps at various km-scale resolutions (typically
2x2 km, 5x5 km), and discuss how the accuracy at which we
need to estimate all the other sources of decorrelation varies
with cross-track distance and actual SWH to highlight the
most challenging regimes for the inversion. We then present in
section III comparisons between the KaRIn two-dimensional
SWH measurements and several independent sets of validation
data, including data from SWOT’s nadir altimeter, the SAR
nadir altimeter on-board Sentinel-3, MASS airborne lidar,
and in-situ data. Finally, in section IV, we discuss example
features observed in the retrieved SWH fields to illustrate the
potential use of such high resolution two-dimensional surface
wave observations from SWOT to develop better physical
understanding of the processes that contribute to sea-state
variations at smaller scales. We also argue here that these two-
dimensional SWH measurements can be used to improve sea
state bias correction.

II. MEASUREMENT TECHNIQUE: PRINCIPLE AND
PRACTICAL IMPLEMENTATION

A radar interferometer such as KaRIn measures complex
radar returns, say s1 and s2, at each of its two receiving
antennas which amounts to four independent real quantities
which can be exploited to reconstruct information about
the observed surface. The main combination of interest for
KaRIn of these four degrees of freedom is of course the
phase difference (often referred to as interferometric phase)
between both antennas arg(s1s

∗
2), which can be processed

to reconstruct the topography of the surface [5]–[10]. The
individual amplitudes |s1| and |s2| can separately be processed
into Normalized Radar Cross-Section (NRCS) images of the
surface just as in traditional Synthetic Aperture Radar (SAR)
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imaging, which in the case of ocean observations at the near-
nadir incidence angles and radar frequency band of KaRIn
is mainly modulated by wind, with contributions from other
processes such as waves, surface currents and the presence
of surfactants among others. The SWH measurement that
we describe in this paper is based on a fourth independent
combination of the two complex radar returns, namely the
interferometric correlation

γ =
|⟨s1s∗2⟩|√

⟨|s1|2⟩⟨|s2|2⟩
(1)

which encodes in a statistical sense the normalized covariance
between the two complex signals, and is therefore a real
number between 0 and 1. The brackets in equation (1) denote
ensemble averages over instrumental noise and ocean surface
realizations. We defer the discussion about how these averages
are estimated from the data to section II-D and first proceed
to describing the various sources of decorrelation.

A. Sources of interferometric decorrelation

Correlation in the context of across-track interferometry has
been extensively studied in the literature [5], [6], [11], [12],
and can be factorized into various contributions

γ = γSNRγgeoγangγvol. (2)

The first three factors on the right-hand side of equation (2)
can be thought of as instrumental sources of decorrelation
(although strictly speaking, part of the random noise con-
tributing to the finite SNR comes from surface emission and
topography and backscatter gradients contribute to geometric
and angular decorrelation). Only the last factor, often referred
to as volumetric decorrelation, is impacted by the presence of
surface waves. We leave a detailed description of this crucial
factor in the context of this work for the next subsection and
focus on the instrumental ones here.

The key point of this subsection is that the interferometric
measurement provides an estimate of the total correlation γ
and that obtaining an estimate of γvol from which SWH
can be inverted first requires estimating these instrumental
decorrelation factors. The idea that SWH could in principle
be measured using interferometric correlation measurements
has been proposed a long time ago, and was present in the
original designs of the KaRIn processing chain under a simpler
form than what is presented in this paper, namely providing
a single SWH value per line of the image, with no cross-
track dependance. The main reason for this is that, as we will
show in subsection II-B, the inversion in the far range portion
of the swath requires an exquisite control of all sources of
decorrelation which was not in the mission requirements and
therefore could not be guaranteed before launch. This paper
demonstrates that such a fine characterization of instrumental
effects was indeed achievable through a combination of instru-
ment modelling and monitoring (described in the paragraph
below) and static calibration (described in subsection II-C).

The thermal noise part of the correlation γSNR is simply
given by

γSNR = (1 + 1/SNR1)
−1/2

(1 + 1/SNR2)
−1/2

, (3)

so estimating γSNR requires an SNR estimate on each image.
This is derived from the total received power P̂a and a noise-
only measurement P̂noise

a performed for each interferometric
channel a (1 and 2) before the start of every echo.

ˆSNRa =
P̂a − P̂noise

a

P̂noise
a

. (4)

Throughout the text, hats over quantities denote estimates from
the measurements.

The angular and geometric correlation factors are more
involved and depend on the point target response (PTR)
of the instrument. For the sake of simplicity, we will not
provide explicit expressions in terms of the PTR since this
would require introducing unnecessary notation, and simply
refer the interested reader to section 2 of [5] or Appendix D
of [12]. The important point we want to emphasize here is that
given the degree of accuracy required, it is crucial to carefully
reconstruct the PTR from the radar’s internal calibration loop.
One important consideration is that the transmitted chirp (and
as a result, the range PTR) varies along the orbit, which our
dynamical reconstruction from calibration frames allows to
capture. Failing to do so would have resulted in very significant
(tens of centimeters) errors on SWH which would vary with
latitude.

Another crucial effect that we needed to model is the
decorrelation created by the conjugate-replica of the received
signal generated by tiny imperfections in the local oscillators
used for demodulating the echo. The description of this effect
is beyond the scope of this paper (see paragraph III.F.6 of [3]
for more details) and for the sake of simplicity, we omit it
in our equations in this paper (in practice, it is included as
a correction to the SNR decorrelation). We simply note that
failing to account for this would result in oscillations as a
function of the orbital altitude rate with amplitude 10−3 in
the estimated volumetric decorrelation. Moreover, the phase
of these oscillations is related to the along-track Doppler
(meaning that the impact is different for the nine Doppler
beams formed by the unfocus SAR processing of KaRIn’s
Low Resolution (LR) mode), making the signature in the beam
combined data hard to interpret. This is a perfect example
of a dynamical effect that would have been very hard to
empirically calibrate and where understanding the root cause
and modelling the effect has tremendous added value.

B. Volumetric decorrelation and SWH sensitivity to correla-
tion errors

Several authors have shown that in the presence of ocean
waves, γvol is entirely determined by the height probability
distribution (pdf) of the waves. Assuming that this pdf is
Gaussian, one readily obtains

