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ABSTRACT

We examine the role of wave packet bandwidth in modulating the breaking slope threshold for focusing deep-water surface gravity wave
packets. Using a fully nonlinear potential flow solver and laboratory experiments, we show that the slope threshold may be strongly modu-
lated by the wave packet bandwidth. We propose a new breaking threshold parameterization that shows that the slope threshold may be
modulated by more than a factor of two by changes in the bandwidth. This has implications for parameterizations of the properties of the
breaking induced flow (e.g., the energy dissipation) as they do not currently account for these effects.
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Wave breaking at the ocean surface modulates the fluxes of mass,
momentum, heat, and energy between the air and the sea.1 Recently,
there has been much progress made in parameterizing some of these
effects based on scaling arguments involving the slope of the wave field
and a parameter for the breaking threshold, taken to be a constant.2–5

Using theoretical and numerical arguments, Pizzo and Melville6

argued that the breaking threshold is not a constant and instead
should also be a function of the wave packet bandwidth. However,
that study was limited, leaving open the question of how significant
the modulation to the wave slope might be. Here, we fill in this funda-
mental shortcoming by numerically examining a much broader region
of phase space, finding that the breaking threshold may be significantly
modified by the wave packet bandwidth and validate these results
using data from archived laboratory experiments.7,8

Longuet-Higgins and Dommermuth9 showed that very steep per-
manent progressive deep-water waves (here the wave slope ak was
close to the limiting value of �0:443) subjected to normal mode per-
turbations may rapidly overturn and break because of the so-called
superharmonic instability.10–14 These waves contain a single dominant
wavenumber (and frequency) as well as higher order (bound) har-
monics. On the other hand, Dold and Peregrine15 showed that a
narrow-banded periodic wave packet with relatively small initial slope
(around 0.1) may result in wave breaking. These studies hint at the

role of wave packet bandwidth in setting a breaking slope threshold.
The dependence of slope threshold on wave packet bandwidth is also
implicit in the numerical work of Deike et al.,16 where the authors
found a larger breaking threshold than the corresponding (broadband)
laboratory experiments. Additionally, the laboratory studies of Drazen
et al. (Ref. 2, in particular see their Fig. 9) show a change in the
strength of the breaking event (e.g., spilling vs plunging) for fixed wave
slope and varying bandwidth, finding that increased bandwidth corre-
sponded to a weaker type of breaker.

Considerable work on wave breaking criteria has been per-
formed over the years and is discussed in the comprehensive review
by Perlin et al.17 These criteria generally fall into three categories:
geometric, kinematic and dynamic. Ample work has been done on
each of these criteria and recently there has been success in applying
kinematic criteria to determine which waves may break.18–21

However, these are local criteria and are sensitive to both the defini-
tions of important physical quantities, such as the wave phase speed,
as well as the location at which the criteria are evaluated, i.e., the
highest part of the wave (i.e., the crest) vs the steepest part of the
wave. Here we propose predictive global criteria that only depends
on the initial conditions of these focusing wave packets, removing
the need for characterizing many of the rapidly varying processes
that occur during focusing.
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Additionally, it has been shown in the laboratory2,8 that a linear
relationship exists between S, the linear prediction of the slope at
focusing, and hkc, where h is the height of the wave at breaking and kc
is the central wavenumber of the wave packet. This implies that
parameterizations of the breaking induced flow, which use h as a
length scale,2,4,16,22–24 can be modeled using S, a variable that is known
a priori. In that context, parameterizing the breaking threshold as a
function of the variables characterizing the initial wave packet, as
opposed to local variables at breaking,18,19 becomes particularly
relevant.

Recently, the role of wave packet bandwidth was examined in a
laboratory study on the mass transport4,5,7 and energy dissipation
induced by deep-water wave breaking.8 The authors found that the
bandwidth can strongly modify the breaking induced transport.
Furthermore, they found that the energy dissipation was further col-
lapsed by considering bandwidth effects (see their Fig. 8). This high-
lights the need to better understand the role of this parameter in
modulating properties of the breaking induced flow.

