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The particle trajectories in irrotational, incompressible and inviscid deep-water surface11

gravity waves are open, leading to a net drift in the direction of wave propagation12

commonly referred to as the Stokes Drift, which is responsible for catalysing surface13

wave-induced mixing in the ocean and transporting marine debris. A balance between14

phase-averaged momentum density, kinetic energy density and vorticity for irrotational,15

monochromatic and spatially periodic two-dimensional water waves is derived by working16

directly within the Lagrangian reference frame, which tracks particle trajectories as a17

function of their labels and time. This balance should be expected as all three of these18

quantities are conserved following particles in this system. Vorticity in particular is always19

conserved along particles in two-dimensional inviscid flow, and as such even in its absence20

it is the value of the vorticity which fundamentally sets the drift, which in the Lagrangian21

frame is identified as the phase-averaged momentum density of the system. A relationship22

between the drift and the geometric mean water level of particles is found at the surface23

which highlights connections between geometry and dynamics. Finally, an example of an24

initially quiescent fluid driven by a wavelike pressure disturbance is considered, showing25

how the net momentum and energy from the surface pressure disturbance transfer to the26

wave field, recognizing the source of the mean Lagrangian drift as the net momentum27

required to generate an irrotational surface wave by any conservative force.28

Key words:29

1. Introduction30

Deep water surface gravity waves are ubiquitous in the global oceans, and affect the31

transport of heat, momentum and mass both along and across the air-sea interface (van32

Sebille 2020; Melville 1996; Deike 2022). One crucial property of irrotational deep water33

waves is that the particle trajectories are not closed leading to a net drift in the direction34

of wave propagation commonly referred to as the Stokes Drift (Stokes 1847). Formally,35

the Stokes drift is defined as the difference between the mean Lagrangian and mean36
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Eulerian currents,37

US ≡ uL − uE , (1.1)

where uL and uE represent the Lagrangian and Eulerian currents respectively, and38

the overline indicates a time mean in each reference frame over a wave period. One39

often neglected issue with this definition is the validity of taking the difference between40

two quantities in different reference frames with different dependent variables and more41

importantly different definitions of averaging as the Lagrangian and Eulerian periods42

are not equal (Longuet-Higgins 1986). To avoid this confusion, we will instead use the43

term ‘wave-induced mean Lagrangian drift’ to refer to the mean Lagrangian velocity of44

fluid particles over the Lagrangian wave period. In this paper we restrict ourselves to45

vanishing external Eulerian currents, i.e. the fluid would be quiescent without waves.46

The wave-induced mean Lagrangian drift modulates upper ocean currents, affects the47

transport of buoyant pollutants, plankton and marine debris (DiBenedetto et al. 2018)48

and enhances vertical mixing via Langmuir circulation (Craik & Leibovich 1976; Belcher49

2012). There is also evidence that this drift, or mean Lagrangian momentum density,50

can help with the interpretation of many central geometric, kinematic and dynamic51

properties of surface waves (Pizzo et al. 2023). Despite the elapse of over 175 years since52

its discovery, there is still confusion regarding the origins and interpretation of the wave-53

induced mean flow for irrotational surface gravity waves. Most derivations, including that54

of Stokes (1847), calculate the magnitude and direction of the drift from an asymptotic55

integration of the kinematic condition relating the Eulerian and Lagrangian velocities,56

which simply states that at a fixed point in time and space, the Eulerian and Lagrangian57

velocities are equal58

dx(t)

dt
= uE(x(t), t) , (1.2)

since at a fixed time a particle’s location is coincident with a fixed point in space. Thus59

the particle trajectories within a wave, which are fundamentally Lagrangian quantities,60

are derived from the Eulerian velocity fields. When done in this way, the mean Lagrangian61

drift appears to simply fall out of the math, and physical explanations for its existence62

tend to come post-factum. Why, fundamentally, should progressive irrotational surface63

waves induce a mean motion of water? What sets its magnitude and direction? Lastly,64

how is the mean Lagrangian drift related to other quantities such as vorticity and energy65

density? Such questions are the primary aim of this paper.66

In section 2, we introduce the governing equations and relevant conditions for solving67

irrotational, incompressible, spatially periodic and inviscid two-dimensional deep-water68

surface gravity waves in the Lagrangian reference frame, which tracks the trajectories of69

individual fluid parcels as a function of labelling coordinates. In this frame, the wave-70

induced mean Lagrangian drift is explicitly written as the average velocity of fluid parcels,71

and is thus identified as the mean Lagrangian momentum density of the system, physically72

motivated when one recalls momentum being equivalent to mass flux. In section 3,73

through an investigation of these equations, we show how the mean momentum density,74

or equivalently the drift, is related to the vorticity and energy density of irrotational75

water waves. Despite the flow being completely irrotational, it is precisely this very strict76

condition of irrotationality that dynamically mandates a sheared mean Lagrangian drift,77

and thus we emphasize that even in irrotational flow, it is the vorticity that sets the78

magnitude and direction of the drift. We then dynamically connect the mean momentum79

and kinetic energy densities, showing that all monochromatic, irrotational and progressive80

waves with nonzero kinetic energy require a nonzero mean Lagrangian drift. Finally, we81

highlight a connection between the mean potential and mean kinetic energy densities82
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through the mean pressure using a Bernoulli equation in the Lagrangian frame first83

outlined by Pizzo et al. (2023).84

To further explore the dynamic relationship between these variables, in section 4 we85

consider the momentum and energy budgets within the physically motivated Lagrangian86

reference frame. To show how the wave-induced mean Lagrangian drift emerges from an87

initially quiescent flow, we consider a simple example where a still surface is resonantly88

