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The role of the Lagrangian mean flow, or drift, in modulating the geometry, kinematics
and dynamics of rotational and irrotational deep-water surface gravity waves is examined.
A general theory for permanent progressive waves on an arbitrary vertically sheared
steady Lagrangian mean flow is derived in the Lagrangian reference frame and mapped
to the Eulerian frame. A Lagrangian viewpoint offers tremendous flexibility due to the
particle labelling freedom and allows us to reveal how key physical wave behaviour
arises from a kinematic constraint on the vorticity of the fluid, inter alia the nonlinear
correction to the phase speed of irrotational finite amplitude waves, the free surface
geometry and velocity in the Eulerian frame, and the connection between the Lagrangian
drift and the Benjamin–Feir instability. To complement and illustrate our theory, a small
laboratory experiment demonstrates how a specially tailored sheared mean flow can almost
completely attenuate the Benjamin–Feir instability, in qualitative agreement with the
theory. The application of these results to problems in remote sensing and ocean wave
modelling is discussed. We provide an answer to a long-standing question: remote sensing
techniques based on observing current-induced shifts in the wave dispersion will measure
the Lagrangian, not the Eulerian, mean current.
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1. Introduction

The aim of this paper is to examine the impact of the Lagrangian mean flow, or
equivalently the vorticity of the fluid, on the geometry of surface waves, their phase
speed, as well as their stability properties. We find that for weakly nonlinear waves on
a second-order Lagrangian mean flow, the free surface geometry does not depend on the
Lagrangian mean flow to third order in the wave slope. The phase speed is modified by the
Lagrangian mean flow at second order, which impacts (and can annihilate) the growth rates
of the modulation instability. These results imply that instruments that use the dispersion
relationship of waves, e.g. radars or optical imagery systems, measure the Lagrangian
mean currents.

Currents modulate the geometry, kinematics and dynamics of deep-water surface gravity
waves. The behaviour of linear inviscid waves on a shear flow has typically been examined
in the Eulerian reference frame; the literature is large and spans multiple decades, e.g.
Peregrine (1976), Jonsson (1990), Shrira (1993), Thomas & Klopman (1997), Ellingsen &
Li (2017) and numerous others. However, if the Lagrangian frame is instead used as the
point of reference, the explicit role of Lagrangian drift, or equivalently the vorticity of the
system, clarifies the origins of several defining characteristics of irrotational and rotational
surface gravity waves.

The inverse problem – inferring information about the underlying currents from the
wave field – is a central aim of remote sensing instruments. Starting with the pioneering
work of Stewart & Joy (1974) and continuing to this day (e.g. Smeltzer et al. 2019),
researchers have tried to constrain the underlying structure of currents from measurements
of the wave field. However, even in the seminal paper of Stewart & Joy (1974) there
is confusion about the impact of the Lagrangian mean flow on the wave phase speed.
Specifically, Stewart & Joy (1974) point out that a substitution of the Stokes drift as a
current into their theory yields the finite amplitude Stokes correction to the phase speed.
However, their theory is Eulerian and hence substituting a Lagrangian mean flow for their
mean Eulerian current is inconsistent. Therefore, the correct conclusion was reached via
an erroneous argument, resulting in some lingering confusion as to how the Lagrangian
mean is connected to the phase speed of water waves as well as the free surface geometry.
Here, we clarify these points and show, in particular, that the phase speed is affected by
the Lagrangian, not the Eulerian, mean current, thus answering a long-standing question
in remote sensing of currents (Chavanne 2018): measured Doppler shifts of surface waves
do indeed include the Stokes drift.

A formulation for permanent progressive deep-water waves on a horizontally
homogeneous steady shear flow is presented. The governing equations are conservation
of mass and conservation of vorticity. The conservation of mass does not specify how
particles are to be labelled in a fluid, and this gauge choice (Salmon 2020) offers
tremendous freedom in how one approaches problems in this reference frame. At the
free surface we require the pressure to vanish while we assume that the waves are in
deep-water and hence their induced velocity vanishes at large depths. This leads to a
series of coupled equations for the coefficients of the physical locations of particles (a, b)

at (x(a, b), y(a, b)), which are much more complicated than their Eulerian counterparts
(Clamond 2007) as these series no longer represent analytic functions and hence cannot be
related at the surface via the Hilbert transform. We derive the dynamic (pressure) boundary
condition in the Lagrangian frame for permanent progressive waves which allows us to
relate the Lagrangian mean flow and the phase speed of waves. Additionally, we present
new general relationships between the Lagrangian mean flow and the vorticity of the
waves.
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Lagrangian drift