The outline of this paper is as follows. We first review properties
characterizing focusing deep-water wave packets. Next, we discuss a
comprehensive set of numerical experiments. Archived data on the
breaking threshold from laboratory experiments is then presented.
Finally, the results are discussed.

When wind blows over deep-water, a finite bandwidth of waves
is created.25 These waves are dispersive, and as such may construc-
tively and destructively interfere, leading to wave breaking. To repro-
duce this behavior in the laboratory, Longuet-Higgins26 proposed
generating wave packets of the form

g ¼
XN

n

an cos hn; (1)

where g is the free surface displacement, an are the wave amplitudes
and hn ¼ knðx � xbÞ � xnðt � tbÞ: Here x2

n ¼ gkntanhknH for xn

the angular frequency, kn the associated wave number, H the depth of
the fluid and N the number of components included in the wave
packet. Additionally, xb and tb are the linear prediction of the breaking
locations and times, respectively, representing the point of maximum
focusing according to linear theory. There are two main parameters
that characterize these wave packets. The first is the linear prediction
of the maximum modulus slope at focusing, defined as S �

P
ankn:

Additionally, the wave packets are defined over a finite band of fre-
quencies/wavenumbers so that xn ¼ x0ð1� D n�N=2

N Þ: Note, this for-
mula only applies when n> 0.

We define D as the non-dimensional bandwidth. The modes
within the wave packet, which collectively define the bandwidth, are
grouped around a chosen central frequency fc. This central frequency
is used to define xn; kn; an; and a windowing function, which is then
applied to the wave packet so that only a single compact wave packet
is considered.8,27

Physically, the linear prediction of the slope S is a measure of the
nonlinearity of the system, while the bandwidth D sets the time (or
equivalently space) scale over which the waves interact. These two
parameters then set the maximum slope at focusing. The central goal
of this manuscript is to propose a model describing whether or not a
wave will break as a function of its bandwidth and the linear prediction
of the slope at focusing.

Using a series of theoretical and numerical arguments based on a
higher order nonlinear Schr€odinger equation, Pizzo and Melville6 pro-
posed that for narrow-banded deep-water waves, the slope at focusing
is a function of D and S. Physically, there is a competition between lin-
ear dispersion, which acts to spread out action density, and nonlinear-
ity, which can enhance focusing. Pizzo and Melville6 elucidated the
role of various terms in the higher order Schr€odinger equation and
showed that the asymmetric self-steepening term is significant in gen-
erating larger slopes.28 Note, this term is also responsible for increasing
the action density centroid velocity of nonlinear wave packets.23

To examine the breaking threshold dependence on bandwidth,
we numerically integrate the equations of motion for fully nonlinear
irrotational inviscid deep-water surface gravity waves. The numerical
scheme of Dold and Peregrine15 is used (see also Dold29) to study the
focusing wave packets discussed above. Briefly, the model solves
Laplace’s equation in the interior of the fluid together with the bound-
ary conditions for unforced irrotational surface gravity waves using
Cauchy’s integral theorem. The model uses a mixed Eulerian–
Lagrangian approach, exploiting the advantages of working from a
velocity potential, i.e., only needing to solve for the flow along the sur-
face to completely determine the flow throughout the fluid, while
using the position of Lagrangian particles along the free surface as
dependent variables. This parametrization of the free surface in terms
of Lagrangian particles allows the numerical scheme to integrate past
the point where the waves overturn to examine phenomena occurring
during breaking, but before the free surface has reconnected (see also
Ref. 30).

