8/5/2019 doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

Interaction of Water Waves and Currents

D. H. PEREGRINE

Department of Mathematics
University of Bristol, Bristol, England

I Introduction . . . . . . . . . . ..o e e 10
A Summary . . . . . . o e e e 10

B. SeaWaves . . . . . . . . . ..o e e e 11

C. Coastal Waves . . . . . . e e e e 12

D. Waves in Riversand Channels . . . . . . . . . . . ... .. .. 13

E. Hydraulic Breakwaters . . . . . . . . . . . . . . . ... .. 14

F. ShipWaves . . . . . . . . . . . ..o 15

G. Generation of Currents . . . . . . . . . . . ... 16

H. Notation . . . . . . . . . . . . . . v o v v o 16

II. Large-Scale Currents . . . . . . . . . . . . . . . ... 17
A. Introduction . . . . . . . .. L. 17

B. Waves on Uniform Currents . . . . . . . . . . . . . . ... .. 18

C. Waves on Slowly Varying Currents . . . . . . . . . . . . . . .. 26

D. Steady Current, Varying with Distance along the Stream . . . . . . . 39

E. Steady Current, Varying across the Stream . . . . . . . . . . . .. 53

F. Flows with Significant Vertical Accelerations . . . . . . . . . . . . 63

III. Small-Scale Currents . . . . . . . . . . . . . . ... 70
IV. Currents Varying with Depth . . . . . . . .. . .. ... ... .. 76
A. Introduction . . . . . . . .. L ..o oo 76

B. Infinitesimal Waves . . . . . . . . . . . . . ... 77

C. Finite-Amplitude Waves . . . . . . . . . . . . . ... ... 91

D. Stability . . . . . . . . ..o 99

E. Waveson Flowin Channels . . . . . . . . . . . . .. ... .. 102

V. Turbulence . . . . . . . . . . ..o 103
VL ShipWaves . . . . . . . . . . . e 106
References . . . . . . . . . o oo e e e e 11
NotesAddedinProof . . . . . . . . . . . . . . . . . .. .17

9

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18E50B84669D7...  1/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18E50B84669D7...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

10 D. H. Peregrine

I. Introduction

A. SUMMARY

The varied physical circumstances in which interactions between water
waves and currents occur are described in this introduction. Different math-
ematical approaches, relevant observations, and experiments that are applic-
able to all or some of these physical circumstances are described in the other
sections. The paper has been written with gravity waves and currents such as
those in seas or rivers in mind: thus there are only incidental references to
the effects of surface tension and viscosity, which are of greatest significance
for length scales of the order of centimeters and smaller. The emphasis is on
waves and their interaction with preexisting currents rather than on wave-
generated currents, although these are mentioned where they are relevant.

In all water wave problems approximations must be made to find math-
ematical solutions in order to gain physical understanding. Almost always
the water is supposed to be inviscid and the flow irrotational. Here the first
of these approximations is made but in few cases can the second approxima-
tion hold. Another common simplifying assumption is that the waves are of
sufficiently small amplitude for the free surface boundary conditions to be
linearized and evaluated at, or close to, the mean free surface. Most progress
can be made in this subject with such a constraint, but wherever possible
finite-amplitude effects are discussed. In order to get a reasonably wide class
of solutions further approximations are necessary, the most important being
for short waves and long waves, that is, for waves short (or long) compared
with the length scale in which significant current variations occur. Sections
II and III are on large- and small-scale currents, respectively.

Much of the theory of water waves on large-scale currents only differs in
detail from theory for any short waves in a moving medium (e.g.,, see
Bretherton, 1971, for a review of linear theory). An adequate theoretical
description was first given by Longuet-Higgins and Stewart (1960, 1961),
who introduced the idea of radiation stress. Further improvement in our
understanding has come from the use of Whitham’s method of averaging a
Lagrangian and the concept of wave action. Since this is probably the most
important field of wave-current interaction a number of simple situations
are examined in detail in Section II.