As an illustration, we consider the response of the surface wave field to a weak, possibly
vanishing, Lagrangian mean flow. The finite amplitude correction to the Stokes drift is
shown to result in a Doppler-like shift to the frequency of these waves, which explains
the curious conclusion of Stewart & Joy (1974). The finite amplitude Stokes correction
to phase speed sets the growth rate of the Benjamin–Feir instability (BFI) (Benjamin &
Feir 1967; Zakharov 1968) and hence in turn there is a connection between the Lagrangian
mean flow (which sets the phase speed) and the strength of this instability, as was originally
noted in Abrashkin & Pelinovsky (2017). Here, we explicitly present the growth rate of
the most unstable mode and the range of unstable wavenumbers as a function of the
Lagrangian mean flow.

To highlight the striking connection between the Lagrangian mean flow and the
instability of finite amplitude waves, a laboratory demonstration is presented. We consider
two cases, one with approximately no vertical shear (similar to Melville 1982), and another
with an imposed shear profile that nearly cancels the Stokes drift of irrotational waves.
Radically different long-time behaviour is observed in the two cases. In particular, we find
the BFI is largely attenuated due to the presence of the imposed shear, with wave properties
closely resembling those of Gerstner more so than Stokes. Note, a full discussion of the
laboratory experiments will be presented elsewhere (manuscript in preparation).

2. Governing equations

Consider inviscid deep-water surface gravity waves. The Euler equations in Lagrangian
coordinates are (Lamb 1932; Bennett 2006)

J ẍ + payb − pbya = 0, (2.1)

J ÿ + pbxa − paxb + J g = 0, (2.2)

where (x, y) are the particle locations with the undisturbed free surface at y = 0, (a, b) are
particle labels, p is the kinematic fluid pressure, g is the acceleration due to gravity, and
J is defined as

J = ∂(x, y)
∂(a, b)

≡ xayb − xbya =
[
ρ(a, b)

ρ(x, y)

]−1

, (2.3)

for ρ the fluid density and subscripts denoting partial derivatives. The continuity equation
may be written

ux + vy = ∂(ẋ, y)
∂(x, y)

− ∂(ẏ, x)
∂(x, y)

=
(

∂(ẋ, y)
∂(a, b)

− ∂(ẏ, x)
∂(a, b)

)
∂(a, b)

∂(x, y)
= 1

J
dJ
dt

= 0, (2.4)

where u = ẋ, v = ẏ with dots representing differentiation with respect to time. This
implies

dJ
dt

= 0. (2.5)

In order for the mapping to be invertible we also require that J does not change sign.
The vorticity is defined as

Γ = vx − uy = ∂(v, y)
∂(x, y)

+ ∂(u, x)
∂(x, y)

= 1
J (ẋaxb − ẋbxa + ẏayb − ẏbya) . (2.6)

Equations (2.1) and (2.2) imply that vorticity is conserved, that is Γ̇ = 0. For irrotational
flows Γ = 0. Furthermore, through this discussion we assume Γ → 0 as b → −∞.
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The pressure p must vanish at the free surface, which we choose to occur at b = 0 so
that p = 0 at b = 0. Finally, we take the bottom to be the limit as b → −∞, so that ẏ → 0
at b → −∞.

2.1. Series expansions
We consider permanent progressive monochromatic waves progressing with velocity c, so
that we assume the map between (x, y) and (a, b) takes the form

x = a + U(b)t +
∞∑

n=1

xn(b) sin θn; y = b + y0(b) +
∞∑

n=1

yn(b) cos θn, (2.7a,b)

where θn = nk(a − (c − U(b))t), k is the wavenumber and U is the Lagrangian mean
flow. We are considering the intrinsic frequency here, as this eliminates secular terms
(Buldakov, Taylor & Taylor 2006; Clamond 2007). There is some question as to the
convergence of these Lagrangian expansions, which have been formally studied for
Gerstner waves (Henry 2008; Constantin 2011). This is discussed in Clamond (2007),
where it is shown numerically that there is series convergence even for the highest wave,
although the convergence rates are slow. A full discussion of this point is outside of
the scope of this manuscript, but here we assume that the expansions given by (2.7a,b)
converge. Note, Clamond (2007) assumed that k = k(b) while here we take k as a constant.
This changes the values of wave amplitude that give particular values of ak, but all physical
quantities remain the same.

