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ABSTRACT

The effects of surface waves on upper ocean dynamics enter the wave-

averaged primitive equations through the Stokes drift. Through the resulting

upper ocean dynamics, Stokes drift is a catalyst for the fluxes of heat and trace

gases between the atmosphere and ocean. However, estimates of the Stokes

drift rely crucially on properly resolving the wave spectrum. In this paper, us-

ing state of the art spatial measurements (in-situ and airborne remote sensing)

from a number of different field campaigns, with environmental conditions

ranging from 2 to 13 ms−1 wind speed and significant wave height of up to 4

m, we characterize the properties of the surface wave field across the equilib-

rium and saturation ranges and provide a simple parameterization of the tran-

sition between the two regimes that can easily be implemented in numerical

wave models. We quantify the error associated with instrument measurement

limitations, or incomplete numerical parameterizations, and propose forms

for the continuation of these spectra, in order to properly estimate the Stokes

drift. Depending on the instrument and the sea state, predictions of surface

Stokes drift may be underestimated by more than 50%.
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1. Introduction25

Deep-water surface gravity waves play a crucial role in the marine boundary layer, modulating26

the exchange of mass, momentum, heat and gases between the ocean and the atmosphere (Melville,27

1996; Cavaleri et al., 2012). Irrotational surface waves have particle orbits that are not closed, but28

instead are slightly elliptic, leading to a drift in their direction of wave propagation, know as Stokes29

drift. This drift is usually inferred from the directional surface wave spectrum (Kenyon, 1969).30

Accurately estimating the Stokes drift is critical for a number of applications; from the study of31

upper ocean and air-sea interaction processes, such as Langmuir circulations (Craik and Leibovich,32

1976; Leibovich, 1983; McWilliams et al., 1997) that rely on a proper representation of the wave-33

induced drift (McWilliams and Restrepo, 1999; Belcher et al., 2012), to the prediction of the34

transport of pollutants, oil spills and drifting objects (see also Lenain et al., 2019a). Additionally,35

better evaluation of the Stokes drift may lead to an improved predictive capability of larger scale36

ocean dynamics (Shrira et al., 2020) that play a crucial role in weather and climate models (Breivik37

et al., 2019, among others).38

In recent years, improvements in remote sensing and in-situ observational techniques have led39

to significant progress in our ability to measure and understand spatio-temporal properties of sur-40

face gravity waves. In Lenain and Melville (2017), properties of the directional distribution of the41

surface wave field across the equilibrium and saturation ranges (Phillips, 1985) were investigated42

from airborne lidar data (see also Melville et al., 2016). They demonstrated that the omnidirec-43

tional wavenumber spectra, φ(k), where k is the wavenumber, exhibits a consistent power-law44

behavior, proportional to k−5/2 in the equilibrium range and k−3 in the saturation range, as pre-45

dicted by Phillips (1985). These two regions of the wave spectrum have been extensively studied46

previously, both through theoretical analysis (see, for example, Phillips, 1958; Toba, 1973; Kitaig-47
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orodskii, 1983; Phillips, 1958), spatial and temporal in-situ observations (Donelan et al., 1985;48

Battjes et al., 1987; Hwang et al., 2000; Romero and Melville, 2010a; Melville et al., 2016, among49

others) and numerical investigation (Pushkarev et al., 2003; Romero and Melville, 2010b, amongst50

others) of the wind-generated wave field, but never with the broad spectral range required to fully51

capture and parameterize the transition from equilibrium to saturation ranges. These datasets of52

surface wave spectra offer us a unique opportunity to carefully investigate the impact of spectral53

shape, and specifically the high-frequency surface wave contribution, to the total Stokes drift.54

Mixing in the upper ocean controls the transfer of heat, and trace gases, between the atmosphere55

and ocean. The heat content serves as an imporant boundary condition for coupled air-sea models56

of both weather and climate. Errors in estimates of these fluxes can lead to biases in sea surface57

temperature. In Belcher et al. (2012), it was shown that the inclusion of surface wave processes58

can reduce the sea surface temperature biases. This relies crucially on estimates of the turbulent59

Langmuir number, given by the ratio of the wind friction velocity to the Stokes drift. Therefore, it60

is critical to properly estimate the Stokes drift, which serves as the motivation for this paper.61

Kenyon (1969), based on Phillips (1966), first related the wave energy spectrum to the Stokes62

drift. Since then, there has been considerable attention given to estimating the Stokes drift through63

a minimal number of environmental variables that characterize the wave spectrum, particularly64

in recent years (Breivik et al., 2016, 2014; Van Den Bremer and Breivik, 2018). The integral65

computations are subtle, as the directional distribution of the waves crucially modulates the total66