γvol = e−(κSWH)2/2 (5)

where κ is a geometric coefficient proportional to the ratio of
the interferometric baseline (approximately 10 m for SWOT)
and the cross-track distance. Again, to avoid unnecessary no-
tation, we refer the reader to [12], [13] for explicit expressions
of κ in terms of different geometric parametrizations. The
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left panel of Figure 1 shows γvol as a function of cross-
track distance for different values of SWH . The first obvious
observation is that γvol = 1 in the absence of waves (no
decorrelation) and then decreases as SWH increases: higher
waves introduce more decorrelation as an increasing number of
points on the (wavy) surface coincide in range. As one moves
away from nadir, i.e. as cross-track distance increases, γvol
asymptotically approaches 1, meaning that the decorrelation
from the waves becomes weaker. Crucially, the curves for
different SWH are much more separated in the near range
than they are in the far range, meaning that the sensitivity to
SWH is very poor in the far range. The right panel of figure
1 quantifies that sensitivity by showing the (absolute) SWH
error resulting from a fixed error in the γvol measurement, i.e.
assuming that we measured γ̂vol = γvol(1− ϵ). Note that we
use the term error here to denote any source of discrepancy
between the measured and the true volumetric decorrelation,
be it from random fluctuations (e.g. caused by thermal noise)
or from possible systematic errors in the determination of the
other sources of decorrelation (e.g. from a systematic error in
the PTR reconstruction). The SWH bias is a function of both
the cross-track distance and the true SWH itself. The figure
shows the bias as a function of the true SWH for three cross-
track distances : near-nadir edge of the swath (10 km, blue),
center of the swath (35 km, green) and far-range edge of the
swath (60 km, orange). The various values of ϵ used in the
figure are positive, corresponding to overestimates of SWH.
Negative values would of course result in underestimates of
SWH, but we note that given the non-linear relation between
γvol and SWH , changing the sign of ϵ would also result in
slightly different absolute biases, especially at low SWH. For
the sake of space however, negative values of ϵ are not shown
but we keep the discussion generic in terms of absolute bias.
The absolute bias is a decreasing function of the true SWH. In
other words, it is actually easier to provide accurate estimates
in the high SWH regime. In the near range, an error of 10−3

on decorrelation translates to a SWH bias of the order of
centimeters or less throughout the entire SWH range (solid
blue line). In the far range, by contrast, the same error on
decorrelation already leads to tens of centimers worth of error
in SWH (solid orange line), meaning that our knowledge of all
instrumental sources of decorrelation has to reach an accuracy
better than 10−3. The dashed curves show the absolute bias
assuming an order of magnitude reduction in the error on γvol,
i.e. ϵ = 10−4. In that case, the SWH bias remains below 10
cm except for very low values of SWH throughout the entire
swath.

C. Calibration of the decorrelation measurement

In order to achieve an accuracy of the order of a few 10−4 on
the instrumental sources of decorrelation, we complement the
modelling of these sources (see subsection II-A) with a cali-
bration procedure that we describe here. The idea behind this is
that given the high accuracy required, it is crucial to correct for
potential residual errors in our characterization of the known
sources of decorrelation and also to capture potential sources
of decorrelation not included in our modelling. We emphasize

from the beginning that we were able to restrict ourselves to
a purely static1 calibration of volumetric decorrelation (not
SWH) which can be derived offline once and for all from a
few hours of SWOT data (using both data from KaRIn and
from SWOT’s nadir instrument) and then applied on the KaRIn
data regardless of whether the nadir instrument is operating
or not. In other words, the SWH from KaRIn is in no way
dynamically adjusted to the nadir SWH.

In practice, the calibration is derived as follows. We first
select 40 passes of KaRIn data (about one and a half days
in total; the only criterion for the selection at this stage is
that they are mostly over ocean, to maximize the amount
of useful data) and chunk them into 50 km segments in the
along track direction. Only segments where all pixels have
their quality flag set to good, which are entirely over the
ocean, and whose latitude is below 50◦ in absolute value
(to avoid ice) are kept. We also reject segments where the
σ0 drops by more than 4dB below the segment median, in
an attempt to avoid rain contaminated data. This leaves us
with a collection of about 4800 segments (the equivalent of
about half a day of KaRIn acquisitions if they had been
collected continuously) for each swath which we actually use
for the calibration. Each swath corresponds to a different
polarization of the transmitted and received radar signal (note
that the correspondance between left/right and H/V depends
on whether the spacecraft is yaw-flipped or not, see section
3.1.14 of [14]) and is therefore potentially affected by slightly
different errors in our modelling of the instrumental sources
of decorrelation. As a result, we derive one calibration for
each polarization independently. We also note that we require
slightly different calibrations for the so-called CAL orbit (1-
day repeat orbit used during the first 6 months of the mission)
and the SCIENCE orbit (21-day repeat orbit used for the rest
of the mission). While the calibration procedure is exactly the
same for both orbits, we only show the results for the CAL
orbit here for the sake of space.

Without any calibration, our volumetric decorrelation esti-
mate would simply be

γ̂vol =
γ̂

γ̂SNRγ̂geoγ̂ang
(6)

where all quantities in the right-hand side are either direct
measurements or the result of reconstructions using our in-

1During the last stages of the review process for this paper, we have started
gathering evidence that the instrumental effects captured by the (currently
static) calibration vary over long timescales (likely controlled by the angle
β between the vector from the Earth to the Sun and the plane containing
the spacecraft orbit around the Earth, which affects the solar illumination of
the spacecraft and therefore influences the thermal environment of the SWOT
spacecraft and its instrument [14]; this angle follows a cyclic pattern with a
timescale of months in the case of SWOT). So far, the observed deviations
with respect to the static calibration derived here and shown in Figure 2 are
smaller than 2 10−4 for most of the range of β angles, but can reach up to
4 10−4 for the largest values of |β|. In those situations, biases larger than the
ones shown in this paper, e.g. in Figure 11, can appear (up to several tens of
centimeters at low SWH in the far range). Confirming and fully characterizing
these residual errors will require significantly more data, which will become
possible when the entire dataset of SWOT observations (from the beginning of
the mission up to now, which represents several beta cycles) gets reprocessed
with the version of the algorithm described in this paper (version D of the
products). We leave a description of these errors and of algorithm evolutions
designed to correct for them for future work.
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Fig. 1. Volumetric decorrelation as a function of cross-track distance for various SWH (left panel). Absolute SWH bias (in log scale) caused by various
levels of error on the volumetric decorrelation estimates parameterized by ϵ (solid vs dashed lines) and for various cross-track distances (colors) as a function
of the true SWH (right panel). The impact of a fixed error in the decorrelation measurement ϵ drastically increases at low SWH and towards the outer edge
of the swath.

strument models and monitoring measurements (noise power,
range PTR, etc...). The previous equation applies for each
pixel of each segment (which is composed of 200 along track
samples, or lines, and 240 columns, or across-track samples
since we work with the native posting and resolution provided
by the On-Board Processor (OBP), namely 250 m and 500 m
respectively) but in order to simplify the notation, we will
omit all line and column indices. Additionally, the terms in
the right-hand side in principle depend on the Doppler beam
formed during azimuth compression. To keep this discussion
simple, and since our calibration is derived on the beam-
combined volumetric decorrelation anyway, we omit the beam
dependance here (but it is of course accounted for in the actual
calibration procedure).

Our calibration scheme consists in replacing equation (6)
by

γ̂cal
vol =

γ̂

γ̂cal
SNRγ̂geoγ̂angγcal

(7)

where the only modifications are the inclusion of a calibration
for the SNR and the introduction of a γcal factor in the
denominator. More explicitly, we allow for a multiplicative
SNR calibration of the type

ˆSNR
cal

= ˆSNR (1 + η) (8)

where η is a small constant scalar value (while it could in
principle be polarization dependent, we find that a single value
common to both is sufficient). In other words, for each KaRIn
pixel (regardless of its along- and across-track position or
Doppler beam), we simply first rescale the measured SNR with
the same real number 1 + η before computing the associated
SNR decorrelation using (3). In addition to this, we introduce
a static calibration factor γcal at the decorrelation level, which
we allow to depend on the cross-track distance. In other
words, for each polarization, we need to determine an across-
track calibration profile (one real value per 250 m cross-track
bin, i.e. 240 values in total). Note that the assuption that
such a static calibration is sufficient to control all sources
of instrumental decorrelation to the required level was not

a priori guaranteed, since those errors could in principle
vary with time (for instance due to variations of instrumental
parameters at the orbital timescale). Below, we show that this
is indeed sufficient, which was made possible by refining our
instrumental models to capture the main dynamical effects.
Had this not been the case, an emprical calibration of these
dynamical effects would have been necessary and we note
that this is a very hard problem: as long as the root causes
of the dynamical variations have not been understood, even
just identifying the proper variables on which the calibration
should depend can be extremely complex given the non-linear
nature of the phenomena at play.