The mean surface level, y0(0) ≡ 〈y〉|b=0 (here 〈. . . 〉 = (2π/k)−1 ∫ 2π/k
0 (. . . ) da is phase

averaging), is found by inserting (2.7a,b) into (2.3) and phase averaging to find

y0(b) = −1
2

∑
knxnyn +

∫ b

−∞
(〈J 〉 − 1) dβ + y0

0, (2.8)

where y0
0 is a constant of integration that is determined by the proper choice of the

Bernoulli head, ensuring that 〈yxa|b=0〉 = 0. Note, it is understood here and henceforth
that an integration variable β replaces b in the integrands, and

∑
implies summing n from

1 to ∞.
The Lagrangian drift arises as a kinematic constraint that requires the vorticity to be

time independent, so that from the mean component of the vorticity we find

U =
c
2

∑
n2k2(x2

n + y2
n) − γ

1 + 1
2

∑
n2k2(x2

n + y2
n)

, (2.9)

where γ ≡ 〈∫ b
−∞ ΓJ dβ〉. This equation implies that if the vertical behaviour is simple in

(xn, yn), e.g. of exponential decay form, it will not be simple in U, and vice versa.
From (2.9) we also see that the vorticity and Lagrangian mean flow are intimately

related. If we prescribe the vorticity, this then constrains the form of the drift, and vice
versa. This will be made clearer in the asymptotic example considered below.
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2.2. Free surface pressure condition
Next, we can find other relationships between y0, U and c by solving for the pressure. That
is, multiplying (2.1) by xb and (2.2) by yb, we find

pb + gyb + ÿyb + ẍxb = 0. (2.10)

Next, by differentiating the series expansions for (x, y) we find ÿ = −(c − U)ẏa, and ẍ =
−(c − U)ẋa so that

pb + gyb − (c − U) (ẏayb + ẋaxb) = 0. (2.11)

We can rewrite the expression in the final parentheses using the definition of the vorticity,
(2.6), to find

pb + gyb − (c − U) (ΓJ + ẋbxa + ẏbya) = 0. (2.12)

We can relate space and time derivatives via xa = 1 + ((U − ẋ)/(c − U)) and ya =
−ẏ/(c − U), so that (2.12) may be written as[

p + gy + 1
2 (ẋ − c)2 + 1

2 ẏ2
]

b
− (c − U)J Γ = 0 (2.13)

=⇒ p + gy + (ẋ − c)2 + ẏ2

2
=
∫ b

−∞
(c − U)ΓJ dβ + f (a, t), (2.14)

where f (a, t) is a constant of integration which must be c2/2 so that 〈p(b = 0)〉 = 0. When
Γ = 0 we return a recognizable form of Bernoulli’s equation for irrotational permanent
progressive waves.

The dynamic boundary condition requires 〈p〉 = 0 at b = 0, so that we can find an
expression for the phase velocity in terms of y0 and U at the surface (note the constant
of integration for y0 must be correct to employ this – e.g. for Gerstner waves y0

0 is not zero
and is given explicitly in the next section), which yields

c =
2gy0 − Uγ + 2

∫ 0

−∞
U〈ΓJ 〉 dβ

U + γ

∣∣∣∣∣∣∣∣∣
b=0

, (2.15)

where we have used the fact that 〈ẋ2 + ẏ2〉 = U2 + (c − U)2∑ n2k2(x2
n + y2

n)/2 = c(γ +
U) − Uγ , which is found by solving for

∑
k2n2(x2

n + y2
n) in (2.9). Equation (2.15) reduces

in limiting scenarios. First, when Γ = 0, c = 2gy0/U|b=0, while for U = 0 we have c =
2gy0/γ |b=0.