Stokes drift (Webb and Fox-Kemper, 2015), and one needs to resolve the small scale waves, which67

significantly contribute to the drift (Pizzo et al., 2019). Now, the directionality of the wave field,68

from the spectral peak to the realignment of the capillary waves with the longer gravity waves,69

is still a source of uncertainty, both in measurements and more severely in ocean wave models70

(Stopa et al., 2016; Liu et al., 2019). Furthermore, many studies employ the omnidirectional wave71
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spectrum when computing the Stokes drift (McWilliams and Restrepo, 1999; Sullivan et al., 2007;72

Breivik et al., 2014). Therefore, in this paper we focus on omnidirectional wave spectrum effects,73

while a manuscript on the directional effects is currently in preparation.74

Here, in addition to the observations presented in Lenain and Melville (2017), we also con-75

sider measurements collected during two additional field programs, the Langmuir and Innershelf76

ONR DRI field efforts (LCDRI2017 and ISDRI2017, respectively), providing a much broader77

range of environmental conditions which leads to a significantly improved parameterization of the78

transition between equilibrium and saturation ranges. This dataset provides a unique opportunity79

to characterize the contribution, across a broad range of scales, to the Stokes drift, and in turn,80

the error caused by the use of frequency-limited wave spectra or numerical wave spectra with an81

incorrect parameterization of the transition from equilibrium to saturation ranges.82

2. Experiments, instrumentation, and environmental conditions83

a. Experiments84

The present study is based on data collected during three ONR funded programs: SOCAL2013,85

LCDRI2017 and ISDRI2017. The first two projects were focused on phase-resolved measure-86

ments of wind and waves. Observations over a broad range of environmental conditions were87

collected. Both of these experiments were located between San Clemente and San Nicholas Is-88

lands (vicinity of 33o13.202′N, 118o58.767′W) where the floating ocean research platform R/P89

FLIP was moored from November 7 to 22, 2013 and March 16 to April 10, 2017, for the SO-90

CAL2013 and LCDRI2017 experiments, respectively. R/P FLIP was instrumented with a suite91

of meteorological sensors to characterize the atmospheric, surface and subsurface conditions at92

the experiment site. Data from the ISDRI2017 experiment were collected from September 5 to93
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21 2017 off the coast of Point Sal, CA. In that case, surface conditions were estimated from an94

airborne lidar, as described in Lenain et al. (2019b). Overall, the environmental conditions con-95

sidered here have wind speeds ranging from 2 m/s to 13 m/s, and significant wave height Hs in96

the range of approximately 1 to 4 m.97

b. The Modular Aerial Sensing System (MASS)98

Spatio-temporal measurements of the sea surface topography and surface kinematics were col-99

lected from a Partenavia P68 aircraft that was instrumented with the Modular Aerial Sensing Sys-100

tem (MASS), an instrument package developed at the Scripps Institution of Oceanography, as101

described in Melville et al. (2016). The instrument package is built around a Q680i waveform102

scanning lidar (Riegl, Austria), used to make spatio-temporal measurements of the sea surface103

elevation. The sensor has a maximum pulse repetition rate of 400 kHz, a maximum line scan104

rate of 200 Hz, and has been used at altitudes up to 1500 m with sufficient lidar pulse returns105

for surface-wave measurements. All data collected are carefully georeferenced from the aircraft106

to an Earth coordinate frame using a Novatel SPAN-LN200, a GPS-IMU system combining GPS107

technology with an IMU using fiber-optic gyros and solid-state accelerometers to provide position108

and attitude data at up to 200 Hz. After post-processing, we typically find absolute vertical errors109

of 2 to 4 cm (per lidar pulse) for the final topographic product (for more details, see Melville et al.,110

2016; Lenain and Melville, 2017; Lenain et al., 2019b).111

c. Environmental conditions112

During the SOCAL2013 and LCDRI2017 experiments, a suite of atmospheric sensors were113

installed on R/P FLIP’s port boom to characterize the marine atmospheric boundary layer variables114

that are used in the present analysis. While the setup was slightly different in each experiment (see115

