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Abstract
Bréon and Henriot (BH) have collected eight million globally distributed
satellite images of sunglitter, which yield a few simple, robust rules about
the statistics of surface slopes: 1) constant angular spread, 2) linear steepness,
and 3) sigmoid (near stepwise) skewness (all with respect to wind speed). Yet
the information is sparse because it says nothing about time and space scales.
The BH rules are an inconvenient sea truth, too fundamental to be ignored,
too incomplete to be understood. With regard to BH rule 1 (BH:1), I suggest
that the constant spread is associated with a wake-like geometry of the short
gravities. Steepness linearity (BH:2) remains an enigma. Skewness (BH:3)
appears to be correlated with a rather sudden onset of breaking for winds
above 4 m s−1. I do not think that skewness comes from parasitic capillaries.
These are tentative conclusions; I look forward to intensive sea-going exper-
iments over the next few years demolishing the proposed interpretations.
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1. INTRODUCTION
The scale of waves contributing to mean square slope is on the order of 1 mm to approximately 1 m,
as compared with 1 m to approximately 100 m for the wave energy spectrum. The slope spectrum
spans the transition from gravity to capillary waves. Generation of the long energetic gravity
waves has long been attributed to the wind shear at the critical layer (Miles 1957); energy transfer
is proportional to the amplitude of the waves already present, which leads to quasi-exponential
growth. There is no theory for the generation of the short steep gravity waves. Perhaps it is more
in line with the resonance theory of Phillips (1957) for pressure spots traveling along the surface,
with quasi-linear wave growth independent of the existing waves (as in the case of ship wakes).

Compared with the enormous literature on the long gravity waves, information on the short
gravities and capillaries is scarce indeed. Yet from the point of view of the transfer of momentum
across the air-sea boundary, the shorter waves are more interesting. Here I discuss the problems, not
their solutions. Intensive experiments1 on the short gravities are scheduled for the next few years.

2. THE SLOPE PROBABILITY DISTRIBUTION
Figures 1 and 2 illustrate the underlying geometry. In a flat calm, a single image of the Sun
would appear at the horizontal specular reflection point. But when the water is roughened there
are thousands of dancing highlights, each a tiny image of the Sun reflected from an appropriately
inclined water facet. The underlying grid gives the required tilt magnitude and azimuth. The
variable intensity is then a measure of the probability of slopes. The principle is quite old; Spooner
(1822) made four such measurements in the Tyrrhenian Sea.

Figure 1 illustrates how the setting Sun concentrates the pattern into a narrow street. Of more
interest here is the growth of the glitter pattern with wind speed at a fixed (high) solar elevation
(Figure 2). Because the wavelength of light is short compared with any existing ocean waves the
reflections are specular; there is no information on the scale of the reflecting waves. We show
below that an important component of the specular scatter is associated with short waves near the
transition from gravity to capillary waves (17 mm).

Note that the center of the glitter pattern in the images on the right side of Figure 2 has shifted
downwind from the grid center. This shift can be associated with an up/downwind asymmetry of
the wave profile (Figure 3). Let

ξ = mx

σx
, η = my

σy
, σ 2

x = ⟨m2
x⟩, σ 2

y = ⟨m2
y ⟩ (1)

designate the components of wave slope normalized with respect to root mean square (rms) slope
σ , with x in the downwind direction and y in the crosswind direction [ y is upwind for Bréon Henriot
(BH) and Cox & Munk (1956) (CM)]. The observations can then be fitted by the following terms
in the Gram-Charlier expansion of a nearly gaussian distribution2:

p(ξ, η) = 1
2π

e− 1
2 (ξ2+η2)

[
1 + 1

2
c 12ξ (1 − η2) + 1

6
c 30ξ (3 − ξ 2) + 1

24
c 40(3 − 6ξ 2 + ξ 4)

+ 1
4

c 22(1 − ξ 2)(1 − η2) + 1
24

c 04(3 − 6η2 + η4)
]

. (2)

We expect (and find) symmetry in the crosswind direction, so that c i j = 0 for odd j. The
seven remaining parameters ξ 2, η2, c 12, c 30, c 40, c 22, c 04 are determined by the observations as

1Project RaDyO (radiation through a dynamic ocean).
2The Cox & Munk (1956) (CM) curve fitting [followed by Bréon-Henriot (BH)] was limited to slopes of less than 2.5 times
the root mean square (rms) slopes, and this can lead to significant errors (Wentz 1976). A better procedure is based on the
expansion of log(p) by Chapron et al. (2000).
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φ = 75° φ = 50°

φ = 30° φ = 10°

4 m s–1

Figure 1
The glitter pattern at solar elevations of ϕ = 75◦, 50◦, 30◦, and 10◦. Wind speed is approximately 4 m s−1 for all images. The
superimposed grids consist of lines of constant slope azimuth α (radial drawn for every 30◦), and of constant tilt β (closed) for every 5◦.
The vessel Reverie is encircled in the upper left photograph (from Cox & Munk 1956).

functions of wind speed. We require the first five moments:

µn =
∫ ∞

−∞
dη

∫ ∞

−∞
dξ ξ n p(ξ, η),

µ0 = 1, µ1 = ⟨ξ⟩ = 0, µ2 = ⟨ξ 2⟩ = 1, µ3 = ⟨ξ 3⟩ = −c 30, µ4 = ⟨ξ 4⟩ = 3 + c 40. (3)
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φ = 75

φ = 75φ = 75

φ = 70

8.6 m s–1

0.7 m s–1 3.9 m s–1

3.9 m s–1

Figure 2
The glitter pattern at wind speeds of 0.7, 3.9, and 8.6 m s−1 for high solar elevations of ϕ = 75◦, 75◦, and 70◦. The photometric image
of the 3.9 m s−1 run (right bottom) shows the downwind displacement of the glitter pattern associated with the skewness in the slope
distribution. The plane’s shadow (white cross), barely seen at the antisolar point (180◦, 90◦-ϕ), permitted correction for roll, pitch, and
yaw of the plane. Large rotation in upper left photograph is due to bad yaw. The position of the vessel Reverie is indicated by a white
ellipse.
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Q
x

O P

U

2mx

mx

φ

φ

φ – mx

φ – 2mx

φ – 2mx

φ – mx

φ φ
φ

Figure 3
The wind is assumed to blow in the x direction toward the Sun (elevation φ). O is the specular reflection
from a horizontal facet, with incident and reflected inclinations φ. P is the specular reflection from a facet
windward of the wave crest at inclination mx. For a positive mean slope the mean specular point is shifted in
the positive x direction downwind. Q is the back reflection from a downwind facet of negative slope (the
shadow of the plane is here). In the general case the azimuth of the Sun is " degrees anticlockwise from
downwind.

The corresponding raw moments are σ n
x µn:

1, ⟨mx⟩ = 0, ⟨m2
x⟩ = σ 2

x , ⟨m3
x⟩ = −c 30 σ 3

x , ⟨m4
x⟩ = (3 + c 40)σ 4

x . (4)

The up/downwind skewness and kurtosis (peakedness) are defined as

µ3 = ⟨ξ 3⟩ = −c 30, µ4 − 3 = ⟨ξ 4⟩ − 3 = c 40.

The mean-cubed term is a measure of the up/downwind asymmetry.
The cross-wind symmetry suggests a collapse of the two-dimensional probability distribution

onto the ξ-axis:

p(ξ ) =
∫ ∞

−∞
dη p(ξ, η) = 1√

2π
e− 1

2 ξ2
[

1 + 1
6

c 30 ξ (3 − ξ 2) + 1
24

c 40(3 − 6ξ 2 + ξ 4)
]

. (5)

The dependence on c12, c22, and c04 has disappeared. The moments are the same as in Equation 3.
A slice through the center of the distribution:

pslice(ξ ) = p(ξ, 0) = 1
2π

e− 1
2 ξ2

[
1 + 1

8
c 04 + 1

2
c 12ξ + 1

4
c 22(1 − ξ 2)

+ 1
6

c 30 ξ (3 − ξ 2) + 1
24

c 40(3 − 6ξ 2 + ξ 4).
]

(6)

has raw moments
1√
2π

{
1 + 1

8
c 04,

1
2

c 12 σx,

(
1 + 1

8
c 04 − 1

2
c 22

)
σ 2

x

}
.

Note that the zeroth moment is not 1.
The maximum in p(ξ ) defines the center of the glitter pattern. Setting d p/dξ = 0 and keeping

only the linear terms in ξ yields

4c 30 − (8 + 5 c 40)ξmax = 0. (7)
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The correction for peakedness is small. Setting c 40 = 0 gives

ξmax = 1
2

c 30 = −1
2
⟨ξ 3⟩, (mx)max = −1

2
⟨m3

x⟩/⟨m2
x⟩, (8)

consistent with Longuet-Higgins (1982). Because ⟨m3
x⟩ is negative, the center of the glitter pattern

is displaced by an angle 2(mx)max in the positive x direction (Figure 3).

3. BRÉON-HENRIOT (BH) RESULTS
Bréon & Henriot (2006) give the following values for the seven parameters in the Gram-Charlier
expansion (Equation 2):

103 σ 2
x = 1 + 3.16 U ± 0.5, 103 σ 2

y = 3 + 1.85 U ± 0.5

c 12 = +0.9 × 10−3 U2 ± 0.01, c 30 = +0.45(1 + e7−U)−1 ± 0.01

c 04 = 0.3 ± 0.05, c 22 = 0.12 ± 0.03, c 40 = 0.4 ± 0.1.

⎫
⎪⎪⎬

⎪⎪⎭
(9)

Accordingly, the total mean-square slope and the BH ratio (a measure of directivity) are

σ 2 = σ 2
x + σ 2

y = a + b U ± ε, a = 4 × 10−3, b = 5.01 × 10−3, ε = 0.71 × 10−3,

γ = σ 2
y /σ 2

x = 0.585 + 0.76 U−1.

We refer to a, b as the BH numbers and to γ as the BH ratio; γ = 0.66 for U = 10 m s−1. Here
U = U10 in m s−1 is derived from satellite scatterometry calibrated by comparison with buoy
observations, with an estimated rms error of 1.3 m s−1. The standard deviation of wind direction
is 17◦. 50,000 measurements of wind speed were apportioned into 0.0–0.5, 0.5–1.0, . . . , 14.5–
15.0 m s−1 bins. Almost ten million (!) reflectance measurements distributed globally were available
for slope parameter inversions.