driven by a wavelike pressure forcing. Through the integral momentum budgets, we find89

that all the momentum transferred to the waves from the surface forcing goes into the90

mean momentum, or mean Lagrangian drift. The same is shown to be true for the total91

energy.92

Note that our results rest upon the assumptions of irrotational, incompressible and93

inviscid flow in two dimensions. Furthermore, the waves we consider are supposed to be94

monochromatic, spatially periodic, permanent and progressive. These assumptions will95

be justified and their limitations discussed as they are introduced.96

2. The Lagrangian description of water waves97

Lagrangian quantities track evolution following fixed fluid particles. Thus a complete98

two-dimensional Lagrangian description of a fluid requires calculating particle trajectories99

x(α, β, τ) as a function of particle labelling coordinates (α, β) and time τ . Note that we100

distinguish τ from t to emphasize that the partial derivative with respect to τ holds101

particle labels fixed. We will equivalently indicate such derivatives with an overhead102

dot. The particle trajectories x(α, β, τ) represent a general time-dependent coordinate103

transformation between label space (α, β) and physical space (x, y), with a corresponding104

Jacobian determinant105

J ≡ ∂(x, y)

∂(α, β)
= xαyβ − xβyα , (2.1)

where subscripts indicate partial derivatives. The Jacobian also allows us to easily change106

variables of differentiation. For example, the two dimensional incompressiblity condition107

in the Eulerian frame is denoted as108

ux + vy = 0 , (2.2)

which can be mapped to the Lagrangian frame as

0 = ux + vy =
∂(u, y)

∂(x, y)
+

∂(x, v)

∂(x, y)
=

1

J

(
∂(u, y)

∂(α, β)
+

∂(x, v)

∂(α, β)

)
=

1

J

(
∂(ẋ, y)

∂(α, β)
+

∂(x, ẏ)

∂(α, β)

)
=

1

J
∂

∂τ

∂(x, y)

∂(α, β)
=

1

J
J̇ = 0 . (2.3)

Therefore incompressible flow requires that the Jacobian J be time independent. Addi-109

tionally, regardless of the incompressibility condition, we require the Jacobian to not be110

equal to zero anywhere in the flow (i.e. no sign changes) so that the mapping remains111

invertible. We could have determined this condition without calculation by remembering112

that the Jacobian determines how infinitessimal areas are mapped between label space113

and physical space. A small collection of particles dα dβ must enclose the same physical114

area J−1dxdy for all time or else the flow would be allowed to compress.115

Since we are considering inviscid flow, the Euler equations will suffice for our treatment.
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Upon conversion to the Lagrangian frame they become (Lamb 1932, Art. 15)

J ẍ+ pαyβ − pβyα = 0 , (2.4)

J ÿ + pβxα − pαxβ + J g = 0 , (2.5)

where p represents the pressure, and g the acceleration due to gravity. Note that in the116

Lagrangian frame the nonlinear terms arise in the pressure terms and not in the inertia117

terms, in contrast to the Eulerian reference frame.118

While incompressibility provides a constraint on our mapping between label space119

and physical space, there is still tremendous freedom in how we label our particles; this120

is known as the particle relabelling symmetry, and represents a gauge freedom of fluid121

mechanics. The conserved quantity associated with this gauge freedom, via Noether’s122

theorem, is the vorticity (Salmon 1988). Just as in electromagnetism, this gauge can be123

conveniently chosen to simplify computations, but we leave it general for now.124

Here, our physical system amounts to solving equations (2.4), (2.5) for variables (x, y, p)125

as functions of (α, β, τ), subject to the incompressibility condition (2.3) for a given126

labelling gauge choice. To close the system, we impose boundary conditions at the free127

surface and the bottom. As part of our labelling freedom, we label particles at the surface128

with β = 0, which makes the evaluation of surface quantities straightforward. This is129

equivalent to saying that our domain in label space is just the lower half plane, which130

is much simpler to work with both theoretically and numerically. This is in contrast to131

in the Eulerian frame where the domain is bounded above by the free surface η(x, t),132

which is itself a dependent variable of the system and not known a priori. Thus our133

surface boundary condition, equivalent to the dynamic boundary condition in Eulerian134

coordinates, simply states that pressure must vanish up to a constant at the surface, i.e.135

p(β = 0) = 0 , (2.6)

which is just another way of saying that the wave is unforced. We examine what happens136

when this condition is relaxed in a later section. The bottom boundary condition states137

that the vertical velocity must vanish as we tend towards the infinitely deep impermeable138

bottom139

ẏ(β = −∞) = 0 . (2.7)

As a final point, the fact that the domain in label space is time independent also140

means that all points initially within the domain remain there. This is in contrast to141

the Eulerian frame, where certain points, such as those with y = 0, are outside of the142

fluid part of the time, and therefore taking temporal averages at these points becomes143

ill-defined.144

3. Drift in relation to vorticity, momentum and energy145

Up to this point we have neglected to mention the vorticity of these waves. While it has146

been long known that there exists an exact solution to the above system in which particles147

undergo purely circular trajectories, these Gerstner (1802) waves have a nonvanishing148

vorticity (Lamb 1932, Art. 251). Irrotational waves are physically desirable since surface149

waves are assumed to be generated from an irrotational state of rest by the pressure150

gradient force, which as a conservative body force which cannot alter vorticity (Phillips151

1977). We can compute the vorticity in Lagrangian coordinates by a simple mapping152

between reference frames153

q ≡ vx − uy =
∂(ẋ, x)

∂(x, y)
+

∂(ẏ, y)

∂(x, y)
=

1

J

(
∂(ẋ, x)

∂(α, β)
+

∂(ẏ, y)

∂(α, β)

)
, (3.1)