6



technical details in Grare et al. (2018) and Lenain et al. (2019b)), the friction velocity in the air was116

computed from a sonic anemometer (Gill R3-50) mounted on a vertical mast that was deployed117

from the end of the horizontally extended 20 m long port boom of FLIP in both experiments, using118

eddy correlation techniques. Here the friction velocity in the air, u∗, is given by119

u∗ = (u′w′
2
+ v′w′

2
)1/4, (1)

where u,v,w represent the three components of the wind vector in the along, cross and vertical120

directions, respectively, and the ′ denotes deviations from the mean. The covariances u′w′ and v′w′121

are computed over 30 minute records.122

During the ISDRI experiment, the environmental conditions were estimated remotely using the123

MASS. Here the friction velocity u∗ was computed using the method described in Lenain et al.124

(2019b).125

3. Spectral depiction of wind-generated surface waves across the equilibrium-saturation126

ranges127

Phillips (1985) proposed a model to describe the “equilibrium” range, based on the assumption128

of balance, proportionality and similar order of magnitude of the terms in the statistical equilib-129

rium radiative transfer equation (namely wave-wave interactions, wind forcing and wave-breaking130

dissipation). Phillips’s model predicts a k−5/2 slope for the equilibrium range of the omnidirec-131

tional spectrum. Beyond the equilibrium range, spatial and temporal observations of wind waves132

show a power-law transition from a k−5/2 to a k−3 slope corresponding to another regime, the133

so-called ”saturation” range (Forristall, 1981; Banner, 1990; Romero and Melville, 2010a; Lenain134

and Melville, 2017). In that case, the primary balance is between the wind input and the dissipa-135

tion from breaking waves, as the the time scales in this range are short enough such that nonlinear136
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wave-wave interaction term becomes negligible. Observations of the transition between these two137

regimes is difficult, and our novel measurements over these ranges enabled this work.138

a. Methods139

Swaths of ocean topography collected from the MASS lidar were carefully georeferenced from140

the aircraft to an Earth-coordinate frame three dimensional point cloud. For SOCAL2013 and141

LCDRI2017, five-kilometer long swaths of data collected within 10km of R/P FLIP (where the142

atmospheric measurements were conducted) were gridded and interpolated on a regular grid, with143

the horizontal spatial resolution a function of the flight altitude: dx = dy = 0.1m for aircraft144

altitudes lower than 200m Above Mean Sea Level (AMSL), corresponding to a typical swath width145

of 50-150m, dx = dy = 0.2m for altitudes ranging from 200 to 400m AMSL, and dx = dy = 1m146

for higher altitudes (with a corresponding swath width of 400-800m). The data collected along the147

cross-track edges of the swath were discarded due to high dropout rates (<10-15% pulse returns).148

Two-dimensional fast Fourier transforms were computed over 5km segments with 50% overlap.149

All segments were first detrended, then tapered with a two-dimensional Hanning window and150

finally padded with zeros (25%).151

To correct for the Doppler shift induced by the relative motion between the phase speed of152

the wave and the aircraft velocity, each spectrum was corrected iteratively following the method153

developed by Walsh et al. (1985). The change in wavenumber component in the along-track154

direction is taken as155

δkx =
ω

νa
, (2)

where ω(k) (rad/s) is the radial wave frequency, computed from a deep-water dispersion relation-156

ship, and νa (m/s) is the aircraft velocity in the along-track direction.157

8



A similar approach was taken for the data collected during the ISDRI2017 experiment. In that158

case, as the operational area included very shallow to deep water, we only considered water depth159

h larger than 50 m.160

We next introduce the omnidirectional wave spectrum, φ(k), defined as the azimuthally averaged161

directional spectrum,162

φ(k) =
∫ 2π

0
F(k,θ) kdθ , (3)

where F(k,θ) is the wave directional spectrum. Figure 1(a) shows an example of the azimuthally163

integrated omnidirectional spectrum computed from data collected during the SOCAL2013 ex-164

periment. The variable kp represents the spectral peak wavenumber of the wind-generated waves.165

The separation at wavenumber kn of the spectral slopes into -2.5 (equilibrium) and -3 (saturation)166

regions is clear and in this case the transition wavenumber kn is found to be equal to 0.6 rad/m.167

b. Improved parameterization of the equilibrium-saturation range transition168

Part of the analysis presented in Lenain and Melville (2017) was dedicated to the characteriza-169

tion and parameterization of the transition wavenumber kn. We expanded their work to include170

two additional field experiments, LCDRI2017 and ISDRI2017. For each azimuthally integrated171

spectrum the transition wavenumber, kn, was computed by estimating the intersection between a172

k−5/2 fit in the equilibrium range and a constant saturation value at higher wavenumbers, i.e k−3.173