In contrast, the 29 CM runs were made within nine days off Maui, Hawaii. The winds were
measured on the 58-ft schooner Reverie on the fore masthead (41 ft) and bowsprit (10 ft). Masthead
winds ranged from 0.7 to 13.8 m s−1. Wind direction was estimated by eye.

The estimated CM mean-square slopes σ 2
x and σ 2

y are in agreement with the BH observations,
and well within the BH error bars (Figure 4a). However, there is an important deviation of the
skewness c30 from the CM linear fit, suggesting saturation at high wind speeds. The BH mean
peakedness c40 is well above the CM estimate.

Figure 5 shows the raw p(mx, my ) and normalized p(ξ, η) distributions according to the BH
fits (Equation 9). Figure 6 gives the one-dimensional probability distribution function (pdf). The
positive values of ξmax are related to the fact that more than half the wave length is occupied by a
positive slope (upwind from the crest, Figure 3). The negative sign of ⟨ξ 3⟩ is related to the steep
negative slopes downwind from the crest.

The BH results on skewness and peakedness present a major challenge: how to interpret the
saturation skewness

⟨ξ 3⟩ ≈ −0.45 for U > 10 m/s. (10)

The results in Figure 4 and subsequent figures were taken by radiometer POLDER-1 on the
platform ADEOS-1. Since then, further measurements with POLDER-2 aboard ADEOS-2 have
been analyzed by the same method, leading essentially to the same result (F.M. Bréon, personal
communication). Dr. Bréon also kindly furnished me with the numbers used in his plots,3 permit-
ting the elimination of U10 as an independent variable (Figure 7). I prefer this plot of mean-cube

3We have replaced the Bréon-Henriot (BH) value for ⟨m2⟩ in the weakest wind bin (0 < U < 0.5 ms) by ⟨m2
x⟩ = 0.
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0.05

0

1.00.5

0

00–0.2 0.2 0.4–0.4

0

5

5

10

10

15

150 5 10 15

U (m s–1)

U (m s–1)U (m s–1)

11 to 12 m s–1

mx

p (mx)

c30 c40

<m2> downwind <m
2 >

crosswind <m
2 >

U
a b

c
d

Figure 4
Comparison of Bréon & Henriot 2006 (BH) (blue, with error bars) to Cox & Munk 1956 (CM) (red ). (a) The
probability function p(mx ) is a projection onto the x-axis of a two dimensional distribution. (b) BH and CM
components in slope variance are in good agreement. (c) The skewness parameter c30 saturates at U =
10 m s−1, unlike the linear CM relation. (d ) Peakedness c40.

slope against mean-square slope in as much as the wind speed is relatively poorly determined,
and there is some danger of circular reasoning extending the linear BH dependence of ⟨m2⟩ on
U to the weak wind data (see footnote 2). Further, in any comparison of laboratory and field
measurements it is better to use field and laboratory wave slopes as a reference for comparison,
and not assume any relations between masthead and laboratory winds.

It is convenient to fit the data to a formula. BH use the representations

⟨m2⟩ = (4 + 5.01 U ) 10−3, ⟨m3⟩norm = −0.45(1 + e7−U)

and the red curve in Figure 7 is obtained by eliminating U between the two equations. The
sigmoid shape suggests the use of the incomplete Beta function4 (Figure 7)

Bz(a, b) =
∫ z

0
ta−1 (1 − t)b−1dt (11)

with the asymptotic relations

Bz(a, b) = a−1za for z ≪ 1,

= b−1(1 − z)b for 1 − z ≪ 1. (12)

4The Beta constants (a, b) are different from the Bréon Henriot (BH) constants (a, b).
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– 0.5

0.5

0

12.4

3.7

0.178

0.187

U = 5 m s–1

U = 20 m s–1

U = 5 m s–1

U = 20 m s–1

my η

η

– 0.5

0.5

0.5– 0.5 0

0my

mx ξ

0

1

2

3

–3

– 2

– 1

0

1

2

3

–3

– 2

– 1

–3 –2 –1 0 1 2 3

Figure 5
Probability density functions of the slope mx, my (left) and of normalized slope ξ = mx/σx , η = my/σy
(right) at winds U = 5 m s−1 (bottom) and 20 m s−1 (top). Volumes beneath the probability distribution
function (pdf ) surfaces are unity. Mean slope components are zero. The pattern of raw pdfs (left) grows with
increasing wind speed. Contours for the un-normalized pdfs are elliptical because up-down wind slope
variances are larger than cross-wind variances, and they are asymmetrical with the most probable slope
displaced in the positive x-direction (downwind).

U = 20 m s–1

ξ

ξmax

ξ

0.4

0.3

0.2

0.1

0
0 1 2 3–1–2–3 0

U = 5 m s–10.4

0.3

0.2

0.1

0
1 2 3–1–2–3

Figure 6
One-dimensional probability distribution function (pdf ) relative to the gaussian pdf (red ) for U = 5 m s−1 and 20 m s−1. The most
probable slope is positive (upward in the downwind direction), with mode ξmax = +0.021, +0.170 for U = 5, 20 m s−1. Surfaces of
small positive slope are more probable than those of negative slope; large positive slopes are less probable than large negative slopes,
thus permitting the restraint of a zero mean slope.
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0.02 0.04 0.06 0.08

0.1

0.2

0.3

0.4

<m
3 > no

rm

<m2>

BH
Beta

BH
Beta

0.2 0.4 0.6 0.8 1.0

0.01

0.02

0.03

Beta (z; a, b)

a = 0.3
b = 3

a = 9.5
b = 10

(1-z)b1
b

za1
a

Figure 7
Bréon Henriot (BH) relation of normalized mean-cube slope as a function of the mean-square slope
⟨m2⟩ = ⟨m2

x⟩ + ⟨m2
y ⟩. Red curve is BH fit to an exponential function, blue curve is fit to Beta function. Inset:

the function Beta (z; a, b) has the required sigmoid signature. For low winds (small z) and for saturation
(z near 1), Beta can be represented by simple asymptotes.

As shown below, this expression relates the coefficient a to the low wind conditions, and relates
b to the saturation condition (presumably due to breaking). The transition at the inflection point
occurs at

zinfl = a − 1
a + b − 2

.

For a ≪ 1, zinfl ≈ 1, ⟨m2⟩ ≈ 0.08, ⟨m3⟩ ≈ −0.45

b ≪ 1, zinfl ≈ 0, ⟨m2⟩ ≈ 0, ⟨m3⟩ ≈ 0

a = b, zinfl = 1
2
, ⟨m2⟩ ≈ 0.04, ⟨m3⟩ ≈ −0.225.

The last case is close to the BH situation. The mean-cube transition from low values to saturation
is remarkably sharp and requires large a, b coefficients.

For a fit to the BH relation in Figure 7,

⟨m3⟩norm = ⟨m3⟩max φ(⟨m2⟩), φ(⟨m2⟩) = Bz(a, b)/B1(a, b),

⟨m3⟩max = −.45, z = ⟨m2⟩/⟨m2⟩max, ⟨m2⟩max = 0.08, a = 9.5, b = 10. (13)

The BH and Beta functions both give satisfactory fit to the data (Figure 7), which is not surprising
because φ has four tunable coefficients.

4. OIL ON WATER
The BH probability distributions give no information on the lengths of the waves that contribute
to the measured slope statistics. However, there is some qualitative evidence from two experiments
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0.04

0.02

0
0 5 10 15

Oil
No oil
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4

2

0
4 6 8 10 12

Soap
No soap

U10 (m s–1)

S 
 (m

m
)

U10 (m s–1)

<
m

2 >

Figure 8
(a) Up-down wind component of mean-square slopes ⟨m2⟩ for a clean sea surface (tan, open circles) and a surface covered by an oil slick
( purple, solid circles), from Cox & Munk (1956). (b) Wind-induced setup of the surface of a 220-m long 1.85-m deep model-yacht basin
as function of the square of windspeed, with and without detergent (Van Dorn 1953).

(Figure 8) concerning the effect of oil and soap on the mean-square slope (Cox & Munk 1956)
and on wind stress (Van Dorn 1953). For a 10 m s−1 wind, the up-down wind component of mean-
square slope was reduced by 60% and drag was reduced by 40%. Rapid attenuation of waves is
associated with short waves, 10 cm or less, say, and I infer that most of the mean-square slope and
a significant fraction of the stress can be attributed to these scales.

The experimental procedures for slope and stress were quite different. For the glitter exper-
iment, oil was pumped on the water by the Reverie (Figure 9). An optimum mixture consisted
of 40% used crank case oil, 40% diesel oil, and 20% fish oil. At moderate winds, 200 gallons of
this mixture could be laid in 25 minutes to form a coherent slick of 2000 × 2000 feet. For the
wind stress experiment it required the combined effort of three people running at top speed to
spread Merrill’s Rich Suds at the rate of 60 pounds per hour from the upwind end of the model
basin. The two 50-year-old experiments provide vivid evidence that slope and drag are associated
with the high-frequency tail of the wave spectrum (as is well known); the present environmental
climate does not favor an active continuation of this type of experimentation.

It is difficult to compare the results of the two experiments in any detail. Van Dorn (1953)
measured the downwind setup (1.75 ± 0.10 mm at 10 m s−1 winds), and inferred a surface stress
of 0.1 N/m2 per mm of setup (this allows for the drag along the shallow bottom). Van Dorn noted
a “glassy-calm” appearance for U10 < 2 m s−1, and “incipient rippling in patches” for winds up
to 4 m s−1. The surface “became covered with persistent wavelets” at U10 above 4 m s−1. Surface
currents (on the order of 1% of the wind speed) were unaffected by the detergent.

Van Dorn (referring to previous work by Keulegan 1951) attributes the setup to the sum of
two terms,

S = AU2, S = AU2 + B(U − Uc )2 (14)

for U < Uc and U > Uc, respectively, with the transition indefinitely postponed when soap is added;
Uc is estimated at 5.6 m s−1. Van Dorn attributes S = AU2 to a “frictional drag” and the additional
term B(U − Uc )2 to wave drag. As an aside, an additional setup associated with a rainstorm could
be reconciled with the expected momentum transport of the rain drops.