The goal of the calibration procedure is therefore to derive
optimal values for γcal as a function of cross-track distance
and for the parameter η, which we do by using the SWH
provided by SWOT’s nadir instrument as ground truth. Specif-
ically, for each pixel of each segment, we compute a ”ground
truth” value for γtruth

vol = γtheo
vol (SWHnadir) by injecting

the 1HZ MLE4 nadir SWH (interpolated to the time of the
KaRIn measurement) into equation (5). For each segment, we
compute a cross-track profile of γ̂vol/γtruth

vol by simply talking
the median over each cross-track bin. Finally, for each cross-
track bin, γcal is defined as the median over all segments of
the ratios γ̂vol/γ

truth
vol . Given the fact that the measurements

by KaRIn and the nadir are not colocated (with separations of
up to 60 km in the far range portion of the swath, over which
the SWH often varies significantly), one important assumption
behind our calibration strategy is that, on average, both are the
same. In other words, we assume that both the nadir noise and
the difference in measurement location only contribute to the
width of the distribution of γ̂vol/γ

truth
vol but do not affect its

median. This procedure requires that the calibrated SNR is
used in the determination of γ̂vol, which requires choosing
a value of η. A range of values has been explored, and we
observed that deviations from 1+η = 0.15dB (i.e. η ≈ 0.035)
very quickly lead to an unphysical curvature of γ̂vol in the far
range (a small error in the SNR translates into a large error
on SNR decorrelation in the far range because the SNR is
smaller there). This is therefore the value that we adopted
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Fig. 2. Static calibration profile of volumetric decorrelation as a function of
cross-track distance for each polarization. The shaded gray areas on each side
show the portions of the swath beyond requirements. This static calibration is
designed to correct for errors in our modeling of known instrumental sources
of decorrelation and to capture potential additional sources of decorrelation
not accounted for in our models.

for our SNR calibration. Such a small discrepancy could be
attributed to various factors such as the frequency response of
the receiver on the noise estimate. The final profiles for γcal
are shown in Figure 2.

On top of allowing us to fix the calibration parameters, the
procedure described above provides us with an entire distri-
bution of γ̂cal

vol/γ
truth
vol for each range bin, sampling a variety

of instrumental, orbital and observed surface configurations.
This can be used as a first way of investigating whether our
static calibration is sufficient, by checking how the median of
γ̂cal
vol/γ

truth
vol computed over bins in these various parameters

behaves. This is shown in Figure 3 for a cross-track distance
of 60 km, i.e. at the far range edge of the swath where, as
explained in subsection 3, we need the most accurate estimates
of volumetric decorrelation. Each panel shows the dependence
on a different parameter: orbit altitude (H) and altitude rate
(dH/dt) in the top row, σ0 (the median of the NRCS measured
by KaRIn over the entire segment is used) and SWH (median
of the nadir measurements over the segment) in the bottom
row. The histograms in the background show the distribution
of the parameter of interest among our collection of segments2,
providing some insight as to which portions of parameter space
are less statistically reliable for this analysis. The solid lines
represent the median of γ̂cal

vol/γ
truth
vol − 1 computed over each

bin of the histogram. For our static calibration to meet our
needs, this quantity should remain of the order of 10−4 across
the entire parameter space, which is indeed the case. Initial
attempts using a static calibration on top of less refined models
of the instrumental dynamical behavior featured oscillations
and trends as large as a few times 10−3.

We emphasize that the approach taken in this work is not
to look for an empirical calibration of SWH that would take
sea state parameters as inputs. Rather, we derived an empirical
calibration (depending on purely instrumental parameters such
as cross-track distance and polarization) of the instrumental

2We note that the sampled altitude distribution does not cover the entire
range of the CAL orbit due to our restriction in latitude to avoid sea ice in
our calibration dataset. Similarly, values of SWH smaller than 50 cm or larger
than 5 m and values of σ0 different from 14dB by more than 2dB are barely
sampled in our dataset.

effects that impact our conversion from the total correlation
that we measure to the volumetric correlation that we want to
invert on a physical basis using equation (5).

D. SWH inversion algorithm in practice and illustration

The SWH inversion algorithm from the (calibrated) volu-
metric decorrelation estimates obtained through equation (7)
is straightforward. One important thing to keep in mind is that
this equation applies to the 250 m-posting/500 m-resolution
pixels formed after averaging by the on-board processor, which
is the only data that is downlinked to the ground and available
for processing. We note however that equation (5), which is
derived from (1), is in principle valid at the level of the single-
look complex (SLC) pixels, i.e. prior to on-board averaging.
Indeed, the brackets in equation (1) denote ensemble averaging
over instrumental noise realizations as well as over small
scale scatterer distribution (leading to speckle) and surface
wave realizations given a sea state (i.e. a value for SWH
in this context). In practice, these expectation values are
replaced by local averages of the (flattened) interfereogram
and powers computed using the on-board filters defined in [8].
In other words, the OBP conveniently provides us through its
averaging step with estimates of the expectation values of the
SLC conjugate products entering the definition of statistical
correlation, and our total correlation estimate appearing at the
denominator of (7) for each OBP pixel is simply the ratio
between the interferogram magnitude and the square root of
the product of the powers for this individual pixel. Such a
simple statistical estimator of coherence is known to be biased
[15], [16], with larger biases for small γ and small number
of looks. In the case of SWOT, the number of looks within
any OBP pixels (with 500 m resolution in both directions)
is large, and we do not explicitely account for this effect
(whose average value over all observation conditions should
additionally be captured by our static calibration).

The only degree of freedom that we introduce in our
algorithm is the resolution at which the inversion is performed.
We leave the full characterization of the fluctuations of γ̂vol
around its expectation value caused by instrumental random
noise as well as variability in the waves realization (given
SWH) for future work, but we note they often cause the
estimate to overshoot the maximum physical value of 1,
leading to no solution in the inversion. Already for this reason,
it is clear that at least some amount of local averaging of
the volumetric decorrelation estimates themselves in order to
reduce the variance of the fluctuations before using (5) leads to
a better behaved inversion. The scale used for averaging should
then be guided by the usual trade-off between the scale of the
spatial modulations of the SWH that one aims at capturing
and the amount of noise in the estimates that one is willing
to accept.