Momentum, energy, and vorticity balances in water waves 5

so that irrotational flow requires154

qJ = ẋαxβ − ẋβxα + ẏαyβ − ẏβyα = 0 . (3.2)

Recall that in two-dimensional inviscid flow, vorticity is materially conserved along155

particles, e.g.156

q̇ = 0 . (3.3)

However, this does not extend to three dimensions, where vorticity is no longer materially157

conserved on particles (due to vortex tilting and stretching), but is instead conserved on158

one-dimensional vortex lines. In two-dimensions, these lines collapse to a point, as they159

are assumed to extend indefinitely “into the page”. Because these waves are spatially160

periodic, and therefore infinitely extend in the along wave direction, the added restriction161

that the flow be two-dimensional is relatively benign. Applications to finite extent wave162

packets in both two and three dimensions is under current investigation by the authors163

(see also Pizzo & Salmon 2021).164

Thus the vorticity in two-dimensional inviscid flow acts like a conserved ‘charge’ for165

particles, analogous to the electric charge in electromagnetism (see Salmon 2014, 2020).166

This analogy is conceptually useful as well, as both electric charge and vorticity, even167

when vanishing, profoundly affect the motion of matter.168

3.1. Series expansions169

We consider permanent, progressive, spatially periodic and monochromatic waves in170

two dimensions and expand our trajectories in a series following Clamond (2007); Pizzo171

et al. (2023) as172

x = α+ U(β)τ +

∞∑
n=1

xn(β) sin(θn) , y = β + y0(β) +

∞∑
n=1

yn(β) cos(θn) , (3.4)

with θn = nk(α− (c−U(β))τ), k the wavenumber, c the phase speed, U(β) the explicit173

mean Lagrangian drift, and y0(β) the mean water level, a parameter explored further174

in section 3.3. Note that the intrinsic frequency, Doppler-shifted by U(β), is needed to175

remove secular terms at higher orders (see Clamond 2007 discussing Buldakov et al.176

2006). Inserting these expansions into the irrotational condition (3.2) and taking the177

time averaged component yields the constraint178

U(β) =

c

2

∑
n2k2(x2

n + y2n)

1 +
1

2

∑
n2k2(x2

n + y2n)
, (3.5)

a result first found by Pizzo et al. (2023) which shows what form the drift must take to179

maintain irrotational flow. While this relation just comes from a dynamic constraint, it180

shows that, given an expansion of the form (3.4), and so long as a wave is present (e.g.181

xn,yn ̸= 0 for some n) there must be a positive definite mean Lagrangian drift U(β) for182

the flow to stay irrotational. While this line of reasoning explains why a sheared mean183

flow is needed if an irrotational wave is present, we still lack a physical mechanism for184

its origin. To that end, we next turn to an investigation of wave dynamics.185

3.2. Drift and Energy186

Kelvin’s circulation theorem states that the circulation of a material contour187

Γ ≡
∮

u · dℓ , (3.6)
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is conserved following the flow (i.e. Γ̇ = 0). A less commonly known Lagrangian version188

of this theorem (see Salmon 1988, eq. 4.12) equivalently defines the circulation as189

Γ =

∮
A · dα , A ≡ ẋ∇αx+ ẏ∇αy , (3.7)

in two dimesions where ∇α = (∂α, ∂β) is the gradient operator in label space. From this190

it is clear that191

u · dℓ = A · dα , (3.8)

which proves how these are equivalent representations of the circulation. For irrotational192

flow, we can always write the Eulerian velocity u as the gradient of a scalar velocity193

potential ϕ. By the chain rule, we can show194

∇ϕ · dℓ = ∇αϕ · dα , (3.9)

which, when compared with (3.8) shows that for irrotational flow A is just the gradient195

of the velocity potential ϕ in label space.196

What makes the Lagrangian representation particularly interesting here is that the197

material loop in label space is fixed in time by definition, so Kelvin’s circulation theorem198

reduces to199

∂Γ

∂τ
=

∮
∂A

∂τ
· dα = 0 , (3.10)

for any closed loop in a potentially rotational fluid. However, if we constrain ourselves200

to irrotational flows, we have201

Γ =

∮
A · dα =

∮
∇αϕ · dα =

∫∫
∇α × (∇αϕ) dα dβ = 0 , (3.11)

where we used Stokes theorem and the fact that the curl of a gradient always vanishes.202

Additionally, and importantly, if we constrain ourselves to spatially periodic flows, such203

as those represented by (3.4), then we can choose a closed contour as in figure 1 which is204

a rectangle in label space with width λ = 2π/k, extending vertically from (β = β0) to the205

infinite bottom (β → −∞) where the velocity vanishes. Because the domain is periodic,206

the contributions from the sides cancel out, and due to our deep water condition the207

bottom boundary does not contribute. Thus, (3.11) reduces to208

Γ =

∫ α+λ

α

ϕα dα =

∫ α+λ

α

ẋxα′ + ẏyα′ dα′ = 0 , (3.12)

or equivalently, that the phase average of ẋxα + ẏyα is zero for any irrotational and209

horizontally periodic fluid. From here we can take advantage of our expansions (3.4)210

which relate α and τ derivatives as211

xα =
c− ẋ

c− U
, yα = − ẏ

c− U
, (3.13)

which transforms the integrand to212

ẋxα + ẏyα =
cẋ− (ẋ2 + ẏ2)

c− U
. (3.14)

The consequence of (3.12) and (3.13) is that213

(c− U)Γ =

∫ α+λ

α

cẋ− (ẋ2 + ẏ2) dα′ = 0 , (3.15)
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Figure 1. Schematic of a potential closed material loop for periodic, progressive waves (red).
The top contour is a material line of constant vertical label β = β0. Because the entire domain
is λ-periodic, the side contours cancel. Due to our infinite bottom condition, A vanishes as we
approach the bottom and there are no contributions there. Note the clockwise orientation used.