Cox & Munk (1956) note that the effect of the slick is to “reduce the mean-square slopes by a
factor of two or three,” and “to eliminate skewness.” They attribute the effect to the suppression
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B

B

A

A

A

Figure 9
Two successive photographs of glitter within a 2000 × 2000 ft coherent slick band extending from AA to
BB. The oil was pumped on the water by the Reverie and comprised 40% used crankcase oil, 40% diesel, and
20% fish oil. Wind direction (white arrow) and plane shadow (white cross) are indicated. Note the downwind
displacement of the glitter pattern in the oil-free area.

of waves with periods less than 0.5 seconds (λ = 0.4 m, C = 0.8 m s−1), with an e−1 decay distance
of 1.5 km associated with molecular viscosity. For orientation, waves of minimum phase velo-
city of 0.23 m s−1 are associated with a period of 0.074 s, a length of 17 mm, and an e−1 decay of
0.8 m.

A large portion of stress and skewness is associated with (a) capillaries and (b) short gravities
[adjacent to the gravity-capillary (gc) transition], but not all! It has been observed that the drag
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coefficient is higher over a young sea than over a mature sea at comparable winds, indicating some
role of the longer gravity waves.

5. STEEPNESS
Here we attempt to interpret the BH measurements of slope variance:

⟨m2⟩ = ⟨m2
x⟩ + ⟨m2

y ⟩ = a + bU, a = 4 × 10−3, b ≈ 5.01 × 10−3 s/m.

The linearity in the wind dependence imposes severe restrictions on any model for the slope spec-
tra. Starting in 1950, there is a vast literature on elevation (energy) spectra, dominated by the work
of Owen Phillips. It is straightforward to infer the slope spectrum from the elevation spectrum;
extrapolating to high frequencies then yields mean-square slopes of magnitude comparable to the
BH values but with a logarithmic wind dependence incompatible with the BH linear dependence.
I have not been able to resolve this incompatibility.

5.1. Inference from Elevation Spectra
Write

⟨m2⟩ =
∫ ∞

0
κ2 Fζ (κ)κ dκ,

where Fζ (κ) is the elevation (energy) spectrum.5 The slope spectrum κ2 Fζ (κ) is dominated by
waves of small scales with short time constants that can adjust to the variable wind field. Here
we assume that the slope spectrum is in equilibrium with the local wind. The simplicity and
consistency of the BH statistics collected globally without regard to the weather situations would
support this assumption.

5.1.1. Neumann spectrum. When Cox & Munk (1956) proposed the linear dependence of slope
variance on wind, the ultrared ω−6 energy spectrum of Neumann (1953) was fashionable:

Fζ (ω) = π3 Ng2ω−6, Fζ (κ) = 1
2
π3 Ng− 1

2 κ−4 1
2 , (15)

where N = 0.83 × 10−3s−1. Hence Fm(κ) = κ2 Fζ (κ) and

⟨m2⟩ =
∫ ∞

κ0

κ Fm(κ)dκ = π3 Ng− 1
2 κ

− 1
2

0 = π3 Ng−1U = 2.6 × 10−3U

for κ0 = g/C2 = g/U2. This result is in rough agreement with the BH relation ⟨m2⟩ = 5×10−3U.
At the time, this result was considered to be an affirmation of the Neumann spectrum.

5.1.2. Phillips spectra. Subsequent measurements decisively favored the ω−5 Phillips (1958)
spectrum:

Fζ (ω) = βg2ω−5, Fζ (κ) = 1
2
βκ−4, β = 1.2 × 10−2.

Then, with Fm(κ) = κ2 Fζ (κ) = 1
2 βκ−2,

⟨m2⟩ =
∫ κupper

κ0

κ Fm(κ)dκ = 1
2
β ln

κupper

κ0
= β ln

U
√

g/κupper
.

The logarithmic dependence on wind speed is in stark contrast to the linear BH dependence.

5See Appendix B for spectral notation.
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In a further move toward deredning the gravity wave spectrum, Phillips (1985) introduced the
ω−4 spectrum,

Fζ (ω) = αU∗gω−4, Fζ (κ) = 1
2
αU∗g− 1

2 κ−3 1
2 . (16)

5.1.3. Banner spectrum. Banner et al. (1989) made a stereophotogrammetric determination
of the wavenumber spectrum from an oil platform under open-sea conditions. Wavenumbers
range from 0.5 to 5 cycles per meter (cpm) (the upper limit is far short of the gc transition at
59 cpm). Banner (1990) obtained an optimal fit by a composite spectrum, with a Phillips (1985)
κ−3 1

2 dependence near the wind cut-off κ0 transiting to the older, Phillips (1958) κ−4 dependence
at κ1 (Figure 10). We refer to these as the BP85 and BP58 spectra. Banner et al. (1989) write

Gζ (k) = Ak−3m2/cpm, A = 10−4, κ1 ≤ κ ≤ κ2 (17)

for the one-dimensional BP58 spectrum in cyclical units, corresponding to β = 8π2 A = 0.8×10−2

[Phillips (1958) has β = 1.2 × 10−2]. The inferred slope spectrum is then

Gm(k) = 4π2 Ak−1slope2/cpm. (18)

Ignoring the BP85 segment for the moment,

⟨m2⟩ =
∫ k2

k0

Gm(k) dk = 4π2 A ln(k2/k0) = 8π2 A ln
U

√
g/(2πk2)

, (19)

where k0 = g/(2πU2). For a wind speed U = 10 m s−1, and the experimental resolution k2 =
5 cpm, ⟨m2⟩ = 0.027 compared with the BH value of 0.05.

The case k2 = 5 cpm is in remarkable agreement with the Cox & Munk (1956) measurements
for an oil-covered sea (see Supplemental Figure 1; follow the Supplemental Material link from
the Annual Reviews home page at http://www.annualreviews.org), as pointed out long ago by
Cox (1958). It is tempting to conclude that the capillaries have been eliminated by the oil slick,
leaving the gravity waves whose mean-square slope is in accord with the Banner spectrum. It would
follow that the wedge-like area between the white and black points is ascribed to the capillaries
generated by some independent process.

5.2. Extension to High Frequencies
Following the Phillips (1985) paper, Donelan et al. (1985), Jähne & Riemer (1990), Banner et al.
(1989), Banner (1990), and Elfouhaily et al. (1997) reviewed the subject and extended the spec-
tral models to the higher wavenumbers. Most of the discussion refers to the one-dimensional
“saturation spectrum” (introduced by Phillips):

Gs (κ) ≡ κGm(κ) = κ3Gζ (κ) = κ4 Fζ (κ). (20)

The Banner saturation spectrum is

Gs (κ) = κGm(κ) = kGm(k) = 4π2 A = 4 × 10−3(dimensionless). (21)

Figure 11 summarizes the saturation spectrum at the gc transition. The Elfouhaily et al. (1997)
measurements give an enhanced wind-dependent intensity centered at the transition. Some recent
measurements by Hwang (2005) place the peak to the left of the transition (short gravities) with a
gap at the transition; with increasing wind speed the peak shifts toward the transition (the opposite
holds for the Cox-Zhang laboratory experiments). Figure 11b is a crude attempt to summarize
the situation (see below).
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Figure 10
The spectrum

∫ ∞
−∞ Fξ (kx , ky )dky = 10−4 k−3 m2 cpm−1 according to Banner et al. (1989). There is an

indication of reduced slope (such as k−5/2) at the low wavenumbers.

5.3. Cox-Zhang Laboratory Experiments
The scale of the gc transition is well adapted to laboratory experiments. In the Cox & Zhang
(C. Cox & X. Zhang, manuscript in preparation) experiments, a narrow laser beam from above is re-
fracted at the wavy surface and recorded beneath the surface, thus yielding mx(t) and my (t). Veron &
Melville (2001) use a color imaging slope gauge to derive mx(x, y) and my (x, y). Results are compa-
rable (Figure 12). The measurements are easier in the time domain, and more readily interpretable
in the space domain. Some results of the Cox & Zhang experiments are summarized in Table 1.
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Figure 11
The saturation spectrum Gs (κ). (a) The Banner BP58 spectrum (ignoring BP85) for long gravity waves is
extended to the Banner limit of 31 rpm. The Elfouhaily et al. (1997) spectra (solid curves) are peaked at the
gravity-capillary (gc) transition. Hwang (2005) spectra (dashed ) are peaked in the short gravity wave band.
(b) Idealized representation of the saturation spectrum. The transition from the Banner-like white spectrum
with low-frequency wind cut-offs to the Hwang spectra is not clear.

These experiments produced a number of significant results. (a) The measurements show a
gap at the gc transition that separates a moderately narrow peak on the gravity side from a flat,
broad plateau at the capillary side. (b) For the wind-generated waves the contributions to the
mean-square slope from the capillary side are comparable to those from the gravity side and need
to be taken into account in any reasonable discussion of the wave statistics; paddle-generated waves
have a much smaller capillary component. (c) Comparisons with field measurements are difficult
because of the interpretation of wind speed and other factors. We note that for U ≈ 5 m s−1 the
Hwang slope spectrum peaks at 5 cpm (Figure 11) and the Cox & Zhang (CZ) spectrum peaks
at 4 Hz or 10 cpm (Figures 12 and 13). (d ) The relative contribution to the mean-square slope
from cross-wind slope is less than for the BH open sea measurements, as might be expected from
wind generation in a narrow tank (see Section 6).
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Figure 12
Laboratory spectra Fm(k) of Veron & Melville (2001) in wave number space (upper panel, dashed ) and Fm( f )
of C. Cox & X. Zhang (manuscript in preparation) in frequency space (lower panel, solid ). The Cox & Zhang
spectra were transferred into wave number space (upper panel, solid ). The laboratory spectra show a strong
peak on the gravity side of the gravity-capillary (gc) transition and a broad spectral plateau associated with
the parasitic capillaries.

5.4. Evidence from Microseisms
Some unexpected evidence comes from measurements of pressure fluctuations on the deep sea
floor (Farrell & Munk 2008). Microseismic noise at frequencies on the order of 0.2 Hz has long
been attributed to the effect of oppositely traveling surface waves (surface wave length λ on the
order of 100 m). Pressure fluctuations are excited at twice the surface wave frequency by the
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Table 1 Ratios of mean squares from Cox & Zhang1

1. Directivity ⟨1000 m2
y ⟩/1000⟨m2

x⟩
gravity g capillary c Total g + c BH2

wind 5.6/20 = 0.28 5.2/18.5 = 0.28 11/39 = 0.28 0.7
paddle 6.3/35 = 0.018 0.2/3.5 = 0.080 0.086/39 = 0.023

2. Color ⟨1000 m2
c /1000 m2

g ⟩
downwind x crosswind y total x + y

wind 18.5/20 = 0.93 5.2/5.6 = 0.93 24/25.6 = 0.93
paddle 3.5/35 = 0.10 0.2/.63 = 0.32 3.52/35.6 = 0.10

1Manuscript in preparation.
2Bréon & Henriot (2006).