As we will argue in section III, the latter is hard to
characterize, and we refer the reader to that section for a
full discussion of the measurement error and upper bounds
on the measurement noise. Geophysically, SWH varies at a
broad range of scales. At oceanic mesoscales (100-10 km), the
spatial variability of SWH is mostly driven by wave-current
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Fig. 3. Stability of the median ratio between the calibrated volumetric decorrelation estimate from KaRIn and the one computed from the nadir SWH as
a function of various orbital and surface parameters. The figure is for the cross-track bin at the far-range edge of the swath, corresponding to a cross-track
distance of 60 km, where maximum accuracy is required. Our modelling of instrumental effects augmented with the static calibration described in this section
are sufficient to keep the magnitude of the deviations at the 10−4 level.

interactions [17]–[21]. However, as we approach scales on
the order of a few kilometers, wave groups start to play an
important role in the SWH variability, especially in swell-
dominated cases [22]. In practice, the modulations of the wave
envelope give rise to random fluctuations in the local SWH
(defined as four times the standard deviation of surface heights
over a spatial window) whose standard deviation depends on
the background SWH, the peakedness of the wave spectrum
and the size of the window. To capture the full range of scales
of variability in SWH, we chose to consider two different
resolutions for our inversion, namely 2 km and 5 km. The
main driver behind the choice of a scale as small as 2 km is
consistency with the SSH resolution of KaRIn products, with
the idea of eventually factoring the retrieved SWH fields into
a sea state bias correction.

Practically speaking, this means that we first filter γ̂vol in
along-track with a 2 km or 5 km long kernel. In the cross-track
direction, in order to account for the dependence of volumetric
decorrelation on incidence angle (even at constant SWH, see
figure 1), we replace the filtering by a least squares fit over 2
km (or 5 km) intervals. While this makes a small difference
at the 5 km resolution, this is negligible at 2 km resolution
and the operational algorithm in KaRIn’s ground processing,
which only provides 2 km-resolution estimates, uses a simple
cross-track averaging instead of this piecewise fits. Note that
any 250 m pixel flagged as rain-contaminated, land or ice is
discarded prior to the averaging (or cross-track fit).

Figure 4 illustrates the result of the SWH inversion on an
example from cycle 481 and pass 16, where a strong diagonal
feature associated with the presence of currents is seen (the
physics of this example will be discussed in more details in
section IV). The one-dimensinal collection of points between
the two swaths are the 1Hz measurements from SWOT’s nadir
altimeter. A global comparison between the nadir and KaRIn’s
measurement will be presented in section III-D, but this
example already illustrates the excellent agreement between
the two (if one considers the near range part of KaRIn’s
swaths of course). The nadir also sees the strong positive
SWH anomaly at the location where it intersects the nadir
track, but the KaRIn two-dimensional measurements reveal its
actual shape and orientation, providing a much more complete
picture of the phenomenon.

III. VALIDATION AGAINST INDEPENDENT OBSERVATIONS

In this section, we validate the SWH measurements obtained
with the method described in section II against several inde-
pendent sensors.

A. CSIRO GPS moored buoy

The Southern Ocean Time Series (SOTS) mooring GNSS
data contains in situ observations of the sea surface for each
yearly deployment of the mooring since 2019 (-47°, 141°).
The mooring is located in the right swath of SWOT’s pass 19
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Fig. 4. Illustration of the KaRIn SWH inversion at 2 km and 5 km resolution on an example in the Agulhas current (cycle 481, pass 16). The gaps visible
in both swaths between 39°S and 39.5°S are due to an editing algorithm aiming at rejecting rain contaminated areas based on local NRCS drops.

of the 1-day repeat CAL orbit (at about a 30 km cross-track
distance), providing us with a timeseries of colocated SWH
measurements between KaRIn and the buoy starting from the
end of SWOT’s commissioning phase (March 31st, 2023) and
ending at the end of SWOT’s 1-day repeat phase (July 9th,
2023). The SWH from GNSS is determined by first processing
the observations using GipsyX [23] using kinematic precise
point positioning to give positions at 2 Hz with centimeter
level accuracy. From this, the SWH is calculated [24] as 4
times the standard deviation of the height component over a
rolling window of specified length (90 minutes for the data
used in this comparison).

The top panel of figure 5 shows the SWH timeseries from
the buoy (black) and KaRIn (blue and red for 2 km and 5 km
resolution respectively). For certain days (8 out of the 96 in the
entire period), the comparison was not possible, either because
the buoy was in a rain contaminated area which was edited in
KaRIn’s processing (and the closest valid measurement was
several kilometers away), because of data gaps in KaRIn’s
raw data (from May 20th to May 22nd included), or because
the buoy data was not available (from May 15th to May 17th
included). The nadir measurements (green) are also provided
for comparison, but it is important to keep in mind that they are
not colocated with the buoy (the nearest 1Hz point was used)
and the geophysical spatial variability in the SWH field can be
a significant contribution to the measured differences. Given
the mooring location in the Southern Ocean, a wide range of
SWH values (up to almost 10 m) is sampled. The panel in the
second row shows the SWH differences between SWOT and
the buoy for each day while the third row features histograms
of those differences. We refer the reader to section III-E for
a more thorough discussion about measurement error for the
KaRIn SWH, but the histograms in Figure 5 already provide
a first indication in the form of an upper bound since any

error in the in-situ data would also contribute to the measured
differences.

More importantly, the buoy SWH are computed from the
height variance within a 90 minute window, which introduces
some smoothing of the wave group modulations that propagate
through the buoy location during that time, and of which
KaRIn captures a frozen snapshot. In order to illustrate the dif-
ferences that can be introduced by this inconsistent sampling
of wave groups between both instruments alone (even in the
absence of any instrumental error), we focus on one example,
namely cycle 556 (corresponding to June 19th; this is one of
the most extreme cases in our timeseries where the measured
SWH was above 9 m and the difference between KaRIn and
the buoy reaches 69 cm at 2 km resolution and 24 cm at 5 km
resolution). Starting from the wave spectrum provided by the
WaveWatch3 model (at the closest model grid point from the
buoy location), we numerically generated random realizations
of discretized sea surfaces and evolved them in time to sim-
ulate the buoy and KaRIn sampling of the surface. Simulated
buoy SWH measurements were constructed by computing
(four times) the standard deviation of the elevation of a single
grid point within a 90 minute window, whereas the KaRIn-like
sampling was mimicked by taking (four times) the standard
deviation of elevations within a 2x2 km (or 5x5 km) square
box centered on the buoy location, with the surface generated
at a time corresponding to the center of the 90 minute window.
We emphasize that no instrumental noise was introduced in the
simulation, since our goal here was to evaluate the contribution
from differences in surface sampling only. Using a large
number of different random seeds, this procedure allows for
a Monte Carlo estimation of the standard deviation of the
difference in SWH measurements due to the difference in the
way both instruments sample the random group fluctuations,
which in this example was 35 cm and 26 cm for the 2 km and
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Fig. 5. Comparison between the SWH measurements from the buoy and from SWOT. Top panel: SWH timeseries for each instrument (two different resolutions
used in the processing of KaRIn data). The location of the buoy in the Southern ocean allows to sample a wide regime of SWH. Middle panel: timeseries of
differences between the SWOT measurements and the ones from the buoy. Note that the measurements between KaRIn and the buoy are exactly colocated
in space and time, but a 90-minute window is used to estimate SWH from the buoy data, possibly smoothing some of the smallest structures such as wave
group modulations travelling through the area during this period. The observed differences are a combination of KaRin measurement noise, noise in the buoy
measurement itself, and this discrepancy in the length of the observation. The nadir measurement is not colocated in space with the buoy, which lies almost
at the center of the swath. Histograms of the differences are shown in the bottom panel. Their width provides an upper bound of KaRIns measurement error.