Results are presented in figure 1(b), where the transition wavenumber is plotted against g/u2
∗, a174

quantity introduced in Phillips (1985) to describe the upper end of the equilibrium spectrum such175

that r (sometimes referred to as Phillips’s constant), a constant, is defined as176

r =
knu2
∗

g
. (4)

Here we find r = 9.7×10−3.177
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This result is of tremendous interest to the wave modeling community. While there has been178

growing recognition of the existence of equilibrium and saturation regimes, properly parameter-179

izing their transition has been a challenge (Liu et al., 2019). Here we corroborate the parameter-180

ization proposed by Phillips (1985) for the transition from equilibrium to saturation ranges that181

only requires the friction velocity u∗, and therefore can be easily implemented in operational wave182

models.183

4. Stokes drift184

The Stokes drift is computed from the directional spectrum F , given by (Kenyon, 1969)185

Us = 2
∫ ∫

F(k)
√

gke2kzkdk, (5)

where k = |k| and z is the depth (i.e. z=0 at the surface).186

Here, we define the Stokes drift magnitude Us(z) based on the omnidirectional wave spectrum187

φ(k), such that188

Us(z) = 2
∫

∞

kp

φ(k)
√

gke2kzkdk, (6)

where kp is the peak wavenumber of the wind-waves, z the depth and φ(k) is the omnidirectional189

wave spectrum defined in equation (3). Hence, by definition the spectral shape of surface waves190

will have a direct impact on Stokes drift. Note, following Breivik et al. (2014) and Pizzo et al.191

(2019), we ignore the contribution to the Stokes drift of the very low wavenumbers (i.e. swell), as192

these waves are not steep so that their contribution to the total drift is very small.193

Following equation (6), the Stokes drift is computed for all three experiments described in the194

previous section, and at seven set depths z: 0 (surface), -0.1, -0.2, -0.5, -1, -2, and -5m. Since195

the transition between saturation and equilibrium ranges are clearly characterized in the three196

datasets, we can compute the contribution of the equilibrium range to the total wind-generated197
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surface Stokes drift, where the Stokes drift in the equilibrium range is defined as198

Us,eq(z) = 2
∫ kn

kp

φ(k)
√

gke2kzkdk. (7)

This is shown in figure 2, for z = 0m (surface), plotted against the friction velocity u∗. We find that199

as the friction velocity increases, the contribution of the equilibrium range decreases, reaching a200

plateau for u∗ larger than 0.35 ms−1, with a value of approximately 45 to 65 % of the total Stokes201

drift. In other words, the contribution from the high-frequency part of the surface wave spectrum,202

i.e. the saturation range, is not negligible when computing Stokes drift, especially at the surface,203

and needs to be fully resolved.204

5. Contribution of the high-frequency wind-generated surface waves205

In this section, we look at the impact of the cut-off frequency on the magnitude of the Stokes206

drift, effectively highlighting the significance of the contribution from the higher wavenumber part207

of the saturation spectra. This is particularly relevant, as Stokes drift is often computed using sur-208

face wave measurements without paying much attention to the frequency or wavenumber spectral209

range, and in particular the maximum frequency resolved.210

For reference, directional wave buoys are generally able to resolve surface waves up to scales211

of approximately 0.5-0.6Hz, similar to what global reanalysis products, such as the ERA datasets212

(e.g. ERA-Interim or ERA5) from ECMWF, can now resolve (Uppala et al., 2005; Dee et al.,213

2011). It is clear from figure 1 that such cutoff frequencies are not adequate to resolve the Stokes214

drift contribution from the saturation range.215

To quantify the errors associated with the use of surface wave spectra that do not resolve high216

enough frequencies to accurately compute Stokes drift, we introduce here Us,nb, such that217

Us,nb(z) = 2
∫ kc

kp

φ(k)
√

gke2kzk dk, (8)
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where kc is a cutoff frequency.218

We compute the error (i.e. underestimation) associated with an inadequate cutoff frequency fc219

in estimating Us such that220

error = 100×
|Us(z)−Us,nb(z)|

Us(z)
. (9)

Figure 3 shows the surface (z=0) Stokes drift error defined in equation (9) computed for cutoff221

frequencies fc ranging from 0.3 to 1.8Hz (i.e. 0.36 to 13 rad/m). We find the error rapidly222

decreases as fc increases, following an exponential decay (dash line), such that223

error = ae−b fc , (10)

where a is equal to 133.15 and b, the e-folding scale, is 2.47, estimated through a least-squared fit224