Relatively little work has been done on small-scale currents, and Section
I is mainly about waves in the presence of thin shear layers.

Unlike some other common forms of wave motion, water waves involve
water motion varying with direction perpendicular to the space in which
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they propagate. That is, water waves propagate on the surface of the water,
but their motion also varies with the depth. Thus if there is current variation
with depth it may affect the waves on the water surface. This is the topic of
Section IV, which includes appreciable detail because of the possible appli-
cations to waves on streams and to the effects of a wind-driven surface
current.

In most applications the currents are turbulent and are approximated by a
corresponding mean flow. However, there is interaction between waves and
turbulence, so the few results are discussed in Section V.

The paper concludes with another short section on the interaction of
waves generated by a ship with the flow around it.

A number of new results are incorporated in the text at various points.
Particular examples are the errors involved in neglecting currents (Section
I1,B), the behavior of small-amplitude waves at a stopping point (Section
I1,D) and of finite-amplitude waves approaching a caustic (Section IL,E), and
the surface layer solution for waves above a critical layer Section 1V,B).

B. SEA WAVES

Over a large part of the world’s oceans and seas the spatial distribution of
surface currents due to the tides and ocean circulation is on such a large
scale that even the largest ocean waves are on an effectively uniform current,
unless global propagation is being considered. It is mainly near continental
margins and in shallow seas that currents influence waves significantly and
this is discussed further in Section I,C. However, the strong western boun-
dary currents of oceans can and do strongly affect ocean waves. This is
especially true of waves propagating onto and against such currents. They
are shortened and steepened by the adverse current and refracted into
caustics and foci by the shear at the currents’ boundaries. Examples of
damage to ships by waves on the Agulhas current are mentioned in
Section ILE.

Even on a uniform current difficult problems of practical importance
arise. This is particularly so with nonlinear properties of waves such as the
forces they exert on structures. With the increasing number of ofishore
structures the prediction of forces due to combinations of currents and
waves is of growing importance. An appreciation of the problem may be
gained from Hogben (1974).

The surface drift caused by wind stress plays a role in wave dynamics as
Banner and Phillips (1974) show (Section 1V,C). It is probably also impor-
tant in the generation of waves by wind; the tangential stress at the interface
is influenced by its velocity and it in turn will influence the flow of air over
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12 D. H. Peregrine

the wave. Phillips and Banner (1974) have studied this boundary layer in the
water, but its implications for the wind-wave system need further study.

Another effect, whose importance is debatable but not negligible, is the
interaction between water waves. The interaction of short waves with much
longer waves can be treated in the same manner as interaction with a current
(Section ILF) and such effects are easily observed when a long swell meets
short wind waves. Less commonly seen is the interaction of short waves with
the velocity field of long internal waves (Section II,D) but Gargett and
Hughes (1972) show photographs of wave patterns that are best explained in
this manner.

The shortest waves are capillary waves, and their ubiquity among wind
waves is in part due to the steep gravity waves. The small radius of curvature
at the crest of the steepest gravity waves and the surface tension there act
rather like a moving pressure distribution and generate capillary waves.
However, in Section ILF another mechanism for forming such waves is
pointed out. Short gravity—capillary waves being overtaken by a larger grav-
ity wave can be reflected near its crest and propagate away from it as
capillary-gravity waves. The wavelength of this second class of waves is
longer than those generated by the first mechanism.

C. CoastaL WAVES

Water waves have their greatest economic importance when they arrive at
coastlines. This is due to their ability to erode and build up land, their power
to damage man-made structures, and the difficulties they cause in the han-
dling of ships. Practically all the work to date on predicting and assessing
coastal wave problems has neglected their interaction with currents, even
though currents are often strong in coastal regions. There are two main
reason for this neglect. One is that the transformation of waves due to
lessening depth and their refraction and diffraction by underwater and
coastal topography are often more important.