Longuet-Higgins (1950) wave-wave interaction mechanism. Webb & Cox (1986) extended the
frequency range to approximately 2 Hz (λ = 40 cm). Here we suggest that pressure measurements
up to 27 Hz give information about the transition from long to short gravity waves.

The curves in Figure 14 are the computed pressure spectrum Fp (ωp ) in response to surface
wave spectra Fξ (κ) according to Hughes (1976):

Fp (ωp ) = 1
8
π

(
ρ

C

)2

ω6
p

κ F 2
ζ (κ)

∂ωζ /∂κ
I, ωp = 2ωζ , (22)

where C = 1500 m s−1 is the mean speed of sound and I is the directional overlap integral
(introduced in Section 6; for details see Farrell & Munk 2008). Dots denote measurements

6.1 4.4
3.5

5.25.25.2

3.5

6.1

4.4

5.2

cg

10–1
10–5

10–4

10–3

10–2

10–1

100

101

100 101

Frequency (Hz)

F m
f 

(H
z–1

)
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Figure 13
Cox-Zhang laboratory slope spectra at stated wind speeds (m s−1). Arrows on the capillary side are drawn for
parasitic resonance, Cg = Cc .
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Figure 14
Power spectra of deep ocean pressure fluctuation. Dots show the measured Holu spectrum (McCreery et al.
1993) for 10 m s−1 winds (circles) and 13 m s−1 winds (triangles). The black curve is the computed pressure
spectrum for the Phillips (1958) κ−4 long surface wave spectrum (the dashed extension is for a gravity-only
ocean). Red curves are computed pressure spectra for κ−3 short surface wave spectra. Computed spectra
assume the value of the spreading integral is 0.2.

from the Wake Island Array (McCreery et al. 1993) in 5500 m. The black curve is the spe-
cial case in response to a f −5 or κ−4BP58 surface wave spectrum. Consider that the Phillips
spectrum extends indefinitely to higher frequencies. The black curve would then continue in-
definitely along a f −7 slope provided surface tension was neglected (black dashed line). When
surface tension is taken into account, the computed pressure spectrum curves upwards from
the linear extension for f < 10 Hz. Starting from the left, the measured pressure spectrum
(green points) follows a straight black f −7 line, which is the appropriate slope for the f −5BP58
surface wave spectrum in a gravity-only ocean. In fact, the transition is at 6 Hz (3 Hz or
5.6 cpm surface wave frequencies) and is in response not to surface tension, but to a transition of
the surface waves spectrum from a BP58 f −5 dependence to something like a f −3 dependence.
This important transition from long to short gravity waves is roughly consistent with the Hwang
surface measurements.

The red curve in Figure 14 designates the bottom pressure spectrum for the proposed f −3 or
κ−3 surface wave spectrum of short gravities, with the dashed extension corresponding again to a
gravity-only ocean. We notice also that the measured pressures at different wind speeds coalesce at
the black curve, whereas distinct red curves, separated by 6 dB, need to be drawn for the two wind
speeds. Accordingly, the transition marks the change from a saturated long gravity wave spectrum
to an unsaturated short gravity wave spectrum. Further, the very existence of the deep pressure
fluctuations is evidence for oppositely traveling surface waves and imposes integral restraints on
the directional spread (see below). We may expect further critical information from improved
future deep pressure measurements.
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Figure 15
The assumed slope spectrum consists of (i ) the long gravity Banner k−1/2 spectrum (BP85) with low-
frequency wind-dependent cutoffs, (ii ) the long gravity Banner k−1 spectrum (BP58) with upper cutoffs at
57 cpm, (iii ) a level spectrum for short gravities (ignoring spectral gap), and (iv) capillaries assumed
(unrealistically) to make equal contributions to mean square slope; (iii ) and (iv) are separated by a two octave
gap (vertical black line) centered on the gravity-capillary (gc) transition.

5.5. A Model Slope Spectrum
The model slope spectra consist of four separate features (Figure 15): (a) a BP85 κ− 1

2 spectrum
between the wind cut-off κ0 = g/U2 and a transition wavenumber κ1, (b) a BP58 = 1

2 βκ−1

spectrum between κ1 and κ2, (c) a spectrum of short gravities, and (d ) capillaries separated by a
gap at the gc transition.

5.5.1. Gravity waves. Table 2 summarizes the situation. Continuity at the transition wavenum-
bers uniquely defines the spectral densities (line 7) and their contributions to the mean square
slope (line 8). For β = 0.008,

⟨m2⟩grav = 0.004 + 0.016 + 0.021 = 0.041

for the contributions of the gravities (very long, long, and short) at U = 10 m s−1, compared with
the BH value of bU = 0.005 × 10 = 0.051, including capillaries.

Suppose the short gravity mean-square slope grows linearly with wind, ⟨m2⟩s g =
0.0205, 0.041, 0.082 for U = 5, 10, 20 m s−1. The corresponding band widths for the short
gravities are

κ3 − κ2 = 2β−1κ2⟨m2⟩s g = 105, 210, 420 rpm

or κ3 = 145, 250, 460 rpm compared with κs g = 368 rpm. The associated slope and saturation
spectra are (Figure 15)

Gm(κ) = 1
2
βκ−1

2 = 10−4m2/rpm, Gs (κ) = κGm(κ).
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Table 2 Pressure, elevation, slope, and saturation spectra (two-dimensional and one-dimensional) for the three
components of gravity wave spectra, for U = 10 m s−1.1

Banner long gravity Short gravity
vlg à la Phillips (1985) lg à la Phillips (1958) sg Hwang (2005)

ω0, f0 n01 ω1, f1 n12 ω2, f2 n23 ω3, f3 n
rps, Hz rps, Hz rps, Hz rps, Hz

1) Fp (ωp ) 2.0, 0.32 −6 5.0, 0.80 −7 40, 6.4 −3 100, 16 2N + 3
2) Fζ (ωp ) 1.0, 0.16 −4 2.5, 0.40 −5 20, 3.2 −3 50, 8.0 N

κ0, k0 κ1, k1 κ2, k2 κ3, k3 n
rpm, cpm rpm, cpm rpm, cpm rpm, cpm

3) Fζ (κ) 0.10, 0.016 −3 1
2 0.63, 0.10 −4 40, 6.4 −3 250, 40 1

2 N− 3
2

4) Fm(κ) ” −1 1
2 ” −2 ” −1 ” 1

2 N+ 1
2

5) Gm(κ) ” − 1
2 ” −1 ” 0 ” 1

2 N+ 3
2

6) Gs (κ) ” + 1
2 ” 0 ” 1 1

2 N+ 5
2

7) β−1Gm(κ) 1
2 κ

− 1
2

1 κ− 1
2 1

2κ
−1 1

2 κ−1
2 κ0

8) β−1(m2) 1−
(

κ1
κ0

)− 1
2 1

2 ln
(

κ2
κ1

)
1
2

(
−1 + κ3(U )

κ2(U )

)

0.60 2.08 −0.5+3.1

1The four numbers underlying this table (bold, underlined) are chosen as follows: ω0 = 1.0 rps to give U = C = g/ω0 = 10 m s−1, k1 = 0.10 cpm
from Figure 10 (Banner 1990), (ωp )2 = 6.4 Hz is based on Farrell & Munk (2008), and κ3 = 250 rpm to agree with Bréon Henriot (BH) (ignoring
capillaries). Adjoining numbers follow from ω = 2π f, κ = 2πk, ωp = 2ω1, ω2 = gκ . Abbreviations: vlg, very long energetic gravity waves; lg, long
gravity waves; sg, short gravities.

The slope spectra are white [ ̸= f (κ)] and saturated [ ̸= f (U )]. Slopes grow with wind because of
increasing band width.

5.5.2. Banner–Bréon-Henriot reconciliation. The BH measurements can be fitted to

103⟨m2⟩ = a + bU ± ε = 4 + 5.01 U ± 5.

The CM Hawaii measurements gave 3 + 5.12 U ± 4. Because not all the world ocean is similar
to the Alenuihaha Channel, we must attribute the results to response to local winds, only weakly
dependent on fetch and other storm conditions.

There are four contributing components (Table 2):

(i) very long energetic gravity waves (vlg) that follow the Phillips (1985) κ−3 1
2 (ω−4) spectrum,

between the wind-determined peak wavenumber κ0 = order .01 cpm and κ1 = order
0.1 cpm;

(ii) long gravity waves (lg) á la Phillips (1958) κ−4 (ω−5) spectrum, from κ1 to κ2 = order
10 cpm;

(iii) short gravities (sg) of undetermined spectral shape between κ2 and the gc transition κgc =
59 cpm; and

(iv) capillaries with κ > κgc .

None of these components can be neglected. A principal difficulty is reconciling the lg logarith-
mic wind dependence to the linear BH relation. We could endow the ocean with antilogarithm
capacity by setting κ2/κ1 = e2bU , thus yielding a linear bU relation for the lg, but this seems
contrived.
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Here we assume that each of the four components (and thus their sum) can be fit to an
a + bU ± ε relation. We are fairly free to choose any κ(U) to bring this about. I suggest that (i) and
(ii) contribute largely to a + ε, whereas (iii) and (iv) are dominated by the bU term.

For (i), we have ⟨m2⟩ = β(1 −
√

κ0/κ1); setting κ0 = gU−2, we would need to assume κ1 is
proportional to U−4 to make

√
κ0/κ1 proportional to U. A more likely situation is that ⟨m2⟩ =

β(1 −
√

κ0/κ1) = 0.008(1 − 0.4) = 0.005 (compared with a BH = 0.004) plus small wind-
dependent terms. For (ii), by assuming the same wind dependence for κ1 and κ2 we can avoid the
logarithmic problem and obtain ⟨m2⟩ = log(κ2/κ1) = 2.3β = 0.016. Using the values in Table 2
for a 10 m s−1 wind, we end up with a = 0.017 from the vlg and lg contributions, compared with
BH = 0.004. Making acceptable adjustments to the above κ limits can reduce a from 0.017 to
0.010, which is still too large. The linear steepness relation remains an enigma.