(r2=0.99). This simple relationship can be used to correct surface Stokes drift estimates computed225

from spectrally limited in-situ observations or reanalysis products.226

For reference, the cutoff frequency of commonly used spectral wave products is also shown, the227

ECMWF ERA40 1 and ERA5 reanalysis global datasets (Uppala et al., 2005; Dee et al., 2011),228

and buoy-based observations from the CDIP network (https://cdip.ucsd.edu/). We find that229

computing Stokes drift from these products alone would lead to significant underestimations, rang-230

ing from approximately 50% error for ERA40, 35% for ERA5, and down to 34% for the CDIP231

wave products.232

Moreover, it is sometimes assumed that the high-frequency part of the surface wave field does233

not contribute to the Stokes drift at depth, even close to the surface. This is investigated in figure234

4(a), where the Stokes drift error is shown for depths ranging from the surface down to 5m. As235

expected, as depth increases, the contribution of the shorter waves to the Stokes drift is reduced.236

At 5m depth, we find that the contribution from waves of frequencies larger than 0.4Hz is neg-237

ligible. Nevertheless, and this is of importance for upper ocean modeling, the contribution from238

1The reanalysis product used in Belcher et al. (2012).
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shorter waves, of frequencies larger than for example ERA5 products (0.5478Hz) or in-situ ob-239

servations (0.4-0.5Hz at best), is not negligible above 5m depth, and increases rapidly closer to240

the surface. Figure 4(b) shows the depth-dependent term of the Stokes drift in equation (7), e2kz,241

plotted against cutoff frequency, another way of illustrating the penetration depth of short waves242

and their contribution to the total Stokes drift. Finally, we note that although the contribution of243

the short waves to the Stokes drift attenuates rapidly with depth, their shear values are large, so244

that we expect them to be an important contribution to the turbulent kinetic energy budget (see,245

for example, equation 1 of Belcher et al., 2012).246

Ultimately, this result provides guidance on the contribution of high frequency surface waves to247

horizontal wave induced transport in the upper ocean, particularly near the ocean surface.248

6. Is adding a spectral tail to limited bandwidth spectra sufficient?249

An approach to mitigating the availability of limited-bandwidth wave spectra when computing250

Stokes drift has been to add a high-frequency spectral tail of set slope (i.e. f−5 or k−3) to the spec-251

trum (see for example Belcher et al., 2012), or extrapolating a wave spectrum to a set saturation252

level (Romero et al., 2012). Here we attempt to evaluate this method using the broad bandwidth253

wave spectra that were collected during the three field programs with the MASS lidar instrument.254

In figure 5, we compare the intentionally frequency-limited estimate of the surface Stokes drift255

Us,nb(z = 0), where kc is set here to 0.67 rad/m (i.e. fc = 0.41Hz), corresponding to the cutoff256

frequency of ERA40 used in Belcher et al. (2012), to the ”true” Stokes drift (red dots), computed257

from the full omnidirectional spectra collected during the three experiments2. The dashed line258

represents 1:1, while the white circles represent bin-averaged values. As discussed in the prior259

2For reference, the maximum wavenumber resolved in the field observations is approximately 13 rad/m.
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section, the need for including high frequencies in the computation of the Stokes drift is obvious260

here, as we found underestimation of close to 50% at times when they were not included.261

Following Belcher et al. (2012), we also applied a saturation tail ( f−5 or k−3) to the frequency-262

limited spectra for frequencies larger than kc (gray dots, figure 5). While the Stokes drift that263

was estimated using the k−3 tail show good agreement for large Us, we nevertheless find that this264

approach underestimates the surface Stokes drift by 10− 30% for smaller values of Us, in the265

0.075-0.15 m/s range. This brings up the importance of properly characterizing the spectral shape266

of the wave spectrum described in an earlier section. As shown in figure 6, depending on the267

cutoff frequency kc relative to the transition wavenumber kn, applying a set slope tail to the spectra268

will have very different outcomes. When kc > kn, we find the surface Stokes drift to be properly269

estimated. However, when kc < kn, the transition from equilibrium to transition regimes effectively270

is forced to kc, in turn truncating the contribution of the high frequency part of the wave spectrum271

to the Stokes drift, as highlighted in figure 6.272

7. Errors caused by the misrepresentation of the transition between the equilibrium and273

saturation ranges274

Misrepresentation of the transition between the equilibrium and saturation ranges is another po-275

tential source of errors when computing Stokes drift. To characterize this effect, we make use of276

an updated version of the model of surface Stokes drift from Pizzo et al. (2019). The model has277

been validated with field observations, showing remarkable agreement with the estimates com-278

puted from observed wave spectra using equation (6), as described in the Appendix. Here we use279

the model over the range of environmental parameters observed during the three experiments, and280

artificially vary the transition wavenumber kn, defined here as kn,est , and compare the resulting281