Notice in (2.15) that c is determined by the Lagrangian, not Eulerian, current. Even
with zero Eulerian current, c obtains a Doppler-like shift due to Stokes drift. We can then
answer the question of Chavanne (2018): the observed Doppler shift of waves do indeed
include the Stokes drift as well as the Eulerian current.

In the classical approach to examining Stokes waves in an Eulerian framework, the
condition that p = 0 at the free surface, together with the analyticity of the velocity
potential and stream function, is enough to reduce the problem to a boundary value system
which may be solved algebraically (Schwartz 1974; Balk 1996). In the Lagrangian frame it
is clear that the velocity potential and stream function do not satisfy the Cauchy–Riemann
equations and hence are not analytic. In general, the series expansions for z = x + iy
depend on both s = a + ib and s̄ = a − ib. A simple example is given by Gerstner’s wave,
which takes the form kz = ks + iε exp(iks̄ − ikct) for ε a wave slope and c a phase velocity
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(Lamb 1932, § 251). We see immediately that zs̄ /= 0 and hence z is not analytic. A more
general approach is then needed to examine solutions to this system of equations. This will
be pursued elsewhere and instead for the rest of the present study we illustrate the physical
implications of the Lagrangian drift by considering asymptotic solutions in limiting cases.

3. Weakly nonlinear waves on a weak shear flow

As our starting point we take Gerstner’s (Lamb 1932, § 251) remarkable, exact surface
wave solution

kx = ka − ε sin(k(a − ct))ekb; ky = 1
2ε2 + kb + ε cos(k(a − ct))ekb, (3.1a,b)

where ε is the wave slope. These waves have no mean Lagrangian transport – their particle
trajectories are circles. Since U(b) = 0, (2.15) implies c = √

g/k, independent of ε. As
discussed in Clamond (2007), the mean water level is k−1ε2/2; although not usually
written explicitly, this term is crucial to properly compute c. Note, Gerstner waves are
finite amplitude exact solutions which possess interesting stability properties of their own
(Leblanc 2004; Ionescu-Kruse 2018).

The determinant of the Jacobian of the mapping from physical space to label space is
J = 1 − ε2e2kb while the vorticity may be found through the relation ΓJ = 2ckε2e2kb.

To transform these Lagrangian solutions to the Eulerian frame we must find a = a(x).
This inversion is not possible in closed form, as it essentially reduces to solving Kepler’s
equation and so we must invert this relationship iteratively at each order of ε.

Defining η as η = y(a(x), b = 0, t) = y(x, t), then to O(ε3), where ε 	 1, we find

ka = kx + ε sin θ0 + ε2

2
sin 2θ0 − ε3

8
(sin θ0 − 3 sin 3θ0) , (3.2)

at b = 0 so that

kη =
(

ε − 3ε3

8

)
cos θ0 + ε2

2
cos 2θ0 + 3ε3

8
cos 3θ0 + . . . , (3.3)

where θ0 = k(x − c0t) and c0 = √
g/k. Note, there is a second-order correction to the

mean surface level in the Lagrangian frame, but there is no correction to O(ε3) in the
Eulerian frame (Longuet-Higgins 1986).

We can also find the horizontal and vertical Eulerian velocities (u, v) to O(ε3). This
involves finding a = a(x, y) and b = b(x, y) to third order, which gives

ka(x, y) = kx +
(

ε + ε3

2
(1 − e2ky)

)
sin θ0eky, (3.4)

kb(x, y) = ky −
(

ε + ε3

2
(−1 + 3e2ky)

)
cos θ0eky + ε2

(
−1

2
+ e2ky

)
. (3.5)

Inserting these into (3.1a,b), the Eulerian velocity fields (u, v) = (ẋ, ẏ) are given by

u(x, y, t) = c0

(
ε + ε3

2

(
−1 + 3e2ky

))
cos θ0eky − cε2e2ky; (3.6)

v(x, y, t) = c0

(
ε − ε3

2

(
1 − e2ky

))
sin θ0eky, (3.7)

so that we see that Gerstner waves require there to be a non-zero horizontal Eulerian mean
flow at second order that is equal and opposite to the Stokes drift.
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3.1. Third-order weakly rotational and irrotational waves
Next we find the third-order expansions for Stokes waves by expanding the Gerstner waves
solutions to include O(ε2) Lagrangian mean flows, ε2U(b) (see also the related discussions
in Abrashkin & Pelinovsky 2017, 2018). Going through the algebra, we find

kx = ka + kU(b)t −
(

εekb + ε3

k
F′(b)