5 km KaRIn measurements respectively. In other words, the
difference of 69 cm between KaRIn (2 km) and the buoy in this
case is of the order of a 2σ fluctuation from group sampling
alone. Of course, the measured difference actually receives
contributions from instrumental noise as well, and separating
the sampling contribution from the instrumental contribution
is not possible on a single example. We leave for future work
a statistical analysis aiming at separating both, which would
require accumulating a statistically significant population of
cases with similar levels of instrumental noise and of sampling
noise. For now, we simply wanted to illustrate that group
sampling is an important contribution to the KaRIn vs buoy
differences. As a consequence, the standard deviations (15 cm

at 5 km resolution and 20 cm at 2 km resolution) obtained from
the histograms of differences cannot be interpreted in terms
of instrumental error. The small mean bias shown in these
histograms of differences underscores that KaRIn is giving
accurate SWH measurements throughout the wide range of
SWH sampled by the buoy.

B. Airborne remote sensing observations from MASS
We now compare KaRIn’s SWH measurements to indepen-

dent data acquired by the Modular Aerial Sensing System
(MASS) [25], [26] during the MASS-SWOT post-launch Cal-
Val campaign in April and June 2023, where 13 flights were
scheduled to match SWOT’s observation time. The MASS
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Fig. 6. Comparison between KaRIn and MASS for the flight of April 3rd. Top left panel : 2D SWH map from KaRIn, SWOT’s nadir measurements between
the swath and the measurements from MASS (markers with white contours; for this panel only, only one in every two MASS measurements is shown to
improve readability) overlaid on top of KaRIn’s swath. The 1-dimensional profiles of SWH along the MASS track are shown in the top right panel, and
the KaRIn-MASS differences in the middle right panel. Small scale features like the sharp gradient at 35◦N are captured coherently by both instruments.
Histograms of the KaRIn-MASS differences are shown in the bottom left panel. Their width is a very loose upper bound on KaRIn’s measurement noise since
most of the high frequency fluctuations come from MASS’s sampling of the wavy surface at 0.5x2.5 km. The bias between both instruments is centimetric.
Bottom right : difference in observing times between MASS and KaRIn along the profile. The aircraft carrying MASS takes about an hour to complete this
profile. Flights with larger separations in time with SWOT’s measurement typically result in larger differences, illustrating that temporal variability at the
scale of a few hours is non negligible.

instrument is built around a Q680i waveform scanning lidar
(Riegl, Austria), used to make spatiotemporal measurements
of the sea surface elevation, combined with detailed collocated
and coincident optical observations (visible, infrared and hy-
perspectral). The SWH from MASS is estimated [26] from the
lidar point cloud returns as 4 times the standard deviation of
surface height within boxes of approximately 500 m (fixed by
the instrument’s swath) by 2.5 km.

Figure 6 provides an example of comparison between
MASS and SWOT for the MASS flight of April 3rd, 2023
(corresponding to cycle 479 and pass 26 for SWOT). This

particular flight was divided into 4 repeating legs cutting an
along-track profile of KaRIn’s right swath (this corresponding
to a descending orbit for SWOT, the left swath under the
terminology of [14] is on the right on our plot) at a cross-
track distance of about 35 km. One important factor to take
into account in this comparison is the fact that the wave
field evolves over the several hours required for the flight. A
common pattern observed in all flights is that the discrepancies
in the observed SWH between MASS and KaRIn tend to
increase with the difference in observing times, with noticeable
differences of several centimeters over the timescale of hours.
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For this flight, each leg takes slightly above one hour to
complete (with SWOT’s observation time coinciding almost
exactly with the transition between legs 2 and 3) and the figure
uses the second leg of MASS data, i.e. the one acquired during
the hour just before SWOT’s acquisition (a figure using the
third leg, acquired in the hour just after SWOT) would have
looked very similar.

The two-dimensional SWH image from KaRIn (only shown
at 2 km resolution for the sake of space) is shown in the
top left panel, together with the nadir measurements (disk
markers between both swaths). The scene features strong
spatial modulations of SWH, with variations of several tens
of centimeters over only a few tens of kilometers. Overlaid,
with white contours are the MASS measurements. In order
to appreciate the excellent agreement, the one dimensional
profiles of SWH along MASS’s leg are shown in the top right
panel as a function of latitude. Features like the sharp gradient
just south of 35°N (more than 30 cm over about 30 km) are
captured very similarly by both intruments, suggesting that
they are indeed physical and illustrating KaRIn’s ability to
probe fine scales in the SWH field.

The differences between MASS and KaRIn are shown in
the middle right plot and look almost identical for the 2 km
and 5 km resolution. As could already be seen in the top
plot, most of the high-frequency fluctuations come from the
MASS measurements, predominantly coming from statistical
fluctuations in the local SWH (e.g. from wave groups) defined
at the scale of MASS’s averaging window3, which is limited
to 500 m in the across-track direction. We leave a more
quantitative investigation of those fluctuations for future work,
and simply point out that the MASS-KaRIN rms difference of
15 cm at 2 km resolution and 14.5 cm at 5 km resolution is an
upper bound on KaRIn’s measurement noise. The histogram of
the differences between MASS and KaRIn (medians of each
distribution in dashed and very close to zero) in the bottom
left plot however indicate that the relative bias between both
instruments is very small, at least in this regime. The bottom
right plot indicates the difference in observing times between
MASS and SWOT along MASS’s leg.

Figure 7 provides a summary of the comparison between
MASS and KaRIn over the entire MASS campaign, keeping
only the collocated measurements with less than 1h between
the observation times and using a very basic editing step
(removing outliers with differences of more than 1.5 m) to
get rid of corrupted lidar data caused by cloud contamination.
For context, the distribution of SWH values sampled by this
dataset (2970 points in total) are shown in the top right
plot. The top left panel shows the histogram of the SWH
differences between KaRIn and MASS. The medians of the
distributions are -1 cm for both the 2 km and 5 km resolutions,
confirming the very small bias between MASS and KaRIn
already seen on the example of the April 4th flight. We note

3The statement that the fluctuations in the MASS SWH mainly come from
sampling rather than from instrumental noise is supported by performing
simulations of random realizations of sea surface from the WaveWatch3 wave
spectrum corresponding to the location and time of the flight and computing
standard deviations within boxes of 0.5x2.5 km. Those show similar levels of
fluctuations as the high frequency variations in the MASS data.

that the distributions of SWH differences show a small tail
with negative values between 50 cm and 1 m (which slightly
push the means of the distributions to negative values, namely
-2 cm and -3 cm for 2 km and 5 km). This tail is caused by
a couple of legs where MASS was flying towards the edge
of KaRIn’s swath, at cross-track distances very close to 60
km and at a time where the waves were low (true SWH
of about 1 m), which is precisely the region of parameter
space where small errors on volumetric decorrelation translate
into large errors on SWH. In a histogram where only cross-
track distances smaller than 55 km are used (not shown here
for the sake of space), the tail disappears and the mean bias
between KaRIn and MASS gets reduced to below 1 cm. The
bottom row shows histograms of SWH differences for different
cross-track distance bins, with nicely centered distributions
throughout the swath except at the very edge (rightmost plot)
where the negative bias is visible. A more global investigation
of KaRIn’s errors as a function of cross-track distance is
is presented in sections III-D and III-E. The negative bias
observed here is not seen at a global scale (rather, a small
positive bias, dependent on SWH itself, is observed against
SWOT’s nadir). The most likely explanation for this is that in
the very far range a small dynamical error in our modeling
of decorrelation of instrumental origin remains (for instance
from an imperfect PTR reconstruction) and creates an error in
SWH which varies along the orbit (with possible systematic
contributions) and happens to be mostly negative over the
dataset used in this section.