The other reason is that the currents are often inadequately known. This is
because of their complexity. Tidal currents vary in cycles so that in many
parts of the world a good measurement of them requires recording for at
least a lunar month. Furthermore, local winds, especially in storms, can
produce currents comparable in magnitude with those due to tides in many
places. Man-made structures are often associated with river mouths (which
may be the reason for a harbor’s existence) and the river flow introduces
further variability.

To complicate matters still further, the mass transport associated with an
irrotational wave train usually sets up mean currents in the region of the
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shore. For more detail, Longuet-Higgins (1972) gives an account of the
longshore currents generated by waves and James (1974) gives further
detailed calculations. The waves also generate rip currents and other return
flows, which complete a cycle of interaction by influencing the incoming
waves (Section II,D). These effects are observed in hydraulic models, but
sometimes efforts are made to minimize rather than measure them,
especially if the wave-generated currents are unsteady.

It is not clear whether attempts should be made to incorporate current
effects into most coastal wave studies. The substantial variations in typical
current fields mean that getting the basic data is very expensive unless there
is a strong, well-defined current system that clearly cannot be ignored. On
the other hand, it is advisable to estimate the “ worst™ conditions together
with their probability of occurrence. As is indicated in Section ILF, the
common impression that waves are higher at high tide than at low tide
receives support from theory, but focusing effects are probably more impor-
tant. For example, tide races, in which steep waves occur on strong currents
around headlands and in channels, are due to waves, propagating partially
against the current, being concentrated. Fortunately such concentrations of
wave energy are usually in the strongest current, which is not usually a point
where structures are erected. Indeed, wave action at the shoreline may be
substantially overestimated in some circumstances if currents are ignored,
since they can have a sheltering effect.

Right on a beach, in the surf zone, there are appreciable problems in
actually describing the waves. One promising model is to use the finite-
amplitude shallow-water equations with bores fitted. In such a model a
separation into waves and currents does not assist analysis. The relatively
small scale of the currents also accentuates the difficulties. For example, rip
currents might be expected to accentuate waves incident upon them; but
observations indicate that waves on rip currents tend to be lower and break
less. This is probably a case of diffraction being more important than
refraction.

Two interesting minor points are a proposal by Dagan (1975) that short
wave-long wave interaction may contribute to wave breaking (Section ILF),
and an occasional wave feature in the backwash from surf that Peregrine
(1974) interprets as being due to current shear in the vertical (Section IV,C).

D. WavEs IN RIVERS AND CHANNELS
Rivers normally have a nonuniform current distribution and this directly

affects all the waves that occur on rivers (with the possible exception of flood
and tide waves). If the currents are sufficiently swift then variations in the
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river’s bed and banks (e.g., a projecting obstacle) may cause stationary
waves on the surface, like ship waves. If such waves are caused by a constric-
tion in the channel they are usually confined to the region of maximum
current velocity and a train of several crests may be seen (Section II,D).
Stationary waves caused by a sluice or weir may have a very large amplitude
(surface shear waves, Section IV,C).

Shorter waves are commonly generated by the wind and by boats. The
most usual interaction of these waves with a typical current profile (ie,
maximum velocity away from the shore) is for waves traveling upstream to
be refracted toward the maximum current, while waves traveling down-
stream are refracted toward the bank (Section ILE). Thus, in midstream the
former waves may persist for a considerable time since they are not dis-
sipated by interaction with the banks, while the latter waves soon meet the
bank and decay rapidly. This also means that river banks may suffer more
wave action from the upstream direction.

The variation of current along a river also affects waves (Section II,C). For
example, a boat traveling upstream at a constant speed relative to the water
produces waves of constant amplitude, but if they propagate upstream into a
region of stronger current they may be considerably amplified. Thus, it is
possible in such a region to see a boat pass traveling upstream and for the
waves following it to increase continually in amplitude for a considerable
time after the boat has passed. The author has experienced this while scul-
ling and written a note about it (Peregrine, 1972). Similarly, the boat may
generate waves that are “stopped ” (that is, propagating upstream but with a
group velocity equal to the stream velocity). These waves, which appear to
be moving since their phase velocity is upstream, persist until dissipated,
which may take a surprisingly long time.