which, defining a phase average with angle brackets ⟨·⟩, yields214

c⟨ẋ⟩ = ⟨ẋ2 + ẏ2⟩ . (3.16)

A key realization is that in the Lagrangian frame these quantities have physical inter-215

pretations such as ⟨ẋ⟩, the phase averaged momentum density, and ⟨ẋ2 + ẏ2⟩, twice the216

phase averaged kinetic energy density, exactly how they would look in classical physics.217

Note that crucially, from expansions of the form (3.4), the phase averaged momentum218

density is exactly the mean Lagrangian drift U(β). Thus, we obtain the exact relation219

cU(β) = 2⟨T ⟩ , (3.17)

where T = 1
2 (ẋ

2 + ẏ2) is defined as the kinetic energy density. This relation implies220

that the mean Lagrangian drift is linked to the kinetic energy of the system through221

the phase speed c, with all of its nonlinear corrections, implying that any irrotational222

wave of the form (3.4) that has energy must also have a drift, even if the underlying223

system does not represent surface gravity waves. Recall that all we have invoked here is224

Kelvin’s circulation theorem, irrotational flow, and trajectories of the form (3.4). Lastly,225

we emphasize that this relationship holds level-wise (i.e. for each vertical β level) and226

as such encodes depth dependence. A similar relationship linking momentum density227

to kinetic energy density in the Eulerian frame was first found by Levi-Civita (1924),228

written in the form229

cI = 2K , (3.18)

where230

I ≡
∫ η

−h

udy (3.19)

is defined as the wave impulse, where η is the sea surface, −h the depth, and where the231

overline represents an Eulerian average in x over one wavelength. The Eulerian kinetic232

energy density K is defined as233

K ≡
∫ η

−h

1
2 (u

2 + v2) dy . (3.20)

This was later found to hold between any two material contours, or equivalently stream-234
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lines in a co-moving frame, by Starr (1947). While this equation is similar in scope235

to (3.17), that there is a direct connection between momentum and kinetic energy,236

these terms mean different things in different frames. For example, all of the Eulerian237

momentum exists between the wave troughs and crests, because at certain heights, say the238

still surface level, a fixed point is out of water half the time. Therefore, the only velocity239

it observes is the forward moving velocity of the crests. Putting aside the difficulty of240

dealing with points partly outside of the fluid domain, these conserved Eulerian quantities241

are not physically connected to the mass flux of particles, and one would not be able to242

isolate the mean Lagrangian drift from such an approach.The relationship found above243

(3.17) holds for each material line of constant β, and as such shows equivalent vertical244

dependence in U(β) and ⟨T ⟩, but it is also more connected to the classical meanings of245

terms such as momentum and kinetic energy densities, which in the Lagrangian frame246

directly encodes the mean Lagrangian drift U(β).247

3.3. Drift, Mean Water Level, and Mean Pressure248

The last connection we explore is between the wave-induced mean Lagrangian drift,
the mean water level (MWL), and the mean fluid pressure. The mean water level, y0(β)
in equation (3.4) at first appears to lack motivation – it would seem that setting it to
zero would be most natural. The reason this is not the case is due to the fact that the
Lagrangian and Eulerian mean water levels are different, as the Lagrangian mean sums
over particles, which are not equally spaced in physical space. Mathematically, the mean
water levels in each frame are given as

MWLEul =
1

λ

∫ λ

0

η(x, t) dx , (3.21)

MWLLag =
1

λ

∫ λ

0

y(α, 0, t) dα = y0(b) (3.22)

where η(x, t) is the typical Eulerian sea surface elevation function, equivalent to249

y(α(x, t), 0, t) assuming one inverts the mapping from α to x. The mean water level in250

the Eulerian frame, due to mass conservation, is the same as the still water level, so it251

is typically set to zero. If we try to convert this to the Lagrangian frame, we see that252

MWLEul =
1

λ

∫ λ

0

η(x, t) dx =
1

λ

∫ λ

0

y(α, 0, t)
∂x

∂α
dα ̸= MWLLag , (3.23)

and thus the mean water levels are not the same. Precisely, they differ within the integral253

by the factor xα, which corresponds to the unequal spacing of particles along the water254

surface. In surface gravity waves this tends to bunch particles towards the wave crest255

and spread them out within the trough. A consequence of this is that the wave crests256

and troughs, as defined by Lagrangian phase in (3.4) are also of unequal lengths in257

physical space. The incompressibility condition in the Lagrangian frame is maintained258

by stretching or compressing of particles in the vertical.259

The precise value for the Lagrangian mean water level y0(β) is gauge dependent, though260

the gauge we choose for irrotational water waves is J = 1, which just means that areas in261

label space map equivalently to areas in physical space. We can then constrain its value262

by the enforcement that the Eulerian mean water level is zero. Thus we choose y0(β)263

such that264

⟨yxα⟩
∣∣
β=0

= 0 , (3.24)

subject to the incompressibility condition (2.3) and and irrotational flow (3.2) which sets265
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the vertical dependence. The physical meaning of the Lagrangian mean water level is266

that the presence of waves raises the average potential energy of the fluid parcels relative267

to their rest state in a still fluid. How is it then connected to the kinetic energy, and268

therefore the drift?269

Following Pizzo et al. (2023), by multiplying (2.4) by xβ and (2.5) by yβ , we find270

pβ + gyβ + ÿyβ + ẍxβ = 0 . (3.25)