)
sin θL; ky = kb + 1

2
ε2 +

(
εeb + ε3F(b)

)
cos θL,

(3.8a,b)

where θL = k(a − (c − ε2U)t) and F ≡ (2k/c)e−kb ∫ b
−∞ e2kβU(β) dβ. Note, the phase

now has dependence on b and c is unknown at this stage.
The mean water level y0 is O(ε2) in the Lagrangian reference frame, compared with

O(ε3) in the Eulerian frame (Longuet-Higgins 1986).
Insertion into (2.3) and (2.6) gives Jacobian J = 1 − ε2e2kb, and vorticity

Γ = ε2(2kce2kb − U′(b)). (3.9)

When U = ce2kb, the flow is thus irrotational and we return the well-known expansions
for Stokes waves to third order in ε.

Equation (3.9) is of central importance – it relates the vorticity of the system to gradients
of the Lagrangian mean flow. At this order, the right-hand side of (3.9) is the curl
operator, so we return a main result from generalized Lagrangian mean theory (Bühler
2014), namely that the vorticity of the system is given by the difference of the curl of
the pseudomomentum and the Lagrangian mean flow. A similar equation arises when one
allows for finite bandwidth effects and offers a clear motivation for the long wave response,
or Bretherton flow, of a wave packet (Salmon 2020; Pizzo & Salmon 2021).

Additionally, the phase velocity c is found to be

c = c0

(
1 + ε2F(0)

)
= c0

(
1 + ε2

(
2k
c0

∫ 0

−∞
e2kβU(β) dβ

))
. (3.10)

When U = 0, we return the expansions for the Gerstner wave while for an irrotational
wave, U = c0e2kb and we return the phase velocity with the Stokes correction, i.e. 1

2ε2.
Note, unlike Stewart & Joy (1974), we have used a consistent argument to return this
result.

Inversion methods for inferring the underlying currents from the wave field rely on
measuring deviations of the wave phase velocity from that in quiescent waters. The
phase velocity deviation in (3.10) implies that such inversion methods are sensitive to the
Lagrangian mean flow. A comprehensive analysis would involve considering a broadband
wave spectrum with contributions to the Stokes drift from many wavenumbers, which is
outside the scope of the present work.

As we did for the Gerstner wave in (3.3), we can map (3.8a,b), under the constraint that
the flow is irrotational, to the Eulerian frame, finding

kη =
(

ε + ε3

8

)
cos θ + ε2

2
cos 2θ + 3ε3

8
cos 3θ + . . . (3.11)

where θ = k(x − ct) and c = c0(1 + 1
2ε2) follows from (3.10).

When comparing (3.11) and (3.3), we see immediately that the second harmonic
of η is the same for Gerstner and Stokes waves, and hence is not related to the
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Lagrangian mean flow. If we define a new small parameter μ = ε − (ε3/2) then kη =
(μ − (3μ3/8)) cos θ + (μ2/2) cos 2θ + (3μ3/8) cos 3θ , which implies that Stokes waves
and Gerstner waves have identical free surface geometries to third order (Clamond 2007).

Additionally, we can find the velocity in the Eulerian frame. Again, we need to write
down the depth-dependent mappings:

ka(x, y) = kx − c0kε2te2ky +
(

ε + ε3

2

(
−1 + 4e2ky

))
sin θeky + 2ε3c0kt cos θe3ky,

(3.12)

kb(x, y) = ky + ε2
(

−1
2

+ e2ky
)

−
(

ε + ε3

2

(
−1 + 4e2ky

))
cos θeky. (3.13)

Substituting these relationships into the velocity field for this case of irrotational flow, we
find

u = εc cos θeky; v = εc sin θeky, (3.14a,b)

which agrees with the classical result for third-order Stokes waves.
Although not considered here, one may also examine mixed Eulerian–Lagrangian maps

in the spirit of Virasoro (1981). This may have applications to the interpretation of current
measurements from uncrewed mobile platforms like the Liquid Robotics Wave Glider
(Grare et al. 2021).