To conclude this comparison between MASS and KaRIn, we
emphasize that the width of these distributions (respectively 22
cm and 24 cm for the 5 km and 2 km resolutions in the top left
plot) cannot be easily related to KaRIn’s random measurement
error in SWH, since other factors like temporal evolution of the
SWH field between the acquisitions and the different filtering
of very small scale modulations (groups) by both instruments
due to the geometry of the acquisition also contribute to the
observed differences.

C. Cross-over with Sentinel 3

Figures 8 and 9 show an example of cross-over between
SWOT (cycle 540, pass 24) and Sentinel 3A (S3A) with a
difference in acquisition times of slightly less than 3 hours. In
both figures, the left panel shows the two-dimensional SWH
field retrieved by KaRIn at 2 km resolution, together with
SWOT’s nadir measurement (dots between KaRIn’s swaths)
and S3A’s 1Hz measurements in SAR mode (markers with
white contours). Figure 8 shows the intersection of S3A with
the left (right on the plot since this is a descending orbit)
swath of KaRIn. The scene features a very smooth North-
South gradient going from less than 2 m to more than 3
m, which is well captured by all instruments. The central
panel shows the S3A profile of 1Hz measurements (black)
as well as the KaRIn measurements (at 2 km resolution in
green and 5 km resolution in red) reinterpolated onto the S3A
measurement locations to provide a more quantitative way
to assess the agreement. Finally, the right panel shows the
difference between KaRIn and S3A along the S3A profile,
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Fig. 7. Summary plots for the comparison between KaRIn and MASS over the entire campaign of CalVal flights. Only measurements within one hour have
been kept to limit the impact of temporal variability of the wave field. Top right : histogram of the SWH values sampled through the campaign, for context.
The full histogram of KaRIN-MASS differences is shown in the top left panel. The median bias (for both resolutions) is -1 cm. Again, the width of the
histograms cannot be directly interpreted in terms of KaRIn measurement noise since it receives contributions from MASS’s noise and, predominantly, from
the difference in the way both instruments sample the random fluctuations from wave groups at very small scales. These global histograms of differences are
broken down by cross-track distance bins in the bottom row (note the different sample sizes between the histograms). Median biases remain very close to
zero throughout the swath, but do increase slightly at the edge of the swath, where the measurement is most sensitive to errors. This far range error is most
likely due to systematic errors in the modelling of instrumental sources of decorrelation (at the level of 10−4) and therefore actually latitude dependent. See
the discussion in section III-E for more details.

with deviations typically bellow 10 cm, in particular in the
southernmost part of the segment.

Figure 9 shows the Northern portion of the cross-over,
where S3A crosses the left swath of KaRIn. While the mean
SWH value is similar to that of Figure 8, with a negative
North-South gradient, the measurements from all instruments
show much more high-frequency content, which is due to the
presence of wave groups [27]. To confirm this, we computed
the two-dimensional spectral peakedness Qkk introduced in
Eq. (4) of [22] and which controls the amplitude of the local
SWH modulations from the groups from WaveWatch3 spectra
corresponding to the center of each segment (15.5◦S and 25◦S
respectively). The scene in figure 9 (Qkk = 44 m) does indeed
correspond to a noticeably narrower spectrum than the one in
figure 8 (Qkk = 18 m) and should therefore feature much
stronger modulations from wave groups. We leave for future
work a more thorough investigation of how well KaRIn is
able to faithfully capture those local modulations caused by
wave groups, but simply point out for the moment that the
existence of such a small scale signal makes it very hard to
characterize the random noise from the measurement itself
(for example by looking at the high frequency variance of
the measurement) since the former can often dominate the

latter. We also point out that, assuming that the wave group
modulations are correctly picked up by KaRIn, this would be
a first step towards removing high-frequency noise in KaRIn’s
topography measurement induced by the local sea state bias
variations due to the groups.

Finally, we note that while the agreement between KaRIn
and the independent measurements from S3A in the example
presented above is one additional piece of evidence illustrating
that KaRIn is producing accurate SWH retrievals, a compari-
son over a large set of such cross-overs would be necessary to
provide a more detailed picture of the behavior of KaRIn at a
global scale. We leave such a global study for future work.

D. Global comparison against SWOT nadir

One important feature of the comparisons between KaRIN
and the other sensors presented in the previous three sub-
sections is that the two measurements being compared were
colocated in space, which removes spatial variability of the
SWH field as a source of discrepancy obscuring the interpre-
tation of the differences. In this subsection, we present the
results of a comparison between KaRIn and SWOT’s nadir
altimeter. Since both instruments are on the same platform
and are operating continuously, this allows for a comparison
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Fig. 8. Example of cross-over between KaRIn (cycle 545, pass 24) and Sentinel 3A (S3A), with about 3h difference in observing times. Left : KaRIn’s 2D
SWH map, nadir measurements between both swaths and S3A (markers with whtie contours) overlaid on top of KaRIn’s swath. Middle : one-dimensional
SWH profiles along the S3A track. The north/south gradient is well captured by all instruments. Right : profiles of KaRIn-S3A differences along the S3A
track. The bias between both instruments is close to zero.

of simultaneous measurements at the global scale (providing
a large sample size to accumulate statistical significance over
various observation conditions, such as SWH). The price to
pay is of course that both instruments do not measure at the
same location, with differences of several tens of kilometers
at the edge of KaRIn’s swath.

The comparison presented in the subsection was performed
over 154 SWOT passes of the 1-day phase : a multidimen-
sional histogram of differences in SWH between KaRIn and
the nadir was built as a function of a smooth reference SWH
(from the ECMWF model available in the SWOT products)
and of cross-track distance. Figure 10 shows probability
distribution functions (pdfs) computed from this histogram
when integrating over different intervals of cross-track distance
(below 20 km, left and above 45 km, right) and of SWH
(colors). In what follows, we describe in more details the

results of this nadir/KaRIn comparison using percentiles of this
type of distribution (possibly integrating over diferent SWH
and cross-track distance bins) : Figure 11 reports the median
of each distribution while Figure 12 focuses on the width of the
distribution defined as half the difference between the 16th and
84th percentile, a quantity we will refer to as the 1σ difference
between KaRIn and the nadir. This corresponds to the standard
deviation for Gaussian distributions, which is almost exactly
the case here.