Taking advantage once again of our expansions (3.4), we can write271

ÿ = −(c− U)ẏα , ẍ = −(c− U)ẋα , (3.26)

yielding272

pβ + gyβ − (c− U)(ẏαyβ + ẋαxβ) = 0 . (3.27)

Noting that the terms in parentheses are part of the vorticity, we can use our incom-273

pressibility condition (3.2) to write274

pβ + gyβ − (c− U)(ẋβxα + ẏβyα) = 0 , (3.28)

which, after another conversion between time and space derivatives, becomes275 (
p+ gy +

1

2
(ẋ− c)2 +

1

2
ẏ2
)
β
= 0 . (3.29)

Performing an indefinite integral of this equation yields276

p+ gy +
1

2
(ẋ2 + ẏ2)− cẋ+

c2

2
= f(α, τ) , (3.30)

where f(α, τ) is a constant of integration, whose value is constrained by the boundary277

conditions. For our system, as we approach the infinite bottom, all wave terms (ẋ, ẏ, U, y0)278

vanish, and pressure becomes hydrostatic p → −gβ, which implies f(α, τ) = c2/2.279

Clearly, this looks like Bernoulli’s equation in Lagrangian coordinates as was first noticed280

by Pizzo et al. (2023). If we take the phase average of this equation, we find281

⟨p⟩+ gβ + gy0(β) + ⟨T ⟩ − cU(β) = 0 , (3.31)

an exact relation which holds level-wise. If we substitute the main result from the last282

section (3.17), this becomes283

⟨p⟩+ gβ + gy0(β) + ⟨T ⟩ − 2⟨T ⟩ = 0 , (3.32)

or rewritten,284

⟨p⟩ = ⟨T ⟩ − ⟨V ⟩ , (3.33)

where ⟨V ⟩ = g(β + y0(β)) is the average potential energy of particles. Thus the mean285

pressure acts as a Lagrangian for the system, which is similar to what Luke (1967) found286

in the Eulerian frame. If we apply Whitham’s method using the averaged Lagrangian,287

and substitute the expansions (3.4) for ⟨T ⟩ and ⟨V ⟩, the action becomes288

A =

∫ t2

t1

∫ 0

−∞

1

2
U(β)2 +

1

4

∑
n

n2k2(xn + yn)
2(c− U(β))2 − gy0(β) dβ dτ . (3.34)

Varying the mean Lagrangian drift itself yields289

δU : U(β) =

c

2

∑
n2k2(x2

n + y2n)

1 +
1

2

∑
n2k2(x2

n + y2n)
, (3.35)
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exactly the same as (3.5) which was originally found by a dynamic constraint.290

One interesting consequence of (3.33) is that it shows that the magnitude of the mean291

kinetic energy, mean potential energy, and mean pressure are all related. Recalling the292

last section, this equivalently means that the mean Lagrangian drift, the mean water293

level, and the mean pressure are also related. Substituting our forms for ⟨T ⟩ and ⟨V ⟩294

gives295

⟨p⟩ − (−gβ) =
cU(β)

2
− gy0(β) , (3.36)

where −gβ is just the hydrostatic component of the pressure. At the surface (β = 0), we296

know that the pressure vanishes via the dynamic boundary condition, which implies297

gy0(0) =
cU(0)

2
, (3.37)

a result first discovered by Longuet-Higgins (1986), though only at the surface. Our298

equation (3.36) implies that at each and every material line, the balance between mean299

kinetic energy (drift) and mean potential energy (MWL) differs exactly by the mean300

pressure deviation at that depth, which is in general nonzero. This result connects the301

mean water level, a purely geometric quantity, to the mean momentum and pressure,302

dynamic quantities, and as such we show how one can infer dynamics from geometry,303

and vice versa, for irrotational water waves.304

4. Conservation Laws305

The previous section introduced a close connection between momentum and energy for306

spatially periodic, irrotational waves in a fluid. What are the corresponding conservation307

laws for these quantities? Returning to the momentum equations308

J ẍ+ pαyβ − pβyα = 0 , (4.1)
309

J ÿ + pβxα − pαxβ + J g = 0 , (4.2)

we can derive a conservation law for total horizontal momentum by vertically integrating310

(4.1) from the infinite bottom to the free surface,311 ∫ 0

−∞
J ẍdβ +

∫ 0

−∞
pαyβ − pβyα dβ = 0 . (4.3)

Recognizing that incompressibility requires J to be time independent, we can pull a time312

derivative out of the first integral. In addition, if we consider the integral313

∂

∂α

∫ 0

−∞
pyβ dβ =

∫ 0

−∞
pαyβ dβ +

∫ 0

−∞
pyαβ dβ , (4.4)

and apply integration by parts on the last term, we obtain the expression314

∂

∂τ

∫ 0

−∞
J ẋdβ︸ ︷︷ ︸
≡I

+
∂

∂α

∫ 0

−∞
pyβ dβ︸ ︷︷ ︸
≡S

= pyα

∣∣∣
b=0

, (4.5)

where we define I and S as the vertically integrated horizontal momentum density and315

flux, respectively. Put in this way, (4.5) becomes a standard conservation law for bulk316

horizontal momentum,317

∂I
∂τ

+
∂S

∂α
= pyα

∣∣∣
β=0

, (4.6)
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where pyα at the surface is the source of momentum. Note that318

pyα

∣∣∣
β=0

= pηxxα = pηx(1 + . . .)
∣∣∣
β=0

, (4.7)

since η(x, t) ≡ y(α(x, t), 0, t). In the Eulerian frame, the source of momentum from the319

wind is given to lowest order by the correlation of surface pressure and sea surface slope320