6. SPREAD
The problem is to interpret the ratio of crosswind to downwind components of the BH mean-
square slopes (Equation 9):

⟨m2
y ⟩/⟨m2

x⟩ = 0.73, 0.66, 0.62, 0.59 for U = 5, 10, 20, ∞ m/s (23)

(ratio 0.59 ignores the zero intercepts). The ratio is remarkably insensitive to wind speed, sug-
gesting perhaps a geometric interpretation. An oil-covered surface (with reduced capillary con-
tribution) has larger crosswind slope components than a surface not covered in oil (Cox & Munk
1956). Laboratory experiments give small crosswind slopes, as might be expected in narrow tanks
(C. Cox & X. Zhang, manuscript in preparation). There is always the problem of wind gusts.

The underlying physics is not understood. At one time I expected the waves to be generated
nearly along the wind direction; then why is the observed crosswind ratio so large? Some theoretical
considerations suggest a predominant crosswind generation; then why is the ratio so small?

We start with a spectral decomposition,
⎛

⎜⎜⎝

⟨m2
x⟩

⟨m2
y ⟩

⟨m2⟩

⎞

⎟⎟⎠ =
∫ ∞

0
dκGζ (κ)

∫ π

−π

dθ

⎛

⎜⎜⎝

cos2 θ

sin2 θ

1

⎞

⎟⎟⎠ φ(κ, θ ), (24)

where Gζ (κ) is the unidimensional spectrum of elevation ζ , and φ is the directional spread function
with

∫ π

−π
φ(κ, θ ) dθ = 1 (Appendix B). For definiteness I use the spread function (suppressing any

dependence on κ)

φ = φ+ + φ−, φ±(θ, ±θ∗, s ) = sech2(s (θ ∓ θ∗))
4s −1 tanh(s π )

,

∫ π

−π

φ(θ, θ∗, s )dθ = 1. (25)

For isotropic radiation, s = 0 and φ = 1/2π . The BH ratio ⟨m2
y ⟩/⟨m2

x⟩ = 0.66 at U = 10 m s−1

is consistent with a range of models, from a single broad beam (θ∗ = 0, s = 0.89) to two pencil
beams (θ∗ = ±39◦, s = ∞), (Figure 16, Table 3). The former case has half-power points at
exactly θ = ±1 radian. I take this value as representative for the single broad beam model.

Perhaps the simplest model is one where wave components in the direction θ respond to the
wind projection along the wave direction: φ(θ ) ∼ cos θ . Evaluating the integral (Equation 24)
leads to ⟨m2

y ⟩/⟨m2
x⟩ = 1

2 as compared with the BH ratio 0.66.
A lower limit on the width of the spreading functions comes from the pressure fluctuations at

depths that are large compared with wave length (Section 5.4). This phenomenon requires some
oppositely traveling wave energy, which leads to a standing-wave component of the deep pressure
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30°
34°

39°

0

θ*

φ
 (θ

 –
 θ

*)
0.1

0.2

0.3

0.4

0.5

0–½π ½π π–π

Figure 16
The spread function for stated values of θ∗, all consistent with a Bréon Henriot (BH) ratio of 0.66. θ∗ = 0
consists of a single broad beam centered in the wind direction; θ∗ = 39◦, I = 0 consists of two pencil beams
at ±39◦. The beam is a maximum along the wind direction for θ∗ < 30◦, I > 0.056 and a minimum for
θ∗ > 30◦, I < 0.056.

field. The method has previously been used to estimate the reflection of ocean swell at the coastline
(Haubrich et al. 1963) and the directional wave pattern of 7 s waves (Tyler et al. 1974).

We define the spread overlap function and its integral as follows:

"(θ, s ) = φ(θ, s )φ(π − θ, s ), I (s ) =
∫ π

−π

"(θ, s ) dθ

(see Supplemental Figure 2). Table 3 lists the spread integral for various spread functions.
The spread integral can vary from 0 (no overlap) to 1/(2π ) = 0.16 (isotropic radiation). In

principle the spread integral can be determined from Equation 22 given accurate information of
the quantitites on both sides of the equation, and this could furnish useful limits to the directional
spread of the surface waves (Farrell & Munk 2008).

Can we get some guidance from models of wave generation? I believe we can, and I believe that
these models favor a bimodal spread function. Here I distinguish one-dimensional (long-crested)
waves, such as those generated by broad paddles in wave tanks, from the two-dimensional waves
of length comparable to or longer than the generator (such as ship waves). In the former case,
the long-crested waves are subject to Benjamin & Feir instability, which eventually transforms
the waves into a two-dimensional pattern (for example, Zakharov & Rubenchik 1973; see Yuen &
Lake 1980 for a general review). It has been suggested that the BH ratio has its roots in a Benjamin
& Feir instability.

Table 3 Spread parameters

θ∗ isotropic 0 30◦ 34◦ 39◦

s 0 0.89 1.25 1.56 ∞
I(s) 1/2π 0.098 0.056 0.031 0
⟨m2

y ⟩/⟨m2
x⟩ 1 0.66 0.66 0.66 0.66

398 Munk

Supplemental Material

A
nn

u.
 R

ev
. M

ar
. S

ci
. 2

00
9.

1:
37

7-
41

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Sa

n 
D

ie
go

 o
n 

01
/2

4/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



ANRV396-MA01-16 ARI 4 November 2008 8:34

–0.5

90°– θ

35°.3

–35°.3

90°

–90°

0°

δx

δy
δs

C

D

B

C'

0.5

0.5

–0.5

4

2

–2

–4

–2 2
OO

θ

θ

Figure 17
Ship wake by a pressure point O traveling in the positive x direction, for gravity only (left) and surface
tension only (right). The full wake consists of many such wake elements (Figure 18a shows n = 1 and n =
2). Wave direction is normal to the wake crest in direction θ relative to the course of the moving pressure
point. The gravity wake consists of transverse (stern) wave C D C′ and the divergent (bow) waves B C and
B C′. Point D at the center of the stern wave travels in the ship direction (θ = 0◦). At the bow B the
divergent wave travels normal (θ = 90◦) to the ship’s course. At the prominent caustic (the cusp C), where
the bow and stern waves coalesce, θ = 35◦.3 independent of the ship speed (but see Figure 18). The gravity
wake is entirely behind the pressure point, whereas some of the capillary wake is forward of O.

6.1. Ship Wake
The simplest example is that of the two-dimensional wave pattern caused by a pressure point
traveling at constant velocity C over the sea surface. The wake pattern consists of two components
(Figure 17): stern waves that travel in the general direction of the ship’s course and bow waves
that travel at a large angle relative to the course. At the bow (where the waves are most prominent)
the waves travel at a right angle! I have found this example to be a simple way to come to terms
with the large cross-wind slope component.

Here I follow the discussion in Lamb (1932, para. 256); this discussion goes back to Lamb’s own
work in 1922 and to Popular Lectures on ship waves by Sir W. Thomson (Lord Kelvin) in 1887.
Generation at the gc transition necessarily involves microships (not microchips), with surface
tension playing an important role.

6.1.1. Dispersion. The phase velocities of pure gravity waves (T ′ = 0) and pure capillaries
( g = 0) are given by

C2
g (κ) = g/κ and C2

c (κ) = T ′κ, (26)

respectively. It can be shown that for combined gravity and surface tension

C2 = C2
g + C2

c (27)

with a minimum at the gc transition

Cgc = (4g T ′)
1
4 at κgc = ( g/T ′)

1
2 . (28)
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6.1.2. Ship wake and fishline. Lamb (1932, pp. 433 and 469) gives a geometric construction of
a ship wake Y(X) in terms of a length parameter p(θ )

−X = p cos θ − p ′ sin θ, Y = p sin θ + p ′ cos θ, p ′ = d p/dθ (29)

dY/d X = cot θ,

with6

+pg = λg cos2 θ, λg = 2πg−1V2 (30)

−pc = λc cos−2 θ, λc = 2πT′V−2 (31)

for gravity and capillary waves, respectively (Figure 17), where V is the ship speed made stationary
by a superposed current −V and λg, λc are the wave lengths in deep water of pure gravity and
capillary waves with phase velocity C.

6.1.3. Combined gravity and surface tension. For the combined problem, the wake is given
by (Lamb 1932, p. 469, eq. 9)

p±(θ, α) = ±1
2
λg (cos2 θ ±

√
cos4 θ − cos4 α), θ ≤ α (32)

cos α = Cgc /V. (33)

For both the limits T ′ → 0 and g → 0, we have Cgc → 0, cos α → 0, and so

p+ → λg cos2 θ = pg

p− → −1
2
λg cos2 θ

1
2

cos4 α/ cos4 θ

= −1
4
λg cos−2 θ cos4 α = −λc cos−2 θ = +pc ,

in agreement with Equations 30 and 31. These are the only Y(X) wake profiles independent of V
(other than for the scale factors λ). Further, as

V → ∞, p+ → pg , p− → pc → 0

V → Cgc , θ → 0, dY/d X → ∞, p− ̸= pc .

Thus, the limits V → ∞ and T ′ → 0 are equivalent, but V → Cgc and g → 0 are not equivalent.
Figure 18 shows the transition from gravity to capillary waves with increasing V [Figure 18b

and e are for the parameters used by Lamb 1932 (p. 470)]. Red and blue lines correspond to p±.
The second wake front (out of an infinite number) is shown only for Figure 18a and e (n = 2).
In general there are four cusps (B, B ′, C, C ′); C and C′ coalesce at the source (X, Y = 0) for
pure gravity waves (Figure 18a); BC and B′C′ are the bow wakes and CC′ is the stern wake. With
decreasing V the cusp B recedes and connects to the red gravitational Mach stem (Figure 17c),
paralleling an independent blue capillary Mach stem. At a critical source speed V = 1.94 Cgc the
gravitational cusps collapse. With further decrease of V the forward points of the stems become
rounded and for the capillary wakes outrun the source. In the limit V = Cgc the wakes form
straight lines normal to the ship’s course, forward of the source for the capillaries, and behind the
source for the gravity waves, in accordance with group velocity Uc > V and Ug < V .

6In the classical literature the ship travels in the –x direction, held stationary by a superposed current +V. The sign for pg ( pc)
is associated with group velocity Ug < Cg (Uc > Cc) (Lamb 1932, footnote p. 469).
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Figure 18
Ship wake element for combined gravity and surface tension, showing gravity waves modified by surface
tension (red ) and capillaries modified by gravity (blue). For σ = Cgc /V ≪ 1, the quasi-gravity waves are
unchanged from Figure 17; capillaries form an infinitely sharp Mach stem. With increasing σ the Mach
stem A O A′ opens and the crest points B and B′ split and fall behind the source O so that the divergent
wave crests B C and B′ C′ shrink. For the critical case (d ), σ = 0.516 and V = 0.45 m s−1, the divergent
waves disappear and are replaced by double caustics C and C′. There is no wake signature for V < Cg .