E. HYDRAULIC BREAKWATERS

A hydraulic breakwater is simply an extensive current of water directed
toward waves in order to stop them. It works; but for long waves very
substantial currents are needed. The power needed to pump the water is
such that it is rarely an economically feasible proposition. A considerable
number of experiments have been performed—most designed to assess the
power requirements of specific designs. Evans (1955) gives an historical
perspective as well as some experimental results. More recent reports of
experiments are Nece et al. (1968), Bulson (1963), and Williams and Wiegel
(1962).

A closely related device is the bubble or pneumatic, breakwater. The
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original idea was that a stream of air flowing up through the water would
form a region with a lower effective density than water, thus reflecting some
of the wave energy. In fact, the entrainment of water by the air results in an
outward surface current from a line of bubble generators, which is effective
in stopping waves. Evans (1955) also includes and compares results from a
pneumatic breakwater. A more recent paper is that by Green (1961), which
also has a summary of previous work.

Naturally there is no need for a breakwater current to extend down to the
full depth of the water if the incident waves are in “ deep water.” Experiments
such as Evans’ (1955) show that a surface current need only extend to a
depth that is only a small fraction of a wavelength in order to stop waves, if it
is strong enough. While there is linear and nonlinear theory available for
waves on a slowly varying current that is uniform with depth (Section I1,D),
when the vertical structure of the current is also important results of linear
theory are only sufficient to find the local wavelength, although this gives a
first approximation to the stopping velocity (Taylor, 1955). Witham’s
method of using an averaged Lagrangian may provide a way of finding the
variation of wave amplitude in such cases.

F. SHIP WAVES

The greatest interest in ship waves is in their contribution to resisting a
ship’s motion. This may be assessed by measuring the waves radiated by a
ship. However, some of the energy and momentum that may be assigned to
the wave field close to the ship is lost from the wave field, for example, by
wave breaking. On the other hand, the waves generated by a ship depend on
the flow of water around it, and if this is altered (for example, by boundary
layer suction) then so is the radiated wave pattern. The interactions between
flow and waves are discussed in more detail in Section VI.

Theoretical methods of estimating wave resistance are complementary to
the measurements since these are usually made on ship models and need to
be scaled for use in ship design. Most mathematical models assume inviscid
irrotational flow, but it has been shown by experiment and theory that the
wake and boundary layer lead to significant effects on the waves. These are
not adequately described by increasing the size of the ship to account for the
displacement thickness of the boundary layer.

Many theoretical models involve several different approximations and
considerable care needs to be taken to ensure consistency when proceeding
beyond the first approximation. The further approximations usually involve
wave-current interaction terms.

7/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18E50B84669D7...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

16 D. H. Peregrine

G. GENERATION OF CURRENTS

The mass transport associated with water waves is of second order in the
amplitude but still makes an appreciable contribution to currents in the
vicinity of coasts. Details of the mass transport in a uniform wave train are
calculated in Longuet-Higgins (1953) and some more recent work is in
Sleath (1973, 1974). Mass transport is transformed into a current that is not
directly coupled with waves whenever there is wave dissipation. Similarly,
when waves gain or lose momentum because of interaction with currents
there is a corresponding change in the current. This must be taken into
account in any theory dealing with wave—current interactions in water of
finite depth unless the waves have infinitesimal amplitude. Equations
governing such an interaction are given in Section II,C, but there have been
few direct applications to current generation, mostly to longshore currents.

Another mechanism for generating a current from waves is given by Craik
(1970). He describes a nonlinear interaction between two wave trains propa-
gating over a depth-dependent shear flow. The idea is that the shear flow
models the shear due to wind stress. The current generated has streamlines
that superficially resemble those of vortices aligned with the wind. It is
suggested that this mechanism may be partly responsible for Langmuir
vortices, which are a similar feature observed in the sea.