ηx, which we see validated here (Miles 1957; Phillips 1977). Recall that for an unforced321

wave, p = 0 at the surface, and total momentum is conserved.322

We perform the same process for the vertically integrated energy by multiplying (4.1)323

by ẋ and (4.2) by ẏ, adding the two equations and vertically integrating to get324

∂E

∂τ
+

∂F

∂α
= p(ẋyα − xαẏ)

∣∣∣
β=0

, (4.8)

where E is defined as the vertically integrated energy density325

E ≡
∫ 0

−∞
J
(
ẋ2 + ẏ2

2
+ gy

)
dβ , (4.9)

and F is defined as the vertically integrated energy flux326

F ≡
∫ 0

−∞
p(xβ ẏ − ẋyβ) dβ . (4.10)

Just as with horizontal momentum, if pressure vanishes at the surface, then total energy327

is conserved.328

In the Lagrangian frame, the average momentum density ⟨I⟩ is all contained within the329

mean Lagrangian drift, as it is the only term that survives the phase averaging. If there330

was no pressure forcing and we phase-averaged the horizontal momentum conservation331

law (4.6), we would find332

∂⟨I⟩
∂τ

= 0 , (4.11)

which just states that the total integrated Lagrangian mean drift, or equivalently the333

average horizontal momentum density, is conserved. To see how this momentum (and334

therefore energy) can increase in time, we need to allow for a nonzero pressure forcing,335

which leads naturally to an example of generating Stokes waves from rest.336

4.1. Generating Stokes waves from rest337

While the previous analysis showed why a drift must occur if the wave is to be338

progressive, irrotational and contain energy, it is helpful to also show how a mean339

Lagrangian drift can arise on an initially quiescent flow. To begin, we consider a still340

fluid which at τ = 0 is subject to an external wavelike surface pressure forcing (e.g. by341

wind)342

p(β = 0) = ϵp0 sin(kα− ωτ) , (4.12)

where ϵ ≪ 1 is our small parameter, and we take ω =
√
gk so that the pressure

disturbance propagates at the same speed as a surface gravity wave with the same
wavelength. Physically speaking, this pressure forcing drives a resonant response in the
sea surface, generating waves whose amplitudes grow linearly in time. In the Lagrangian
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frame, the particle trajectories for this system valid to second order in ϵ are found to be

x(α, β, τ) = α+
ϵωp0
2g

τekβ sin(kα− ωτ) +
ϵ2p20k

2ω

12g
e2kβτ3 , (4.13)

y(α, β, τ) = β − ϵωp0
2g

τekβ cos(kα− ωτ) +
ϵ2p20k

2

8g
e2kβτ2 , (4.14)

p(α, β, τ) = −gβ ++ϵp0e
kβ sin(kα− ωτ)− ϵ2p20k

8g
(e2kβ − 1) , (4.15)

where solutions are found through a standard perturbation approach as in Salmon (2020,343

ch. 1). Note that we have ignored the mean Lagrangian drift in the phase since it does not344

affect the results to second order. Because the amplitude grows linearly in time, the mean345

Lagrangian drift which is normally proportional to the square of the amplitudes times τ346

correspondingly grows as τ3. The second order term in (4.14) is just the mean water level347

which scales as the square of the amplitude, which is there to ensure the incompressibility348

condition subject to the gauge J = 1. To see how this explicitly connects to the drift,349

we first will perform a phase average of the horizontal momentum conservation law (4.6)350

∂

∂τ

∫ 0

−∞
⟨ẋ⟩dβ =

∂

∂τ

∫ 0

−∞
U(β, τ) dβ = ⟨pyα

∣∣
β=0

⟩ . (4.16)

This gets rid of the flux terms since the entire solution is spatially periodic in α. Our351

gauge choice J = 1 trivializes the Jacobian term. Thus the mean external pressure352

forcing, represented by the correlation of p and yα at the surface, provides a source of353

horizontal momentum which fuels the increase of the mean horizontal momentum, or354

equivalently the vertically integrated Lagrangian mean drift.355

Inserting our solutions (4.13) – (4.15) into the phase averaged horizontal momentum356

conservation law (4.16), we confirm our results357

∂

∂τ

∫ 0

−∞
U(β, τ) dβ = ⟨pyα

∣∣
β=0

⟩ = ϵ2p20ωk

4g
τ , (4.17)

notably that the mean momentum input from the wind to the waves in order to generate358

wave growth goes entirely into increasing the mean Lagrangian drift.359

Though the simple example presented above is by no means intended to be a complete360

description of how waves are generated, it illustrates a physical source for the mean361

Lagrangian flow. There need not be any small-amplitude approximations either; equation362

(4.6) only assumes inviscid flow and infinite depth.363

In short, to generate periodic irrotational surface gravity waves from rest, there must364

be a mean input of horizontal momentum to the water, or equivalently a convergence of365

momentum flux. This mean momentum lives entirely within the mean Lagrangian flow,366

identifying the wave induced mean Lagrangian drift as nothing more than the average367

horizontal momentum necessary for the generation of irrotational surface gravity waves368

by any conservative force.369

As a further check, we see by inserting our solutions (4.13) – (4.15) into the phase370

average of the energy conservation law (4.8), we recover371

∂⟨E⟩
∂τ

=
〈
p(ẋyα − xαẏ)