3.2. Modulation instability
The form of the phase velocity is enough to provide a heuristic derivation of the
nonlinear Schrödinger equation (NLSE) on a weak Lagrangian shear flow (Abrashkin
& Pelinovsky 2017), following the classical geometrical optics approach (Benjamin
& Feir 1967; Yuen & Lake 1982; Abrashkin & Pelinovsky 2018). Whereas previous,
Eulerian derivations of the NLSE in the presence of shear have favoured the special
case of constant vorticity which permits potential theory (Baumstein 1998; Thomas,
Kharif & Manna 2012); the Lagrangian framework handles arbitrary U(b) more
readily.

Here, we take ε = ε0A for some complex valued dimensionless amplitude A of O(1),
and we drop the subscript on ε for clarity of presentation. We regard the reference system
where the constant of integration for U in (3.9) is zero, and define

V ≡ 2
k
c
ε2
∫ 0

−∞
e2kβU(β) dβ, (3.15)

which implies the dispersion relationship is given by ω = ω0(1 + V) with ω0 = k0c0 =√
gk0 with k0 the wavenumber of the unmodulated regular wave.
Following Abrashkin & Pelinovsky (2018), we take a geometrical optics approach and

let ω = ω0 + iε∂t and k = k0 − iε∂x, where we have expanded about a carrier wave with
frequency ω0 and wavenumber k0. Multiplying the dispersion relationship by A, we find
that to O(ε3)

iAτ − 1
8 Aχχ − 2AV = 0, (3.16)

where τ = ε2ω0t and χ = εk0(x − cg0t) where the group velocity is cg0 = 1
2 c0 .

A solution to this NLSE, (3.16), is A = a0 exp(−2iVτ), and we define k0K and
ω0Ω as the wavenumber and frequency of a perturbation to this solution, respectively.
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Taking a perturbation of this solution of the form A = (a0 + δ+ exp(i(Ωτ + Kχ)) +
δ− exp(i(Ωτ − Kχ))) exp(−2iVτ), we find that to lowest order in (δ+, δ−) the system
obeys (

2V − (K2/8) − Ω 2V
2V 2V − (K2/8) + Ω

)(
δ+
δ−

)
=
(

0
0

)
. (3.17)

Non-trivial solutions exist when the determinant of the matrix is zero, which implies Ω2 =
1
8 ((K2/8) − 4V)K2.

The system is unstable when V > 0 and

0 < K < 4
√

2V, (3.18)

while the most unstable wavenumber occurs when K = 4
√V with growth rate

|Ωmax| = 2V . (3.19)

The relations (3.18) and (3.19), although implicit in Abrashkin & Pelinovsky (2018), were
not presented there. We see that the growth rate of the instability may be strongly modified
(i.e. it is zero for Gerstner waves) and the range of wavenumbers that are unstable can vary
considerably as a function of the drift.

We now discuss a laboratory demonstration of this deep result.

4. Laboratory demonstration of the impact of the Lagrangian mean flow on the
Benjamin–Feir instability

The laboratory demonstration discussed below was conducted in the recirculating water
channel at Norwegian University of Science and Technology. See Jooss et al. (2021)
for further details. The test section is 11.2 m long, 1.8 m wide and is outfitted with
a plunger wave maker at the outlet, generating waves propagating upstream on the
flow. At the inlet the incoming flow of depth 0.5 m is controlled by an active grid
which allows us to tailor the vertical shear. The active grid consists of horizontal and
vertical bars spaced by 10 cm with square wings attached, each wing measuring 10 cm
along the diagonal. Each bar is controlled by a stepper motor. The five submerged
horizontal grid bars were actuated in a flapping motion relative to the position of least
flow blockage. We use the flapping to design two flow profiles. For an approximately
depth-uniform mean flow, all bars were flapped through an angle of ±45◦. A second
profile with near-surface vertical shear approximately cancelling the Stokes drift profile
was created by keeping the shallowest bar fixed in a position of least blockage while
the deeper bars were flapped through an angle of ±60◦. The vertical grid bars were
always fixed in the position of least blockage. In the centre of the channel eight wave
gauges, at locations {1.703, 1.914, 3.719, 3.924, 5.722, 5.929, 7.719, 7.928} metres from
the wave maker measured the free surface displacement. Laser Doppler velocimetry
(60 mm FiberFlow probe, Dantec Dynamics) was used to measure the near-surface current
profiles.