H. NoOTATION

Notation is generally explained as it is introduced, except for some con-
ventions that are uniform throughout the article. Coordinate axes are
chosen with 0z vertically upward and Ox usually in the direction of the
current if it is unidirectional. The plane z = 0 is a horizontal surface at or
near the mean free surface.

The current field in the absence of waves is U(r, t) with components
(U, V, W), and it is U + u with components (U + u, V + v, W + w) in the
presence of waves. Similarly the free surface is

z=2Z(x, y, t) + {(x, », t),

although Z is zero sufficiently often that the symbol is used with other
meanings.

The wave frequency relative to a fixed reference frame is w and relative to
the water is 6. The phase velocity relative to the water is denoted by c in
Section II, but elsewhere ¢ is the phase velocity relative to the frame of
reference. The wave number vector k is taken to be (k, 0, 0) or (I, m, 0)
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depending on circumstances, and 6 denotes the angle between k and U. The
amplitude of the wave motion of the water surface is denoted by a.

When tensor notation is used, Greek suffixes have the values 1, 2 and
Roman suffixes 1, 2, 3, where

(x4 x5 5 x3) = (%, , 2).

The two-dimensional vector operator (0/0x, 0/dy, 0) is denoted by V.

In various places one symbol is used with different meanings to avoid
using unusual letters or substantial numbers of suffixes. However, when
results are cited from other works the notation is changed to agree with that
in use in this paper.

H. Large-Scale Currents

A. INTRODUCTION

In many instances of waves riding upon currents, the time and length
scales determined by the current are many times larger than the period or
wavelength of the waves. The natural assumption is to suppose that at any
particular point the waves may have the same properties as a plane wave
train on a uniform current, and further that the parameters describing the
wave train, such as amplitude and wavelength, may vary slowly with the
current.

It is intuitively clear that such an approximation is likely to be effective,
but the problem can be approached more formally, by requiring

10U

U ot

U ox

where k and w are the wave number (= 2n/wavelength) and frequency
(= 2n/period) of the waves. From ratios of such wave and current scales one
or more small parameters may be constructed and formal expansions of
variables in powers of a small parameter can be used to obtain solutions. It
is expected, but not proven, that such solutions are asymptotic to exact
solutions.

This short-wave, or large-scale current, approximation has to be used in
conjunction with solutions for uniform plane waves on water moving with
uniform velocity. Such a flow is irrotational, and hence a velocity potential
may be introduced to simplify the analysis, but it is still necessary to approx-
imate to obtain water wave solutions. Some of these approximate solutions
are briefly reviewed in Section ILB.

k > max and > max , (2.1)
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It is commonly the case in short-wave approximations that the solutions
are singular on certain lines or points. In water wave examples it is not
always clear which approximation is responsible for the singularity. It may
be the water wave approximation, e.g., if a small-amplitude assumption is
made, or it may be the short-wave approximation of a locally plane wave.
For small-amplitude waves the plane-wave approximation can usually be
improved in those cases where two possible solutions converge on the same
singularity, one representing waves propagating toward it and the other
representing waves propagating away from it. The resulting solution will
describe waves being reflected. The maximum steepness of such a solution
will then indicate whether the water wave approximation is sufficient or not.
Specific examples are described in Sections IL,D and ILE, but no such solu-
tions have been produced for finite-amplitude waves, although a singularity,
which requires such a description, is noted in Section ILE.

The subject of this section is only one aspect of the problem of wave
propagation in a slowly varying medium and most work on the subject is
not specifically confined to water waves or to moving media. In particular,
work published in the last decade on nonlinear short-wave problems, all
originating from Whitham’s (1965a,b) method of averaging, has shed con-
siderable light on the propagation of linear and nonlinear waves in nonuni-
form, slowly varying media. The concept of wave action, crystallized by
Bretherton and Garrett (1968), is particularly valuable for moving media.
An extensive and up-to-date account of the subject is Whitham (1974).

Water waves are also influenced by the depth of water and where this too
varies slowly its variation can usually be included. This is done in the rest of
this section wherever it is convenient to do so.