Stokes drift to the one computed with the accurate kn. Results are shown in figure 7. This demon-282
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strates the need to pay particular attention to the spectral shape of the surface wave spectra used in283

Stokes drift computations. For example, a factor two underestimation of kn leads to a 15% error284

in surface Stokes drift estimate, which is significant.285

8. A practical example: Stokes drift and turbulent Langmuir number from in-situ buoy286

measurements287

To highlight the findings presented in the prior sections, we used publicly available data collected288

from a NDBC station located in the Gulf of Mexico (42040). This buoy is equipped with both289

wind and surface wave measurement capabilities, and is located at 29.208 N 88.226 W. More290

details about about this station can be found on the NDBC website (https://www.ndbc.noaa.291

gov/station_page.php?station=42040).292

Here, the surface Stokes drift is computed in three different ways. First using the original, lim-293

ited bandwidth surface wave spectrum provided by NDBC (f=0.02-0.485 Hz), i.e. no corrections294

applied, and two other versions that include a high frequency spectral tail: one case where a f−5
295

saturation tail is added for f > 0.485Hz, and a second version where the spectra are patched with296

an equilibrium f−4 and saturation f−5 tails for cases where the transition frequency fn =
√

gkn/2π297

is larger than 0.485Hz. for the latter, kn is computed using equation (4) with r taken as 9.7e-298

3. The maximum frequency of the high-frequency tail fM =
√

gkM/2π is defined as the cutoff299

wavenumber above which the directional wave spectrum is assumed isotropic, based on the find-300

ings of Lenain and Melville (2017), such that kM = u2
∗/g exp((π/2− θ0)/γ), where θ0 = 2.835301

and γ = 0.48 (see equation (4) of Lenain and Melville, 2017, for details).302

Results are presented in figure 8, showing data collected from NDBC 42040 from April 2017303

through January 2018. The top panel (a) shows the wind speed collected at z=3.8m from the buoy,304

and (b) the surface Stokes drift, as described above. As expected from the previous sections, we305
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find the Stokes drift to be significantly underestimated when no spectral tail is added. We also find306

that properly parameterizing the transition from equilibrium to saturation ranges in the spectral307

tail also has significant impact, particularly for Us smaller than 0.1 m/s. This is highlighted in308

figure 8(c) where the Stokes drift estimates are shown over a shorter period of time (September309

2017). The two estimates with spectral tail added collapse for higher winds (in that case fn <310

fc = 0.485Hz), around September 10 2017, while significant differences are found as the wind311

decreases, after September 13 2017.312

Next, recall that upper ocean mixing is parameterized through the turbulent Langmuir number313

(McWilliams et al., 1997), defined as314

Lat =

√
u∗w
us

, (11)

where u∗w is the friction velocity in the water such that u∗w =
√

τρw, ρw the water density and τ315

the surface stress. As this parameter is used in both weather and climate models to parametrize316

mixing and the heat content in the upper ocean, it is critical to ensure that this quantity is computed317

correctly. Figure 9 shows the turbulent Langmuir number computed for the data presented in figure318

8(c). As anticipated, the addition of a spectral tail significantly reduces Lat . What is less expected319

is the sensitivity of the turbulent Langmuir number to the shape of the spectral tail. Specifically, we320

find that if the transition frequency between equilibrium and saturation ranges is not parameterized321

correctly, Lat can be overestimated by up to 30-40%, which may lead to significant biases in sea322

surface temperatures (Belcher et al., 2012).323

9. Discussion324

In this paper, we provide a better description of the spectral evolution of wind-generated waves.325