Figure 18a–f is drawn for the general solution p±(V) with decreasing V. Figure 17 shows
the solution for gravity waves p(g, T ′ → 0) only and for capillary waves p(g → 0, T ′) only.
The former coincides with the p+(V → ∞) limit, but the latter differs from the p−(V → Cgc )
limit.
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6.1.4. Double caustic. The model generation consists of multiple pulses along the path, each
radiating uniformly in all directions. Let dS be the incremental distance along the wake front.
Regions of small S ′ = d S/dθ are intense, they represent a broad range of radiated angles focused
into a narrow wake segment. From Equation 29,

X ′ = (p + p ′′) sin θ, Y ′ = (p + p ′′) cos θ

S ′ =
√

X′2 + Y ′2 = ±(p + p ′′) ≡ ±P (θ ). (34)

The prominent cusps are associated with vanishing P. For pure gravity and pure capillary waves,

Pg ∼ 3 sin2 θ − 1, Pc ∼ sec2 θ (1 + 2 sec2 θ + 4 tan2 θ ).

For the gravity waves, Pg = 0 gives the classical cusp at θ = sin−1 √
(1/3) = 35◦.3; there is no

corresponding feature Pc = 0 for capillary waves. For the general case (Equation 32) we have
P (θ, α) = 0 yielding a caustic along αc (θ ) and a double caustic αc c , θc c for dαc /dθ = 0.

Figure 19 shows the contours7 P±(θ, α) = −1, 0, +1. The P+ = 0 contour is a locus
of caustic enhancement. There is no P− = 0 contour, hence there is no capillary caustic. The
traditional gravity wave wake (Equation 29) is associated with α = π/2, hence V/Cgc = ∞. Here
the P+ = 0 contour has two intersections: θ = 35◦.3 and θ = 90◦; these can be associated with
the traditional C caustics and the bow caustic B (Figure 17). I consider the case V/Cgc = 5 in
detail. The A caustic is now associated with a slightly increased θ , and the B caustic has split in
two and fallen behind the bow. The bow wake between B and C has shortened.

The critical case is for

α = 1.029, sec α = 1.938, θ = 0.767 rad = 43◦.9
V = 1.938 Cgc = 0.447 m/s, λ = 7.38 λgc = 0.126 m, f = 3.55 Hz

}

(35)

where λ(C) and f (C) follow from gc dispersion for C = V . The bow wake has collapsed; there is
no traditional triangular wake for V < 0.447 m s−1. The value θ = 43.9◦ is not far from θ∗ = 39◦

deduced from the BH ratio 0.66 for two narrow pencil beams. I surmise that the dimensions
(Equation 35) are an important element in the gc transition.

6.1.5. The slope of ship wakes. I have not been able to reproduce Lamb’s (1932, p. 436, eq. 16)
amplitude factor8. The first term is

ALamb =
√

2g
πλg

P0

ρV3 = g
πρ

P0 V−4.

(Clearly the wake amplitude does not go to infinity as V → 0.) Now write

P0 = KρV2area × f (V/Vcrit), where K is a dimensionless constant

ALamb = π−1 KgV−2 area × f (V/Vcrit)

where Vcrit refers to (Equation 31). The associated slope amplitude for stern waves of length λg is

m = 2π A
λg

= π−1 Kg2V−4 area × f (V/Vcrit) = 4π Kλ−2area × f (V/Vcrit).

7The analytic expressions for P±(θ, α) are complex and not reproduced here.
8Lamb’s c is ship speed (my V), and his a is the wavelength λg = 2πV2/g (see Lamb 1932, p. 434, eq. 6).
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Figure 19
Contour diagrams of the dispersion parameter P±(θ, α), where θ is the wave direction and α = Cgc /V .
P+ = 0 (left) is associated with intensive caustics in gravity-controlled wakes (modified by surface tension).
There are no P− = 0 contours (right) for surface tension–controlled wakes. The lowest point in the P+ = 0
contour at V = 1.94Cm corresponds to the wake transition (Figure 18d ). The P+ = 0 contour intersects at
α = 90◦ at two points: O bow waves at the source and 35◦.3 at the cusp of the traditional gravity wake. The
Bréon-Henriot (BH) ratio ⟨m2

y ⟩/⟨m2
x⟩ = 0.66 corresponds to θ = 39◦ (42◦ for oil-covered surfaces). The

upper sketch showing gravity-controlled (red ) and surface tension–controlled (blue) wakes is reproduced for
identification of the principal features.

For the intensive caustic waves, the length is shorter, and the slope is larger by a factor sec θcusp.
Now suppose the area of the pressure spot is b2λ2. Then the slope amplitude is

m = 4π K b2 sec θcusp f (V/Vcrit). (36)

For the special case f (V/Vcrit) =
√

V/Vcrit, the mean-square slope 1
2 m2 grows linearly with ship

velocity V according to

⟨m2⟩ = 1
2

(4π K b2 sec θcrit)2V/Vcrit. (37)
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6.1.6. Is there a BH connection? Thus for a pressure spot of area b2λ2
g and magnitude

KρV2√V/Vcrit moving along the surface with velocity V we can reproduce the BH linear de-
pendence ⟨m2⟩ = 5 × 10−3U provided

5 × 10−3 = 1
2

(4π K b2)2 sec2 θcrit/Vcrit

= 340(K b2)2

or K b2 = 0.0038. None of this is impossible.

6.1.7. Phillips resonance. We related the singularity (Equation 35) to a Phillips resonance. For
a classical logarithmic wind profile we have

U(U10, λcrit/2π ) cos θcrit = Vcrit,

which yields U10 = 1.02 m s−1. This is the lowest wind speed for generating the double caustic.

6.1.8. Conclusion. The BH statistics impose restrictions on the spread function of short gravity
waves; the spread function is consistent with models that range from a single broad (one-radian-
wide) beam directed downwind to two narrow beams directed 39◦ to the left and right of the wind.
Microseismic evidence places a lower limit on beam width. Generation models of the ship-wave
type favor a bimodal spread function and are not inconsistent with the 0.66 BH ratio. I have
ignored the directional spread of wind gusts.

7. SKEWNESS
The sudden emergence of skewness at winds U > 2 m s−1 and saturation above 6 m s−1 are lead
features of the BH statistics. I find it convenient to refer to dimensionless parameters α = κa
and β = κb , where κ is the wavenumber in radians per meter and a, b are the crest coordinates
in a coordinate system centered at the mean sea level midway between two adjoining troughs
(Figure 20). For the traditional Stokes wave β = 0.

I

II

∞U = 10 m s–1

–0.2

0.2

0.4

0

0–π +π

Order  ∞
U

–0.2

0.2

0.4

0.6 α,β

0

0

4 m s–1

6 m s–1

8 m s–1

–π +π

Figure 20
(a) Wave profiles to orders I, II, ∞ for ⟨m2⟩ = 0.05, corresponding to wind speed of 10 m s−1. (b) Wave profiles to order ∞ for
⟨m2⟩ = 0.02, 0.04, 0.06, corresponding to wind speeds of 4, 6, 8 m s−1.
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7.1. One-Scale Model
A simple interpretation is in terms of Stokes waves with skewness introduced by a phase-shifted
bound second harmonic (see Supplemental Appendix 2). In free waves, such a phase-shifted
harmonic can occur only in a transient state.

Following the classical Stokes-Rayleigh expansion for irrotational waves in deep, incompress-
ible water, made stationary by an opposing current, write

ys = aekys cos kx − be2kys sin 2kx = y I
s + · · · (38)

for the surface elevation above the undisturbed level, with a skewness term of amplitude b. Ex-
panding the exponential leads to y I (x) = a cos kx − b sin 2kx, y I I (x), . . .; a numerical solution of
the “exact” Equation 38 is designated y∞(x). Crests are delayed relative to the troughs by

β = −4b/a (39)

(Figure 20). Differentiation leads to expressions for the slopes mI (x), mI I (x), m∞(x), with mo-
ments

⟨m2⟩ = 1
2π

∫ π

−π

d xm2(x), ⟨m3⟩ = 1
2π

∫ π

−π

d x m3(x), ⟨m3⟩norm = ⟨m3⟩/⟨m2⟩3/2,

⟨m2⟩ = f1(α, β) = 1
2 α2 + 1

2 α4 + 11
32 α2β2 + · · ·

⟨m3⟩norm = f2(α, β) = −3 × 2− 3
2 β − 3 × 2 1

2 αβ + · · ·

}

(40)

to first and second order. Each point of the BH relation in Figure 7 gives a value of ⟨m2⟩B H and
⟨m3⟩norm, B H and the solution to the two equations,

⟨m2⟩B H = f1(α, β), ⟨m3⟩norm,BH = f2(α, β),

can be solved for the two unknowns α, β. The 31 BH values then determine β(α) (Table 4,

Figure 21). To first order α I =
√

2(m2) and β I = 1
3 2

3
2 ⟨m3⟩. To the second order there is

some cross talk, and α∞, β∞ need to be solved for numerically by going back to Equation 38.
The fractional correction of ⟨m2⟩ for β is only 3% at saturation. Hence, skewness and steepness
are sufficiently orthogonal so that the sharp increase in skewness can occur without disturbing the
linearity in the steepness relation to wind speed.

The step-like dependence of β∞(α∞) implied by the BH statistics is astounding. One is tempted
to write

β = 0 for α ≤ αcrit, β = α for α = αcrit = 0.3. (41)

Table 4 Steepness and skewness parameters to first, second and infinite order, as derived from the BH statistics

⟨m2⟩ ⟨m3⟩norm αI βI αII βII α∞ β∞

0.01 −2.7 × 10−5 0.141 −2.6 × 10−5 0.140 −2.5 × 10−5 0.140 −2.4 × 10−5

0.02 −5.9 × 10−3 0.200 −5.6 × 10−3 0.196 −5.3 × 10−3 0.188 −5.2 × 10−3

0.03 −0.072 0.245 0.068 0.238 0.063 0.222 0.060
0.04 −0.247 0.281 0.237 0.271 0.217 0.247 0.203
0.05 −0.400 0.310 0.400 0.296 0.366 0.263 0.330
0.06 −0.447 0.338 0.454 0.338 0.454 0.277 0.369
0.07 −0.450 0.365 0.458 0.343 0.412 0.29 0.358
0.08 −0.450 0.390 0.458 0.364 0.408 0.301 0.349
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0.20 0.25 0.30 0.35

0.1
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II∞

α

β

0.05 0.10 0.150

Figure 21
Function β(α) evaluated from BH statistics to order I, II, ∞.