We employ this numerical scheme to examine a range of initial
bandwidths and slopes for the initial conditions defined by (1). The
central wavenumber and central frequency of the waves are fixed at
ð2pÞ2=gm�1 and 1Hz, respectively, and we set the length of the chan-
nel to have a physical value of 100m. The water is taken to be infinitely
deep. The distance to breaking xb depends on the bandwidth D such
that xb ¼ 10=D. We take N¼ 100 here, while the wave spectrum is
defined by the bandwidth and the central frequency. Additionally, fol-
lowing Drazen et al.2 we fix the slope of each component of the initial
wave packet, i.e., ankn ¼ S=N , which sets the amplitude of the
components.

We define a wave as having broken when its free surface becomes
multi-valued. The resolution of our simulations is increased until we
find that the breaking results have converged (specifically we have
2048 points in our domain). More specifically, we computed the L2
norm of the free surface displacement as a function of resolution and
ensured that the results converged to sufficient accuracy. Additionally,
although the results presented are based on simulations using 2048
points, we also performed several integrations for points near the
breaking threshold using 4096 points and found identical results.
Note, as discussed in Longuet-Higgins and Cokelet,30 the free surface
points are Lagrangian and tend to cluster in regions of high curvature,
leading to enhanced resolution near breaking. An example of a break-
ing wave from these simulations is shown in Fig. 1. In total, we per-
formed numerical simulations for 218 cases.

Figure 2 shows the breaking slope threshold as a function of
bandwidth computed from these numerical simulations. The blue
region shows the waves that have broken, while the gray region shows
the waves that have not broken. The white circles show the points in
phase space that we examined numerically. We clearly see that the
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breaking threshold increases with bandwidth, with a quadratic rela-
tionship between the slope threshold S� and the bandwidth, which
takes the form

S� ¼ �0:0579D2 þ 0:2177Dþ 0:1417; (2)

over the range of D considered here. This fit, shown in red in Fig. 2,
does a remarkable job of parameterizing the partitioning of phase
space between non-breaking and breaking waves.

This empirical fit is consistent with the theoretical and numerical
study conducted by Pizzo and Melville.6 There, they examined a
higher order nonlinear Schr€odinger equation. Specifically, to analyti-
cally examine focusing wave packets, they considered a Ritz optimiza-
tion computation of a chirped Gaussian wave packet and examined
the evolution of physically significant moments of the action distribu-
tion (see also Ref. 23). Using this technique, which also made use of
the variational structure of the equations of motion derived using
Whitham’s method,31,32 the author’s found that there was a quasi-self-
similarity to wave packet focusing governed by this equation as func-
tion of S and D. The authors found a complex relationship between
the maximum slope at focusing and the initial conditions, but showed
that it could be well approximated by a quadratic relationship between
S and D, which is consistent with Eq. (2). Note, the analysis of Pizzo

and Melville6 was necessarily complicated, as the mathematical analy-
sis of the higher order Schr€odinger equation is algebraically complex.
However, the physical ideas discussed qualitatively below, are relatively
straightforward and for clarity of presentation and in order to not dis-
tract the reader from our relatively simple result, the full details of that
analysis are not presented here. We direct the interested reader to that
paper.

Physically, the arguments presented in Pizzo and Melville6 quan-
tify and qualify the role of the (finite bandwidth) four wave resonance
in steepening surface waves vs the tendency of dispersion to spread
out wave action. The balance of these terms, which is reminiscent of a
simpler wave breaking model in shallow water,33 dictates whether or
not the packet will steepen enough so that the free surface becomes
multi-valued. Note, the complex nature of the Schr€odinger equation
makes analysis significantly more difficult than the shallow water
(modified) KdV equation. Unless strong ansatz are made (e.g., relating
the wave phase to its amplitude), it is not obvious how to generate a
simple coarse model of the breaking process in deep-water (see Pizzo
and Melville23 and Pizzo and Melville6 for more details). Note, this
model does not include higher-order resonances such as the superhar-
monic instability which leads to rapid overturning and breaking which
partially motivated the authors to numerically examine these results.