Specifically, we expand the work of Lenain and Melville (2017) on the partitioning into equilib-326
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rium and saturation ranges of surface gravity waves, as originally proposed by Phillips (1985),327

using high resolution measurements of wind-generated surface gravity waves. In particular, we328

propose a simple parameterization of the transition from equilibrium to saturation regimes of wind-329

generated surface gravity waves, only requiring the atmospheric friction velocity u∗ as input, that330

could be readily implemented in wave models. This is significant, as currently most operational331

models do not explicitly parameterize this transition (Liu et al., 2019).332

Error analysis was performed to quantify the errors in the estimated Stokes drift, as a function333

of cut-off frequency and transition wavenumber. It is found that there might be significant under-334

estimation (exceeding 50%) in estimates of Stokes drift based on instrument or reanalysis product335

limitations. Importantly, we provide an explanation for why this occurs and offer a means of336

correcting Stokes drift when only spectrally limited data is available. We identify that the misrep-337

resentation of the transition from equilibrium to saturation ranges has an impact on the estimate338

of Stokes drift computed spectrally. While the analysis is mostly focused here on surface Stokes339

drift, where we anticipate the contribution of the shorter waves to be largest, depth dependence is340

also investigated, to provide guidance on the contribution of surface waves to horizontal transport341

in the upper ocean, near the ocean surface.342

The Stokes drift plays a crucial role in upper ocean dynamics, via interactions with existing vor-343

ticity through the so-called vortex force term (Leibovich, 1983). This mixes the upper ocean, and344

sets the boundary conditions for coupled air-sea models. Estimates of the mixing is parameterized345

through the Langmuir number, a ratio of the wind friction velocity to the Stokes drift (Belcher346

et al., 2012). As this parameter is used in both weather and climate models, it is crucial to have347

high fidelity observations of this quantity. The work done in this paper provides better estimates348

of the Stokes drift, and hence better estimates of the turbulent Langmuir number to be used in349
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these coupled models. The sensitivity of this number to the spectral estimate of Stokes drift was350

demonstrated here.351

Finally, the directionality of the wave field is still a source of uncertainty both in measurements352

and more significantly in ocean wave models, and is the focus of on-going studies. Nevertheless,353

the emphasis in the present work on the need to include high-frequency waves, and to properly354

parameterize the equilibrium-saturation range transition in limited-bandwidth wave products also355

directly applies to directional surface wave estimates of the Stokes drift.356
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APPENDIX365

A1. Stokes Drift Model366

Here we revisit the model of the Stokes drift from Pizzo et al. (2019) to validate it using field367

observations of the directional wave spectrum collected during three experiments (SOCAL2013,368

LCDRI2017, ISDRI2017). In addition to the model considered there, we add a high wavenumber369

maximum, kM, above which we assume the waves do not contribute to the Stokes drift. The370

maximum wavenumber kM is defined as the cutoff wavenumber above which the directional wave371
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spectrum is assumed isotropic, based on the findings of Lenain and Melville (2017), such that372

kM = u2
∗/g exp((π/2− θ0)/γ), where θ0 = 2.835 and γ = 0.48 (see equation (4) of Lenain and373

Melville, 2017, for details). As the Stokes drift goes like φ(k)k3/2, particular care is needed in374

where to place this cutoff (Breivik et al., 2014), and is discussed in more detail below.375

With this addition, following Pizzo et al. (2019), the Stokes drift Us at the surface (z=0) can be376

shown to scale as377

Us = βu∗ln
(

rg
u2
∗

1
kp

)
+4B

(
u∗

r1/2 −
√

g
kM

)
, (A1)

where B is the saturation constant, given a saturation spectra Bk−3 (see figure 1), set to 7× 10−3
378

in the present study, based on the findings of Lenain and Melville (2017), and β is an empirical379

parameter, often referred to as Toba’s constant (Toba, 1973) that can be computed directly from380

the equilibrium range of wind generated surface waves such that381

φ(k) =
β

2
u∗√

g
k−5/2. (A2)

While it is defined here as a constant, Resio et al. (2004) and Romero and Melville (2010a) intro-382

duced a weak dependence of β on the wave phase speed at the spectral peak, and effective wave383

age, respectively.384

Figure 10(a) shows the modeled surface Stokes drift computed from equation (A1) compared385

to the Stokes drift computed explicitly using the measured omnidirectional spectra as described386

in equation (7) for z=0. The dashed line shows a 1:1 ratio. We find good agreement between the387

model and measured Stokes drift, with a coefficient of determination R2 of 0.78. Note that by388

setting Toba’s constant to 0.105, and in turn to avoid the need for a measurement of the compen-389

sated wave spectrum or another parameterization for this variable, we find, not unexpectedly, more390

scatter, but nevertheless a reasonable agreement with R2 = 0.58.391

19



Next, following Pizzo et al. (2019), we can rewrite equation (A1) in terms of the spectrally392

weighted phase velocity cpm such that393

Us = βu∗ln

(
2r

c2
pm

u2
∗

)
+4B

(
u∗

r1/2 −
√

g
kM

)
. (A3)