Two points are to be noted: (a) The transition steepness αcrit corresponds to Longuet-Higgins
(1995) extreme wave of α = 0.301, and (b) for α > αcrit the crest spills forward by an amount
roughly equal to the crest elevation.9

7.2. Two-Scale Model
The previous discussion of a one-scale model (the short gravity waves) has limited applica-
bility. Significant skewness and breaking do not occur until the steepness exceeds 0.2; at this
stage wave crests have sharpened, and there is considerable energy flux into parasitic capillaries.
For any meaningful appraisal one must consider at least the two scales to both sides of the gc
transition.

C. Cox (personal communication) has attributed skewness to simple slope addition. Ignoring
the two-dimensional aspects, elevation and slope are given by

ζ (x) = ag cos(κg x + εg ) + H(x)αc cos(κc x + εc )

m(x) = −αg sin(κg x + εg ) − H(x)αc sin(κc x + εc ), (42)

with α = k a and

H(x) = 1 for 0 < κg x <
1
2
π

and zero elsewhere (parasitic waves on forward quarter of wave). We introduce two crucial ratios:

n = κc /κg , r = (αc /αg ) for 0 < κg x <
1
2
π (43)

and zero elsewhere. The slope moments are

Mj ≡ ⟨m j ⟩ = −α j
g

1
2π

[∫ π/2

0
d x[sin(κg x + εg ) + r sin(κc x + εc )] j +

∫ 2π

π/2
d x[sin(κg x + εg )] j

]
.

9The reader is reminded that the first order slope amplitude α is of the same order as the elevation of the crest above the
mean level (in units 1/κ). For example, yc res t − y = 0.1, 0.2, 0.3 for α = 0.1, 0.18, 0.24 (Longuet-Higgins 1995).
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For n ≫ 1,

⟨m⟩ = 0

⟨m2⟩ = α2
g f I I , f I I = 1

2 + 1
8 r2

⟨m3⟩ = α3
g f I I I , f I I I = − 3

4π
r2

⟨m4⟩ = α4
g f I V , f I V = 3

32 + 3
8 r2 + 3

8 r4

⟨m3⟩norm = f I I I /( f I I )3/2, ⟨m4⟩norm = f I V/( f I I )2 − 3
8 .

The normalized mean cube has a maximum (negative) value of

max(⟨m3⟩norm) = −4
√

2/3 π−1 = −1.04 for r =
√

8.

7.2.1. Mean squares. We can get some rough estimates for r and n from the CZ experiments
(Table 5). The modifications of r by the cross terms are negligible. As expected, with increasing
wind and fetch, ⟨m2⟩ increases, fg decreases, and fc and n increase; the gc gap widens. However,
the relative capillary slope amplitude r appears to saturate at moderate and high winds. Some
paddle-driven runs have much weaker capillaries, perhaps indicating a direct wind input. The
cross-paddle component is negligible.

Glitter-derived variance statistics have no information on relative contributions from gravity
and capillary waves. The limited experience from the CM slick measurements is consistent with
the previous finding that gravity and capillary wave contributions are comparable (r = order 1)
at moderate and high winds.

7.2.2. Mean-cube and mean-fourth. We can now examine the consequences of the Cox model
of ascribing the BH statistics to the addition of gravity wave and capillary slopes. For each point
of the BH relation ⟨m3⟩norm = fB H(⟨m2⟩) we have two equations:

⟨m2⟩ = α2
g f I I (r), ⟨m3⟩norm = f I I I (r)

[ f I I (r))]3/2 ,

which can be solved for r and αg . The assembly of points yields r(αg ) (see Supplemental Figure 3).
I can now plot various parameters as functions of ⟨m2⟩, given the Cox Zhang sum hypothesis

(see Supplemental Figure 4). The agreement of ⟨m3⟩ with the glitter data does not give any
comfort, it just confirms the above curve fitting. There may be some support in the precipitous

Table 5 Cox-Zhang laboratory slope spectra for various wind speeds and fetches. Numbers
(. . .) correspond to parasitic resonance: Cc=Cg. Orbital smearing produces a broadened flat
peak with center frequency somewhat lower than (. . .).

U (m s−1) 3.5 4.4 5.2 6.1 5.2 6.1
F (m) 2.8 2.8 2.8 2.8 2.3 2.0
fg (Hz) 6.1 4.8 4.6 3.8 5.0 4.6
fc (Hz) 63 (47) 83 (84) 92 (94) 97 (159) 85 (76) 82 (94)
n 10 (8) 17 (18) 20 (20) 26 (42) 17 (15) 18 (20)
⟨m2⟩ 0.021 0.045 0.048 0.056 0.048 0.063
⟨m2

c ⟩/⟨m2⟩ 0.29 0.41 0.42 0.42 0.49 0.49
rapprox 1.08 1.28 1.30 1.30 1.40 1.40
rexact 1.06 1.26 1.28 1.28 1.38 1.38

www.annualreviews.org • An Inconvenient Sea Truth 407

Supplemental Material

A
nn

u.
 R

ev
. M

ar
. S

ci
. 2

00
9.

1:
37

7-
41

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Sa

n 
D

ie
go

 o
n 

01
/2

4/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



ANRV396-MA01-16 ARI 4 November 2008 8:34

rise of ⟨m4⟩:
⟨m4⟩norm from 0.1 to 0.5 for ⟨m2⟩ from 0.03 to 0.05

(see Supplemental Figure 3);

⟨m4⟩norm from 0.2 to 0.6 for ⟨m2⟩ from 0.15 to 0.035

(see Figure 4).

But other features in the fourth moment show no resemblance. We previously noted that a sat-
uration of r = order 1 for ⟨m2⟩ > 0.04 is consistent with the laboratory spectra. However, the
overall evidence is not convincing.

The sharp rise of r(αg ) between αg = 0.2 and 0.3 (see Supplemental Figure 3) resembles the
precipitous rise of β(α) between α = 0.2 and 0.25 (Figure 20). As always, we need to account
for the surprising linearity of ⟨m2⟩ = a + bU in the presence of the precipitous changes in the
third moment of the slope distribution. For the one-scale model the explanation appears to be
the near-orthogonality of skewness β with steepness α. For the parasitic two-scale model this
explanation is no longer available, because r = αc /αg is a direct contribution to the overall slope
distribution. Thus, whereas one might account for skewness by the uneven distribution of the
capillaries on the forward slope of the steep gravities, one would expect them to show up as a
significant enhancement in mean-square slope. This is not the case.

7.2.3. Capillary dissipation and drag. The total energy per unit area of capillary waves is (Lamb
1932, section 266.19)

E = 1
2
ρwκC2a2

c .

The modulus of decay due to viscosity is

•
E /E = 2νκ2,

1
4
√

2ν
1
2 C

1
2 κ

3
2

for clean and dirty water (Lamb 1932, section 351). Finally, τ =
•
E /C . Putting all this together,

we have

τ = 4νρwκCσ 2 = τ0γ Kα2
c

τ0 = ρwC2
m = 53 N/m2

γ = νκm

Cm
=

(
ν4g
4T13

)1/4

= 1.6 × 10−3 (dimensionless)

K (κ) = 2κc Cc = 2κc

√
1
2 (κ + κ−1) =

√
2(n3/2 + n1/2) = 9.5 (gc scaling)

for n = 12. For a dirty water surface with modules of decay 1
4

√
2ν1/2C1/2κ3/2 (versus 2νκ2) (Lamb

1932, section 351), we have

τ = τ0γ
1/2 K ′α2

c

K ′(κ) = 2−1/2κ1/2
c C3/2

c = 2−5/4(n5/6 + n−1/6)3/4 = 1.86 (gc scaling).

Thus,

τclean = 0.81 α2
c , τdirty = 3.9α2

c N/m2.
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These numbers indicate an enormous sensitivity to pollution. For saturation, set αc = αg = 0.3,
which gives

τ = 0.07, 0.35 N/m2.

These values represent the stress in regions covered by decaying capillaries. For the average stress
we may set τ = 1

4 τ . These values are much too small for clean water, and dirty water is an unlikely
description for open sea conditions.

7.2.4. Conclusion. Finite amplitude waves are not symmetrical; slopes on the downwind side of
the crest exceed those on the upwind side, which results in a mean cube slope (skewness) that can
be detected in the glitter. The classical Stokes solution gives the upward displacement of the crest
relative to the mean surface as a function of the first order steepness α. To interpret skewness, I have
attempted to modify the classical symmetric Stokes wave to allow for corresponding downwind
displacement of the crest. The modified Stokes theory then gives ⟨m2⟩ and ⟨m3⟩ as functions of
α, β, which together with the BH relation ⟨m3⟩ = f (⟨m2⟩) yield β = f (α). β remains very small
until α ≈ 0.3, whence it rises sharply to β ≈ α ≈ 0.3. This sequence would seem to be reasonable:
a forward displacement of the crest by an amount comparable to the crest height, occurring at
values of α usually identified with instability. The challenge is to produce dynamic solutions

α = µ(U )t, β = ν(U )t,

which on average reproduce the above inferred features, i.e., very small ν at low U, etc. The
solutions can be intermittent, like cats’ paws on the water surface. Intermittency may be the key!

An alternate account of skewness is in terms of the parasitic capillaries on the forward slope of
the gravity waves. This account requires a sudden increase in the capillary amplitude (and hence
the combined gravity-capillary slope) in step with the development of skewness. However, there
is no indication of a corresponding departure from the linear ⟨m2⟩ ∼ U relation.

8. SPECULATIONS ON WAVE BREAKING AND WIND DRAG
We conclude that the parasitic capillaries, though important (possibly dominant) contributors
to steepness, do not play dominant roles in determining skewness. Further, we conclude that
the drag associated with molecular dissipation of the capillaries is negligible. What about wave
breaking as candidate for skewness and drag? Sufficient uncertainty and complexity exist to make
this candidate an attractive suspect. We refer readers to the important papers by Longuet-Higgins
(1982) and Chapron et al. (2001).