Sinnis et al.8 and Lenain et al.7 conducted laboratory experiments
at the Hydraulics Laboratory, Scripps Institution of Oceanography, to
characterize mass transport induced by breaking deep-water focused
wave packets.4,5 As part of the project, the breaking threshold, defined
here as S� ¼ S when the free surface first entrains air, as detected by a
side-looking camera, was carefully measured for the range of band-
widths D considered in those works.

FIG. 1. The free surface displacement from numerical integrations of the fully non-
linear potential flow equations for deep-water free surface gravity waves. This
focusing wave packet is constructed by generating longer faster waves after shorter
slower waves, leading to a localization of energy density and subsequently wave
breaking, shown in the inset. Here, the packet parameters are such that the linear
prediction of the slope at focusing S¼ 0.31 while the wave packet bandwidth is
0.3. The black dots in the inset show the fluid particle locations, which are the
dependent variables of the numerical scheme, at breaking. The goal of this paper is
to better understand how wave packet bandwidth impacts whether or not wave
breaking will occur.

FIG. 2. Using the numerical scheme described in the body of the text, we investi-
gate the role of the linear prediction of the slope at focusing, S, and wave packet
bandwidth, D, on the wave breaking threshold, S�. We display a phase space plot
of breaking (shown in blue) vs non-breaking (shown in gray) as a function of D and
S. The best fit is S� ¼ �0:0579D2 þ 0:2177Dþ 0:1417 for 0:2 < D < 1:6, with
R2 ¼ 0:99. The results found here are in agreement with the theoretical analysis of
Pizzo and Melville,6 which predicted that waves were more likely to break for larger
slopes and smaller bandwidths. The quantitative form of the line partitioning non-
breaking and breaking waves was also predicted in that study using a simplified toy
model based on a higher order nonlinear Schr€odinger equation.
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Note, the laboratory experiments were necessarily conducted in
finite depth (see Refs. 7 and 8 for further details). This modifies the
focusing process, as the dispersive and nonlinear properties of the
waves are modified in finite depth. In order to validate our numerical
simulations against the laboratory cases, we computed the breaking
threshold at the water depth used in the laboratory (in particular
0.5m). This is shown in Fig. 3, where we find relatively good agree-
ment between the numerical predictions and the observations.

One of the main results of this work is that the phase space is par-
titioned between non-breaking and breaking waves as a function of
both bandwidth and slope. This partitioning takes the form of a qua-
dratic relationship with the bandwidth, which is consistent with the
theoretical arguments of Pizzo andMelville.6

Note, the laboratory experiments of Wu and Yao34 also examined
the breaking threshold as a function of bandwidth for focusing wave
packets on a current. They find that the local slope decreases with
increasing bandwidth. To the contrary, our model based on global
properties of the wave field implies that the linear prediction of the
local slope threshold increases with increasing bandwidth. It is unclear
at this stage why these two studies find such contradictory results. A
major challenge of the laboratory results is that they are constrained
by the physical size limitation of their wave channel, that could limit
their ability to properly characterize breaking threshold for small
bandwidths in particular. The numerical experiments discussed here
were conducted over a much larger distance, allowing the weak non-
linearity more time and space to act on the wave field. Note, Sinnis
et al.8 also find breaking threshold slope increasing with bandwidth in
their laboratory experiments, consistent with the present study.

The results presented here have important implications for
modeling properties of the breaking induced flow. In recent years

there has been much progress made in proposing simple scaling argu-
ments for the breaking induced flow based on variables characterizing
the wave packets, including the energy dissipation rate,2,3 the circula-
tion induced by breaking,22 the volume entrained by breaking,35 and
the mass transport due to breaking.4 These models rely on a proper
definition of the breaking threshold, as it is the difference between the
wave slope and the threshold that dictates the magnitude, or strength,
of the breaking event. Here, we have shown that the breaking thresh-
old should vary as a function of the bandwidth, effectively modulating
the strength of the breaking event, S� S�. The wave field bandwidth
can be estimated from spectral moments,36 enabling simple imple-
mentation into coupled air-sea models that include wave breaking
processes.
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