∣∣∣
β=0

〉
=

1

4
ϵ2kp20τ +O(ϵ4) , (4.18)

which shows that, just as with momentum, generating waves requires a flux of energy372

from the wind to the waves. However to lowest order, this energy resides wholly in the373

orbital particle motion and gravitational potential energy from the mean water level.374
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Recalling the result from the previous section, we do indeed see that the kinetic energy375

and mean Lagrangian drift are related, notably that the mean source of momentum376

multiplied by c =
√
g/k is equivalent to the mean source of energy at this order, once377

again highlighting the connection between these two quantities.378

5. Discussion379

In this paper we showed that the mean Lagrangian drift, equivalent to the phase380

averaged momentum density in the physically-motivated Lagrangian frame, is intimately381

connected to the vorticity and energy densities for irrotational, monochromatic and382

spatially periodic waves. We further highlighed this connection by showing that sources383

of momentum and energy (e.g. from the wind) all add to the momentum and energy of384

the wave field using a simple example of an initially quiescent fluid resonantly forced by385

a wavelike pressure disturbance at the surface. Physically speaking, this implies that the386

wave induced mean Lagrangian drift arises due to the necessary input momentum and387

energy to generate an irrotational wave from rest by any conservative force. Thus we are388

well equipped to answer the questions posed in the introduction. Permanent, progressive389

and irrotational waves require a mean motion of water due to the fact that for these390

waves to have kinetic energy, they require a net momentum (or mass flux), which in391

the Lagrangian frame resides in the mean Lagrangian drift. Its magnitude and direction392

are set by the strict dynamic constraint of irrotational flow, as prescribing the vorticity393

on particles is equivalent to prescribing their mean Lagrangian drift (see the appendix394

for cases with nonvanishing vorticity). Finally, the mean Lagrangian drift is not simply395

related to the mean kinetic energy density in a bulk sense, it is exactly proportional to396

it, at all vertical material levels, with a factor of 1/c.397

Our theoretical results imply that for irrotational, monochromatic and periodic waves,398

the mean kinetic energy and momentum of particles are intimately related through399

the wave’s phase speed. This could suggest that anywhere energy is jettisoned, such400

as by wave breaking, it is accompanied by a shedding of momentum to the underlying401

mean flow (Rapp & Melville 1990). This connection between wave energy and mean402

momentum helps to illuminate the close two-way coupling between currents and waves,403

and as such will be of particular interest to the air-sea interaction community seeking to404

model transport and energy budgets between the atmosphere and ocean.405

In addition, we explored a connection between the mean potential energy, mean kinetic406

energy, and mean pressure, showing that at the surface, mean kinetic and mean potential407

energies are equal, which relates the surface drift directly to the mean water level. This is408

especially relevant to the observational community as direct measurements of the mean409

Lagrangian drift are particularly difficult (Kenyon 1969), especially close to the surface410

(Lenain & Pizzo 2020). On the other hand, measurements of geometric properties such411

the Lagrangian mean water level might offer an alternative way to estimate the mean412

Lagrangian drift, as in McAllister & van den Bremer (2019).413

It should be noted that the results presented here are similar to the “pseudomomentum414

rule” in Generalized Lagrangian Mean (GLM) theory, which states that O(A2) mean415

forces can be calculated as if pseudomomentum were momentum, and the fluid medium416

were absent (McIntyre 2019), where A is the small wave amplitude. For surface waves,417

pseudomomentum per unit mass is defined as the wave energy over the phase speed c. We418

emphasize that it is twice the mean kinetic energy, which when divided by c, yields U(β),419

valid to all orders of amplitude. To lowest order, the mean kinetic and potential energies420

are equal, which explains the O(A2) result. The exact difference between mean kinetic421

and potential energy is given by the mean pressure (3.33), which has nonvanishing terms422
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starting at O(A4). The field of wave-mean interactions is vast (Bühler 2014; Leibovich423

1983; Thomas 2016), and while we do not investigate a general connection between424

momentum, energy, and vorticity for all types of waves, a purely Lagrangian framework425

may prove insightful to such systems.426

There is also a connection between these results for irrotational waves and the Darwin427

drift for irrotational flow around a submerged body (Darwin 1953). Darwin’s result states428

that the ‘added mass’ of a body moving through an irrotational fluid, which is related429

to the kinetic energy of the body, is equal to the ‘drift volume’ swept out by the passing430

of the object. The equivalent drift volume for surface waves is simply a vertical integral431

of the Lagrangian mean drift, which by (3.17) is directly related to the kinetic energy of432

the waves. The similaritites between Darwin drift and Stokes drift were first explored by433

Eames & McIntyre (1999).434

Note that these results do not hold in the general case of rotational waves, such as435

Gerstner waves, which have no mean Lagrangian drift and therefore no net momentum436

density, yet still have non-zero energy from their orbital motion. In this case, the437

connection between kinetic energy and drift fails due to the non-vanishing circulation.438

Here we focused solely on irrotational flow, though if desired any arbitrary vorticity could439

be prescribed to the system, generating a nonzero circulation which would balance the440

kinetic energy term in lieu of the drift. A comprehensive investigation of rotational flow441

is explored in the appendix.442

Lastly, this work highlights the benefits of working directly within the Lagrangian443

frame, which is the most natural way to compute and interpret fundamentally Lagrangian444

quantities. Some of them, such as momentum and energy, take on more classical meanings445

when computed in this frame, and as such can be easier to interpret.446

Declaration of interests. The authors report no conflict of interest.447

Appendix A. Rotational Waves448

Adding an arbitrary vorticity to waves in the Lagrangian frame is relatively straight-449

forward as vorticity is conserved on particles in two-dimensional inviscid flow. Thus any450

Lagrangian formulation presented above which holds for a various collection of particles451

can be easily modified to account for vortical waves. As an example, we direct the reader452

to (Pizzo et al. 2023, eq. 2.9) to see how the drift is dynamically constrained by an453

arbitrary vorticity. For convenience we rewrite it here454

U(β) =

c

2

∑
n

n2k2(x2
n + y2n)−

∫ β

−∞
⟨J q⟩dβ′

1 +
1

2

∑
n

n2k2(x2
n + y2n)