Here cpm is defined following Sutherland and Melville (2015), in an attempt to better represent394

the wind-wave portion of the spectrum, as describing a broad, wind generated wave field only using395

a peak frequency has significant limitations (Lenain and Melville, 2017). Results are presented in396

figure 10(b); we find a very good agreement between the proposed model and the surface Stokes397

drift computed from the wave spectra, with a R2 value of 0.88, much better than what was found398

using equation (A1).399

Note, there is a factor of two missing in the drift estimates Pizzo et al. (2019), which is now400

corrected in equations (A1) and (A3). This did not affect their scaling relationships, as an arbitrary401

constant was involved in each of the distinct regimes (e.g. equilibrium and saturation ranges).402
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(b)(a)

FIG. 1. (a) Example of the omnidirectional wavenumber spectrum collected on 15 November 2013 during the

SOCAL2013 experiment using observations collected from an airborne topographic scanning lidar (Lenain and

Melville, 2017). Note the presence of both equilibrium and saturation ranges, showing both -5/2 and -3 spectral

slopes over the three-decade bandwidth of the data. (b) Transition wavenumber kn plotted against g/u2
∗ for three

experiments (SOCAL2013, LCDRI2017 and ISDRI2017). Phillips’s (1985) parameter r = knu2
∗/g is best fit to

the data (red dashed line), and is equal to r = 9.7×10−3. The white circles represent bin-averaged values.
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FIG. 2. Contribution of the equilibrium range to the total surface Stokes drift Us at z = 0m. Here the Stokes drift

is computed from equations (6) and (7). As the friction velocity increases, the contribution of the equilibrium

range decreases, reaching a plateau for u∗ larger than 0.35 m/s. A fit to the data (dashed line) is also shown,

such that us,eq/us = 1−αu2
∗, where α = 4.18.
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FIG. 3. Bin-averaged Surface Stokes drift estimated error as a function of cutoff frequency fc computed from

the surface wave spectra collected during all three experiments. Also shown are the current cutoff frequencies

for wave spectral products, ECMWF ERA40, ERA5 and CDIP (observations), and errorbars for each bin of

frequency.
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FIG. 4. (a) Stokes drift estimated error as a function of cutoff frequency fc and depth (down to -5m) computed

from the spectra of surface wave data collected during the three experiments. (b) Depth-dependence of the

Stokes drift e2kcz plotted against cutoff frequency. Below 5m depth, the contribution to the Stokes drift from

waves of frequencies larger than 0.4Hz is negligible.
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ECMWF ERA40 resolved frequency (red), and taking a similar approach to Belcher et al. (2012), where they
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Us computed over the complete wavenumber range of the measured spectra. Here all three experiments are

considered. The dashed line represents 1:1, while the white circles represent bin-averaged values. While the Us

estimates when patching a k−3 tail show good agreement for large Us - this is expected, since kn < kc in that case

- we find that this approach underestimates the Stokes drift by 10− 30% for smaller Us, in the 0.075-0.15 m/s

range. Finally, the need for patching a tail when wave spectra that are computed explicitly do not resolve the

high wavenumbers is obvious.
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sets. Here kn is the measured transition wavenumber, while kn,est is the one used to compute Us from equation
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FIG. 8. (a) Wind speed (m/s) collected from NDBC buoy 42040 in the Gulf of Mexico in 2017. (b) Surface

Stokes drift, computed using the measured wave spectra, along with two products that include a high frequency

spectral tail: The red line shows the surface Stokes drift with a f−5 saturation tail, while the blue one is patched

with an equilibrium f−4 and saturation f−5 tails for cases where the wave spectrum cutoff frequency is lower

than fn =
√

gkn/(2π). In that latter case, kn is computed using equation (4) with r=9.7e-3. A shorter length of

the record is also shown in (c), highlighting the significant differences in Stokes drift magnitude between each

version. Also note that, as expected from the previous section, the two products with tail added collapse for

higher winds, around September 10 2017, while significant differences are found as the wind decreases, after

September 13 2017.
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FIG. 9. Turbulent Langmuir number Lat for the same time period displayed in figure 8(c). Note the significant

differences found between the three versions, and the significant overestimation of Lat when using the original,

non-corrected surface wave spectrum from NDBC.
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FIG. 10. (a) Surface Stokes drift computed from equation (A1), plotted against the Stokes drift computed

from the azimuthally integrated spectra (equation 7) for the three experiments considered here. The dashed line

represents 1:1. We see that there is good agreement between the model and the full prediction of the Stokes drift.

The same comparison is shown in (b), this time using equation (A3).
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