Figure 1 illustrates how the Lagrangian mean flow can alter the BFI growth rates. In
particular, when the induced flow has negligible shear, as plotted in figure 1(a), we see the
strong groupiness in the wave field, signifying the flux of energy from the finite amplitude
carrier waves to the sidebands, which is clear from the spectral plot shown in figure 1(c).
The waves have slope 0.17 (–) and wavenumber 6.0 (rad m−1). Strikingly, when an
Eulerian mean shear current is generated that approximately cancels the Stokes drift (such
that the Lagrangian drift U ≈ 0), the BFI is strongly suppressed. This is evident by the time
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Figure 1. The evolution of finite amplitude surface gravity waves in a wave channel with two imposed shear
currents – one that is approximately uniform (a,b) and one whose shear acts to approximately cancel the Stokes
drift so that the Lagrangian current U ≈ 0 (c,d). Steepness and wavenumbers are (a) 0.176 and 6.01 (rad m−1)

and (c) 0.174 and 6.06 (rad m−1). Eulerian (Lagrangian) currents are shown with solid (dashed) lines in (b,d)
and wave spectra in (e).

series, which shows only weak modulations of the wave amplitude. Correspondingly, we
find a far weaker sideband and low-frequency response. The sideband growth is strongly
asymmetric, which is not accounted for in the theory. However, the higher frequency
sideband is much closer to the carrier wave frequency than in the case of minimal shear,
in agreement with (3.18). Note, the waves in figure 1(b) more closely resemble those of
Gerstner than those of Stokes. This discussion is meant to serve as a demonstration of
the ideas presented in this manuscript, particularly in § 3.2. The BFI weakening from
constant mean shear was observed by (Steer et al. (2020), see also Simmen & Saffman
1985; Baumstein 1998; Thomas et al. 2012); a tailored profile based on the Lagrangian
theory enabled this arguably even more striking demonstration. A detailed quantitative
analysis, beyond the scope of this manuscript, is currently in preparation.

5. Conclusions

In this paper we have presented a novel formulation for permanent progressive waves
on a horizontally uniform time-independent Lagrangian mean. We related fundamental
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properties of the waves, viz. their vorticity and phase velocity, with the Lagrangian
mean flow. We then presented the explicit connection between the Lagrangian mean
flow and wave geometry, kinematics and dynamics for the scenario when the Lagrangian
mean flow was weak. This included explicit expressions for the dependence of the
Benjamin–Feir instability growth rate (Abrashkin & Pelinovsky 2017, 2018), as well as
the range of unstable perturbation wavenumbers and frequencies, on the Lagrangian
mean flow. To illustrate these points, we presented results from a recent laboratory
demonstration that highlight the striking dependence of finite amplitude wave behaviour
on the underlying shear flow.

Our theoretical results imply that the nonlinear source term in the wave action evolution
equation (Hasselmann 1973; Phillips 1985) should have growth rates that depend on the
shear in the underlying flow. In particular, (3.19) shows how the growth rate depends
on both the wave slope and the underlying Lagrangian mean flow. If there are external
currents, then this can potentially modify the instability growth rates and hence the wave
action flux (Longuet-Higgins 1976). As the upper ocean is sheared, a better understanding
of the implications of this work for weak wave turbulence are of particular interest and of
significant potential impact to the wave modelling community.

Finally, our results can be used to infer information about sub-surface currents based
on observations of the surface wave field. We emphasize that it is the Lagrangian,
not the Eulerian, current which can be measured remotely from wave dispersion alone.
Specifically, the explicit mappings between Lagrangian and Eulerian reference frames for
the Stokes and Gerstner waves highlight that the Lagrangian mean does not modulate
free surface geometry to third order. Instead the higher order corrections arise due to the
nonlinear mapping between the frames. However, the Lagrangian mean flow does show
up as a Doppler-like shift to the wave frequency. A comprehensive discussion of a set of
laboratory experiments on wave geometry, kinematics and dynamics for waves on a shear
flow is in preparation.
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