. (A 1)

To determine the balance between mean momentum, kinetic energy, and vorticity for455

water waves, we return to the definition of the circulation in the Lagrangian frame (3.7),456

and apply Stokes’ theorem to find457

Γ =

∮
A · dα =

∫∫
(∇α ×A) · n̂dα dβ , (A 2)

where n̂ is the unit normal. For the contour used above described by figure 1, due to the458
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clockwise orientation, n̂ points into the page and we have459

Γ = −
∫ 0

−∞

∫ α+λ

α

J q dα′ dβ′ , (A 3)

using the definition of A and q. Since the α derivative is over a wavelength, we can460

convert this to a phase average, resulting in461

Γ =

∮
A · dα =

∫ α+λ

α

ẋxα + ẏyα dα = −
∫ β

−∞
⟨J q⟩dβ′ , (A 4)

for our chosen material loop, since as before, the side and bottom contours do not462

contribute. The contour integral part of the equation is unchanged from the irrotational463

case, so after a few manipulations, the result becomes464

cU(β)− 2⟨T ⟩ = −(c− U(β))

∫ β

−∞
⟨J q⟩dβ′ , (A 5)

where U(β) and ⟨T ⟩ are defined the same as before. As a quick check consider the Gerstner
wave, which is exactly described by the circular trajectories and pressure

x(α, β, τ) = α−Aekβ sin(k(α− cτ)) , (A 6)

y(α, β, τ) = β +Aekβ cos(k(α− cτ)) +
1

2
A2k , (A 7)

p(β, τ) = −gβ +
1

2
A2k2c2(e2kβ − 1) , (A 8)

where A < 1 is the amplitude of the wave, and c =
√
g/k is the exact phase speed. These465

waves have vorticity, but no mean Lagrangian drift (U = 0). Inserting these into (A 5)466

yields467

2⟨T ⟩ = c

∫ β

∞
⟨J q⟩dβ′ = A2k2c2e2kβ , (A 9)

which validates the result for this special case. Thus (A 5) is the general version of (3.17),468

and states that there is actually a balance between drift, kinetic energy density, and469

vorticity for the waves considered. Stokes waves, where the balance is entirely between470

drift and kinetic energy density, or Gerstner waves, which balance kinetic energy density471

and vorticity, are thus limiting cases for this general result.472

Finally, we investigate how the Bernoulli equation (3.30) is altered by allowing for an473

arbitrary vorticity starting at equation (3.27) to find474

pβ + gyβ − (c− U)(J q + ẋβxα + ẏβyα) = 0 , (A 10)
475 (

p+ gy +
1

2
(ẋ− c)2 +

1

2
ẏ2
)
β
− (c− U)J q = 0 . (A 11)

Once again, we can integrate this equation and use the same argument to constrain the476

constant of integration (f(α, τ) = c2/2) to find477

p+ gy +
ẋ2 + ẏ2

2
− cẋ =

∫ β

−∞
(c− U)J q dβ′ , (A 12)

a result also derived in Pizzo et al. (2023). If we now phase average this equation, we get478

⟨p⟩+ gβ + gy0(β) + ⟨T ⟩ − cU =

∫ β

−∞
(c− U)⟨J q⟩dβ . (A 13)
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Using our new result linking drift, kinetic energy density and vorticity (A 5), we can write
the mean pressure as

⟨p⟩ = ⟨T ⟩ − ⟨V ⟩ − (c− U)

∫ β

−∞
⟨J q⟩dβ′ +

∫ β

−∞
(c− U)⟨J q⟩dβ′ , (A 14)

= ⟨T ⟩ − ⟨V ⟩ −
∫ β

−∞

∂U(β′)

∂β
Γ (β′) dβ′ , (A 15)

where we use the definition of the circulation Γ as above (A 4). This result shows how,479

when vorticity is present, the mean pressure is not precisely equal to ⟨T ⟩−⟨V ⟩, and differs480

by terms related to the vorticity and the mean Lagrangian drift. If we again insert this481

into an averaged Lagrangian via Whitham’s method and vary U(β), we recover (A 1).482

Interestingly, when either the vorticity is zero, as in (3.33), or when the mean Lagrangian483

drift is zero, as in a Gerstner wave, we do in fact see that the mean pressure acts as a484

Lagrangian for the system, i.e.485

⟨p⟩Stokes = ⟨T ⟩ − ⟨V ⟩ , ⟨p⟩Gerstner = ⟨T ⟩ − ⟨V ⟩ , (A 16)

but not necessarily for intermediate waves with nonzero drift and vorticity. Writing this486

result explicitly in terms of the mean Lagrangian drift and mean water level results in487

⟨p⟩ − ⟨−gβ⟩ = cU(β)

2
− gy0(β)−

c− U

2
Γ (β)−

∫ β

−∞

∂U(β′)

∂β
Γ (β′) dβ′ . (A 17)

For the Gerstner wave, where U vanishes, we can use (A 8) to write488

1

2
A2k2c2(e2kβ − 1) = −gy0(β)−

c

2
Γ (β) , (A 18)

which, by computing the circulation, yields489

y0 =
1

2
A2k , (A 19)

independent of depth. This is in contrast to the irrotational case, whose mean water level490

decays exponentially, highlighting again the importance of vorticity for these quantities.491

At the surface, where the mean pressure vanishes for an unforced wave, we have492

gy0(0) =
cU(0)

2
− c− U(0)

2
Γ (0)−

∫ 0

−∞

∂U(β′)

∂β
Γ (β′) dβ′ (A 20)

and as such, the mean water level, a purely geometric quantity, is related to both the493

dynamic mean Lagrangian drift and the vorticity.494
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