The median differences of Figure 11, shown for various
SWH intervals as a function of cross-track distance can be
interpreted as the bias between both instruments under the
assumption that on average, the SWH at the nadir track and
at any cross-track distance is the same. In other words, we
assume that the difference in the true SWH field evaluated at
any two different cross-track distances, has a centered distribu-
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Fig. 9. Second half of the cross-over shown in figure 8, this time as S3A crosses KaRIn’s other swath. The high frequency fluctuations in the SWH
measurements by all three instruments are much larger than in the previous case, due to the presence of strong modulations from wave groups. This is
expected since this case corresponds to a significantly narrower wave spectrum.

tion4. For SWH>1 m, those biases are below 5 cm throughout
4Strictly speaking, a sampling bias (completely independent of instrumental

effects) can be introduced by this comparison of measurements at different
locations, because we are trying to characterize the bias as a function of SWH
itself, i.e. we bin the differences in SWH which means that we have to deal
with conditional distributions. This should mostly affect the very low and
large values of SWH, because they are the least common over the ocean.
The origin of this sampling bias can be simply understood by considering
the situation where one of the instruments, say instrument A, happens to be
measuring over a very low SWH (and therefore very rare) region. More likely
than not, the other instrument (B), a few tens of km away from the first, is
seeing a larger value of SWH, simply because even lower values are extremely
rare. As a result, the differences A-B binned using the values from B will
feature a positive bias for very low SWH bins (equivalently, a negative bias
would arise if the binning was done with the values from B). In our case,
the binning is done in terms of a smooth SWH coming from a model, so
we expect such a sampling bias to be attenuated. The exact value of such a
bias is difficult to predict as it depends on the spatial correlation of the SWH
fields at spatial scales of only a few tens of km, which are not known. In
the future, a determination of the purely instrumental bias between KaRIn
and nadir altimeters completely free of such a sampling contribution can be
achieved from accumulating statistics of differences at cross-overs with other
nadir altimeters, similar to the example presented in subsection III-C.

the swath. This increases to about 10 cm for SWH<1 m,
which could be expected from the discussion in section II-B
since small values of SWH is the most challenging regime.
We note that the low SWH regime is also challenging for
nadir altimetry, and more validation targeted to this region of
parameter space is necessary to understand which instrument
is performing better there. This is left for future work. Of
course, the resolution at which the SWH is estimated has no
impact on the bias, as confirmed by the similarity between the
left and right panels.

By contrast, the spatial variability of SWH will of course
induce an increase in the variance between the nadir and
KaRIn’s measurements as the cross-track distance increases.
As a result, the 1-sigma SWH difference between nadir and
KaRIN shown in Figure12 cannot be easily interpreted in
terms of instrumental noise. In fact, the variance in the
KaRIn/nadir differences receives contributions from 1) the
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Fig. 10. Probability distribution functions (computed over 154 SWOT passes) of the KaRIn-nadir differences for various SWH bins (colors) and cross-track
distance bins (left: near range, right: far range). The center and width of this type of distributions is dicussed in more details in figures 11 and 12, as well as
the extent to which they can be interpreted in terms of biases and measurement error.

Fig. 11. Median KaRIn-nadir differences as a function of cross-track distance for various SWH bins (colors) and the 2 km (left) and 5 km (right) resolutions.
These can be interepreted as relative biases between both instruments, and remain well below 5 cm as soon as SWH>1 m. At lower SWH (the most challenging
regime for the inversion), the bias increases to about 10 cm.

geophysical spatial variability in the SWH field, 2) KaRIn’s
measurement noise and 3) the nadir’s measurement noise. The
first of these contributions increases with cross-track distance
and likely with SWH. We also note that this contribution
should increase as the resolution used for the SWH inversion
becomes finer since KaRIn then becomes able to pick up ad-
ditional physical small scale variability such as that generated
by the presence of wave groups. The measurement noise in
KaRIn can be decomposed into a random contribution and
a systematic contribution coming from not having perfectly
accounted for all the instrumental sources of decorrelation
which vary slowly along the orbit. Both can have an across-
track dependance, but only the former should depend on the
resolution used for the inversion. According to the discussion
in section II-B, we expect the measurement noise in KaRIn
to decrease with SWH. Finally, the nadir noise is known to
increase with SWH (see for instance [28]) but also depends
on other characteristics of the wave spectrum [27].

This mixture of contributions (and the fact that at least the

first two depend on SWH, cross-track distance and resolution)
makes it difficult to isolate KaRIn’s measurement noise from
such a KaRIn/nadir contribution. A complementary compar-
ison between KaRIn and the ECMWF wave model will be
presented in the next subsection and allows us to characterize
the evolution of KaRIn’s measurement noise as a function of
cross-track distance. Anticipating on the conclusions in there,
we point out that the linear trend as a function of cross-track
distance visible in Figure 12 is dominated by geophysical
variability, while the sharp increase visible for lower values
of SWH towards the edges of the swath can be attributed
to (systematic) measurement noise in KaRIn. The non-trivial
ordering of the 1σ differences as a function of SWH (say at 10
km cross-track distance) which start by decreasing with SWH
(until ≈ 2 m) before increasing towards large values of SWH
results from competing effects : both the nadir noise and the
geophysical variability increase with SWH, while the KaRIn
noise decreases.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3551605

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 03,2025 at 20:22:26 UTC from IEEE Xplore.  Restrictions apply. 



15

Fig. 12. 1σ difference (i.e. half the difference between the 84th and 16th percentiles of the distribution) between KaRIn and nadir. This receives contributions
from the measurement error in both the nadir instrument and in KaRIn, as well as from spatial variability between the measurement locations of both
instruments. The linear trend as a function of cross-track distance is dominated by this geophysical spatial variability, while the sharper increase towards the
outer edge of the swaths, particularly visible for low SWH, is attributable to increased measurement error in KaRIn, as discussed in section III-E.

E. Global comparison against the ECMWF wave model

In this subsection, we reproduce the previous comparison
but replacing SWOT’s nadir measurements by the SWH com-
puted by the ECMWF model [29], which is conveniently
provided in the SWOT products. The main advantage with
respect to the KaRIn/nadir comparison is that differences can
be computed at the same location, which will get us rid of the
increase in variance with cross-track distance due to spatial
variability in the SWH field. However, spatial variability will
of course remain a limiting factor in this comparison given the
lack of current forcing in the model : small scale gradients
are typically missed by the model. As an illustration that
the lack of small scales will usually dominate the differences
between KaRIn and the model, figure 13 shows the SWH field
measured by KaRIn at 2 km resolution (left; same as the left
panel of figure 4, reproduced here for the reader’s convenience)
and predicted by the model (right) for the case already shown
in section II-D and which features strong SWH gradients (also
seen by the nadir instrument) due to wave-current interactions.
Since the model does not account for current effects on waves,
it fails to capture the current induced gradients in the SWH
field, such as the narrow region of high SWH oriented in the
SW-SE direction (note that the colorbars are different; using
the same for both plots would have resulted in an almost
uniform right panel).

The case presented in figure 13 is far from being an
extreme event and the KaRIn/model differences will often be
completely dominated by the lack of small scales in the model.
Despite that, this comparison is useful in understanding some
of the properties of KaRIn’s measurement error because the
contribution to the variance of the KaRIn/model differences
from this small scale SWH variability not captured by the
model should not depend on cross-track distance. In fact,
the only two contributions to this variance should now be 1)
the error in the model (both small scales which are missed
and possible errors on the larger scales) and 2) KaRIn’s

measurement noise.
The 1σ KaRIn/model differences for various SWH bins are

shown in figure 14 as a function of cross-track distance. Once
again, we ephasize that the differences are usually dominated
by the missing content in the model, so the values shown in the
plot are at best loose upper bounds of the KaRIn measurement
noise5. However, all the cross-track dependence in that plot
can be now interpreted as an increase in measurement noise.