In Figure 22 I plotted for ready comparision the results from numerical, laboratory, and ocean
experiments. In numerical experiments with wave groups (Song & Banner 2002), the center wave
initially gains energy at the expense of early and late waves. For very small slopes, wave groups
are recursive: The wave groups eventually (order 100 wave periods) return to their initial state.
Steep wave groups eventually break near the group center. The numerical modeling established
a threshold for breaking in terms of a maximum rate of growth per wave period of square slope
(order 1%). This threshold sheds light on laboratory experiments by Rapp & Melville (1990), which
showed a progression (with initial steepness) from recursion to incipient breaking to spilling to
plunging breaking.10

10The terms spilling and plunging were coined as part of a World War II effort on wave prediction for amphibious landings
(Sverdrup & Munk 1947). See also Collier’s Encyclopedia 1950, p. 398.
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Figure 22
(a) Numerical experiment that gives maximum growth rate as a function of initial steepness (from Song &
Banner 2002, figure 10, with permission). (b) Laboratory experiment by Rapp & Melville (1990) that gives
fractional energy loss (Ea,b is energy after and before breaking event) (from Song & Banner 2002, figure 9).
(c) Skewness versus root mean square steepness (Figure 21).

A comparison of the three data sets is not straightforward. The numerical experiments recorded
the rate of growth at the group center of the square slope, and the laboratory experiments recorded
the fractional energy dissipated by the breaking waves, both as functions of the initial steepness
of the wave group. The BH compilation measures the skewness in terms of the root mean square
slope of all waves present. However, the overall resemblance suggests that the rapid onset of
skewness with increasing steepness is related to a rapid transition from recursion to incipient to
spilling to plunging breakers.
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8.1. Wind Drag
The wave energy per unit area is

E = 1
2
ρw g a2. (44)

Replace a2 by κ−2(κ a)2 = κ−2 α2. Rapp & Melville (1990) have measured the fractional energy
loss φ = %E/E by breaking waves as function of initial steepness, φ = φ(αi ).

Waves occur in groups of Q waves. Breaking is taken to occur at the modulation maximum,
which is at intervals Q(2π/ω). Thus, the mean rate of dissipation is

·
E = %E/(2π Q/ω). The

associated stress is τ =
·
E /C . Putting all this together and allowing for C−1ω/κ = 1 and g κ−1 =

C2, gives

τ = 1
4π

Q−1ρwC2α2φ. (45)

The Hwang measurements (Figure 11) suggest λ = 0.2 m, corresponding to C = 0.3 m s−1.
The Cox-Zhang laboratory measurements (Table 5) for ⟨m2⟩ = 0.021 to 0.056 gave f = 6.1 to
3.8 Hz, or C = 0.26 to 0.41.

A daring step is to set φ = β:

τ = τgc
1

4π
Q−1 (C/Cgc )2 α2β, τgc = ρw C2

gc = 54.2 N/m2. (46)

I believe α = αbrea ker is nearly constant. τ depends almost discontinually on wind speed through
β(α) and continually through C(U). This suggestion needs much further thought. For an order-
of-magnitude estimate we have

U = 6 m/s, C = 0.3 m/s, ⟨m2⟩ = 0.03, α = 0.24, β = 0.06, τ = 0.0024 N/m2,

10 0.4 0.05 0.45 0.33 0.08

as compared with the traditional estimates of 0.05 and 0.09 N/m2 (see Supplemental Appendix 2).

8.2. Wind Drag Derived from Glitter
The goal is to estimate wind drag from the observed glitter pattern. For example, the image from
September 3, 1951 in the Alenuihaha Channel (Figure 2, bottom left) is associated with the values

⟨m2
x⟩ = 0.0230, ⟨m2

y ⟩ = 0.0224, ⟨m2⟩ = 0.0454, c 30 = −0.32

(Cox & Munk 1956, table 1). The angular downwind displacement of the glitter center is
(Equations 7 and 8)

(θx)max = 2(mx)max = 2
√

⟨mx⟩2ξmax = 2
√

⟨m2
x⟩

1
2

c 30 = −0.049

or +2.8◦. For the wind drag we use Q = 6, (C/Cgc )2 = 3, α2 = 2⟨m2⟩ = 0.09 and from
Supplemental Appendix 1 (Moments) β = 2

√
2

3 c 30 = +0.30, and so τ = 0.06 N/m2. The in
situ wind measurement was U = 8.6 m s−1, yielding c D = 0.0014, τto tal = 0.10 N/m2, τshear =
0.05 N/m2, τdrag = τto tal − τshear = 0.05 N/m2 by the traditional method (see Supplemental
Figure 5). The close agreement is, of course, accidental; there are many, many loose ends. But the
intimate connection between skewness and breaking and the suggested τ ∼ α2β relation offers an
alternate route for the remote sensing of wind stress.
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9. AN INCONVENIENT SEA TRUTH
The incentives for this review are the space-born observations of ocean glitter by Bréon & Henriot
(2006). These observations present a few simple, robust rules for the steepness, directional spread,
and skewness of surface slopes, confirmed by a very extensive global data set; yet the information
is sparse because it says nothing about time and space scales. The BH rules are an inconvenient
sea truth, too fundamental to be ignored, too incomplete to be understood.

Slope statistics are governed by waves much shorter than those underlying elevation statistics. I
believe that the physical principles underlying the short wave generation are different and distinct
from those underlying the generation of the long waves, and not just an extrapolation into high fre-
quencies. From the point of view of ocean dynamics, the short waves are probably more interesting,
yet the literature is tiny compared with the extensive literature on the longer, higher surface waves.

With regard to angular spread, the measured two dimensionality can probably be interpreted in
terms of some geometric constructs. The spread is wide, and the directional beam pattern appears
to have a minimum in the downwind direction. After arguing that the inherent two dimensionality
is crucial to any sensible treatment, I promptly move toward a simpler one-dimensional model.

With regard to skewness, circumstantial evidence shows that the near step-like onset is related
to a rapid progression from incipient to spilling to plunging breakers as the wind rises above 4 m s−1.

With regard to steepness, I am troubled by the contrast between the simple BH rule for a linear
dependence on wind speed and the complexity of the attempted explanations. The combined con-
tributions of short gravity plus capillary waves, each obeying its own set of laws, does not readily
add up to a linear wind dependence and attempted explanations appear contrived. Have we missed
some simple underlying phenomenology? Such as the steepness of cats’ paws generated intermit-
tently at a rate linearly proportional to wind speed? Or the reflection of sunlight from bubbles?

At the 1955 celebration of the 25th birthday of the Woods Hole Oceanographic Institution, I
was given the opportunity to review what was then known about our subject (Munk 1955). After
referring to the Cox and Munk result of a linear wind dependence of the mean-square slope and
its large crosswind component, I spoke of the need for “a respectable theory” of wind drag, and,

Figure 23
This photograph was taken by William van Arx off Woods Hole dock nearly fifty years ago, and was
reproduced in Munk (1955). I estimate that the distance across is approximately two meters.
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referring to a recent photograph (reproduced in Figure 23), mentioned “ . . . how important it is
to look at the raw data before deciding on pertinent statistical parameters.” How slow progress
has been in the past fifty years!

But there is hope. I surmise that the key contributing wave scales range from millimeters to
a meter. These are the very scales that will be the subject during the next few years of extensive
sea-going experiments, which will use powerful new optical tools. If the time for review is when
a subject is under active development, with new solutions being found and old solutions being
demolished, not when it is to be tidied and put to rest, then this is indeed the right time for review.

APPENDIX A: NOTATION
The canonical dispersion relation at the gc transition is in terms of variables relative to their values
at minimum phase velocity. Using

g = 9.8 m s−2, ρw = 1025 kg m−3, ρa = 1.225 kg m−3, T = 0.074 N m−1

we have T1 = T/(ρw − ρa ) = 7.23 × 10−5 m3 s−2, and

ωgc = (4g3/T1)
1
4 = 84.9 rps, κgc = ( g/T1)

1
2 = 368 rpm

fgc = ωgc /2π = 13.5 Hz, kgc = κgc /2π = 58.6 cpm, Cgc = 0.23 m/s.

The canonical dispersion law is

2C2 ≡ 2(ω/κ)2 = κ−1 + κ gc scaling

with a minimum C = 1 at ω = 1, κ = 1.

APPENDIX B: POWER SPECTRA

Elevation

The starting point is the decomposition of mean-square elevation in frequency and wavenumber
space:

⟨ζ 2⟩ =
∫ ∞

0
Fζ (ω) dω =

∫ ∞

−∞

∫ ∞

−∞
Fζ (κx, κy ) dκx dκy . (1)

In polar wavenumber coordinates κx = κ cos θ, κy = κ sin θ ,

⟨ζ 2⟩ =
∫ ∞

0

∫ π

−π

Fζ (κ, θ )κdθdκ =
∫ ∞

0
Gζ (κ) dκ (2)

where

Gζ (κ) =
∫ π

−π

Fζ (κ, θ )κ dθ (3)

is the one-dimensional (or omnidirectional) spectrum. We factor the directional dependence

Fζ (κ, θ ) = Fζ (κ)φ(θ ),
∫ π

−π

φ(θ ) dθ = 1. (4)

For isotropic radiation, φ = 1/(2π ). From Equations 1 and 2,

Gζ (κ) = κ Fζ (κ) = Fζ (ω) · dω/dκ, ω = ω(κ)

= 1
2

gω−1 Fζ (ω), ω2 = gκ gravity waves. (5)
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We take a low-frequency cut-off (waves do not outrun the wind) for C = µ U, or

⟨ζ 2⟩ =
∫ ∞

ω0

Fζ (ω) dω =
∫ ∞

κ0

Gζ (κ) dκ, ω0 = g/µU, κ0 = g/(µU )2.

To transfer from the circular frequencies ω, κ to the cyclical frequencies f, k, we have

⟨ζ 2⟩ =
∫ ∞

0
F (ω) dω =

∫ ∞

0
F ( f ) d f =

∫ ∞

0
G(κ) dκ =

∫ ∞

0
G(k) dk

and so

F [ f ] = 2π F [ω( f )], G[k] = 2π G[κ(k)], ω( f ) = 2π f, κ(k) = 2πk. (6)

Slope
The slope spectrum has the components

Fmx (κ) = (κ cos θ )2 Fζ (κ), Fmy (κ) = (κ sin θ )2 Fζ (κ)

so that Fm(κ) = κ2 Fζ (κ), ⟨m2⟩ = ⟨m2
x⟩ + ⟨m2

y ⟩, and similarly for G(κ).
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