To quantify this further, figure 15 shows the increase in
variance at any cross-track distance with respect to the near
range (average of the first few of each swath). As expected,
the measurement noise increases more steeply for low SWH
values and towards the outer edge of the swath. For SWH>1
m, the additional variance with respect to the near range
remains below 0.05m2 (0.1m2 below 1 m) up to 50 km in
across-track confirming that the linear trend of several tens
of cm visible in the cross-track profiles of the KaRIn/nadir
comparison of figure 12 were due to geophysical variability.
Above 50 km, KaRIn’s measurement noise increases more
significantly and exceeds several tens of centimers in the
last km of the swath (assuming that the noise in the far
range is much larger than the noise in the near range, the
additional variance shown in this plot can be interpreted as
total variance).

Since the curves at 2 km (solid) and 5 km (dashed)
resolution are close to each other, this excess measurement
noise towards the edge of the swath is mostly not random, but

5We note that the reduction in variance between the 2 km and the 5 km
resolutions is a combination of reduced measurement noise and smoothing of
group modulations at scales below 5 km. In other words, comparing the 2
km and 5 km 1σ errors does not allow to quantify the random component
of the measurement noise. This is confirmed by reproducing the figure (not
shown) but separating each SWH bin into cases with pure wind seas (where no
strong group modulations are expected) and cases with strong swells (which
typically have peakier spectra giving rise to stronger group modulations). The
1σ differences are consistently larger for the cases with swells, consistent
with the fact that the modulation from groups is an important contributor to
the KaRIn/model differences.
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Fig. 13. Same as figure 4 but with the right panel showing the ECMWF SWH instead of the KaRIn measurements at 5 km resolution. The model is very
smooth and misses the physical features seen in the left panel. This dominates the variance of the KaRIn-model differences, which as a result cannot be
interpreted in terms of absolute levels of measurement noise. As argued in the rest of this subsection, this KaRIn vs model comparison does still provide some
characteriztion of KaRIn’s error, since relative variations with cross-track distance of the variance of the differences is necessarily attributable to measurement
error.

Fig. 14. Same as figure 12 but with the nadir replaced by the model. The linear increase with cross-track distance of figure 12, due to the geophysical
spatial variability between the measurement locations of the nadir and KaRIn has disappeared. However, the 1σ differences are mostly dominated by the high
frequency signal misssing in the model and are not representative of KaRIn measurement error. However, this missing signal in the model has no reason to
depend on cross-track distance. All the variations with cross-track distance, in particular the steep increase seen in the outer edges of the swaths at low SWH,
come from measurement error increasing with cross-track distance.

rather comes from an imperfect modeling of the systematic
sources of instrumental decorrelation which vary in along
track. For low SWH values in particular, our 10−4 accuracy
on those instrumental effects becomes insufficient. Given that
these instrumental decorrelation errors tend to vary slowly in
along-track, the additional measurement error evidenced in this
section will usually manifest itself as a slowly evolving bias
at the edge of the swath over scences of a few hundred of
kilometers. One example of this can be seen in the top left
corner of Figure 6. This also explains the negative bias seen
against MASS for the larger cross-track distances (bottom

right histogram in figure 7). If the MASS flights had taken
place at a different latitude, this local bias would likely have
been different.

IV. DISCUSSION

Having described the method used to estimate SWH from
KaRIn measurements and having validated those estimates
against those obtained with independent methods (allowing
us to at least partially characterize the measurement noise),
we conclude this article by discussing some applications and
avenues for research that this new dataset opens.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2025.3551605

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on April 03,2025 at 20:22:26 UTC from IEEE Xplore.  Restrictions apply. 



17

Fig. 15. Variance increase (with respect to near range) of the KaRIn-model
differences. This is entirely attributable to KaRIn’s measurement error. As
could be expected from the discussion in section II-B, this is larger in the far
range and for low SWH values.

By providing for the first time at the global scale two-
dimensional maps of SWH at a resolution of a few kilometers,
the SWOT mission creates an opportunity to better understand
at much finer scale than before the physical phenomena that
shape the sea state variability, such as wave-current inter-
actions [17]–[21] and wind forcing [30]–[32]. Indeed, part
of what makes KaRIn a unique instrument for the study of
waves is that, in addition to providing SWH maps, it provides
simultaneous maps of σ0 and of surface topography, from
which geostrophic velocities can be computed (below, we use
those provided in [33]) and used as a proxy for currents.

Figures 16 and 17 illustrate geostrophic velocity, SWH,
and σ0 in two distinct geographical regions. Both figures
reveal a striking similarity in the spatial structure of all three
fields. Notably, strong gradients in SWH are observed near
current gradients, generally coinciding with modulations of
σ0, suggesting a strong coupling between currents, waves, and
winds.

In Figure 16 (Agulhas current; same example as in Figure
4), the observed spatial variability of SWH is consistent
with swell from the Southern Ocean interacting with strong
mesoscale currents and meanders [34], [35]. Figure 17, shows
an example located in the Gulf Stream region. Wave spectrum
from a hindcast (not shown) indicates that the wave field
during that time was dominated by locally generated waves
with relatively low SWH. Despite the differences in sea
state compared to the Agulhas Current case, Figure 17 still
demonstrates similar correspondences between currents, SWH,
and σ0 features.

Currents are the largest source of spatial variability of
SWH at scales under 100 km [17], [20], [27], and most
of this effect can be attributed to refraction [18], [35]–[37].
However, it is important to note that the effects of refraction
are both local and non-local, meaning current gradients can
lead to SWH gradients far downstream from the current

patterns [37]–[39]. Current effects on waves can also lead
to modulations of the sea surface roughness, which would
show up as modulations of σ0. Therefore, σ0 can be sensitive
to wave-current interactions in addition to wind speed (e.g.
[40]). We note that other phenomena such as the presence of
surfactants or surface heat fluxes also impact the σ0 and can
make the interpretation of these joint current/SWH/σ0 complex
in certain situations. Figures 16 and 17 highlight the intricate
coupling between currents, waves, and winds and showcase the
potential of SWOT observations to shed light on these complex
interactions. Diagnosing the underlying mechanisms driving
the observed gradients in SWH and σ0 is beyond the scope of
this work and will be explored in a separate manuscript.

V. SUMMARY

We have demonstrated that the interferometric data from
KaRIn can be processed into spatial maps of SWH. The
measured (total) interferometric correlation is first processed
into volumetric decorrelation by factoring out all instrumen-
tal contributions. Due to the high accuracy that is needed,
this required a combination of instrumental modelling and
a simple and static empirical calibration designed to correct
for unmodelled sources of instrumental decorrelation and for
inaccuracies in modelling the known ones. The calibrated
volumetric decorrelation, originally available at KaRIn’s native
500 m resolution (in LR mode), is then converted into SWH
after some local averaging to 2 km or 5 km. We have
validated KaRIn’s SWH retrievals against independent data,
namely from a GPS buoy, from MASS’s airborne lidar, from
Sentinel3’s SAR altimeter, from SWOT’s nadir altimeter and
from a numerical wave model. We have shown in figures 5, 6,
7, 8, 9 and 11 that relative biases between KaRIn and all these
datasets are of the order of centimeters. We expect that such
spatial maps of SWH will contribute to a better understanding
of the sources of SWH spatial variability at small scales.
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