B. WAVES ON UNIFORM CURRENTS

In many applications of short-wave approximations, either the equations
are linear, as in vacuum electromagnetic theory, or a linear approximation is
an excellent first approximation, as in acoustics. In water wave problems a
linear approximation can be quite sufficient, but it is more usually only a
rough guide when waves have an appreciable amplitude and hence greater
importance. Hence a few parameters, which are most often used for sinusoi-
dal linear waves, are defined for nonlinear plane waves.

If a wave is periodic in both space and time, then the physical variables
describing it will all be functions of a phase

x=k:'r—owt+9, (22)

in which k, the wave number vector, is perpendicular to planes of constant
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phase (e.g., wave crests for water waves). Water waves are an example of
modal waves, that is, waves that have structure in a dimension in which they
do not propagate, in this case down into the water. Thus k is essentially
parallel to the mean water surface and has no component perpendicular to
it. The wave number k and frequency w are made unique by choosing y so
that its period is 2x; they then correspond to the usual definitions of wave
number and radian frequency for sinusoidal waves.
The phase velocity ¢ defined by

c=whk k=]|k| (2.3)

is also defined for nonlinear waves. It is relevant to note that phase velocity
is not a vector, e.g., the phase velocity along a line in the direction of a unit
vector e is w/(k - e).

If r is a position vector in a frame of reference in which water is moving
with uniform velocity U, then the corresponding position vector r' in a frame
of reference moving with the water is given by

r=r—-Ut. (2.4)
Thus a wave on moving water described by
fk-r—owt) (2.5)

is also described by
fkr+k-Ut—owt)=f(k-r —ot). (2-6)

Thus if any wave property (e.g., a dispersion relation) is given for still water
for a wave of frequency o, the corresponding property for a wave on water in
uniform motion is given by the relation

c=0w-k-U (2.7)

A uniform plane wave train of infinitesimal amplitude, propagating over
still water of uniform depth h, with vertical surface displacement

{ =aexplikk - v — ot + )] (28)
above the mean level, has velocity potential

6= iac cosh k(z + h)
B k sinh kh

and dispersion relation

exp[i(k * ¥ — ot + 0)] (29)

o? = gk tanh kh. (2.10)

In these expressions the physical quantity is the real part of a complex
expression, and z is measured upward from the mean free surface. If surface
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tension T is to be included, then g should be replaced by g + Tk?/p in the
dispersion relation (2.10). The group velocity, the velocity of energy propa-
gation, is

lak( 2kh )
c, = 1

s 2%\ F Sinh 2kh @)

for gravity waves.
This linear approximation is a good approximation when all three of the
parameters

ak, a/h, and a/k*h? (2.12)

are much less than one. For finite amplitude waves there are various differ-
ent approximations, of which two are most relevant. A straightforward per-
turbation expansion in powers of ak gives the Stokes’ wave approximation,
which is appropriate for water of moderate or great depth, specifically when
a/k*h? is small. For shallow-water waves a more subtle expansion, balancing
the effects of a/h against ak, is needed to produce the cnoidal wave solution
(e.g., see Whitham, 1974). Such expansion procedures are cumbersome for
dealing with the highest waves and usually separate approaches have been
made to that problem. However, recently, computer-assisted calculations
have enabled expansions to be carried out to high orders giving results for
most of the range of possible periodic waves (Schwartz, 1974) and for the
limiting case of the solitary wave (Longuet-Higgins and Fenton, 1974). For
purely capillary waves Crapper’s (1957) exact solution covers the whole
range of amplitudes.

Stokes (1847) noted that there is ambiguity in defining “still water” for a
finite-amplitude wave train on water of finite depth. The two natural
definitions, (i) the average velocity is zero at any point that is always sub-
merged, and (ii) the average flow of water through any vertical plane is zero,
are not equivalent. This is clearly shown by considering the most general
form of the velocity potential for a periodic wave. Since only the physical
variables need be periodic

¢ =P r—yt+ ) (2.13)

where y is the phase (2.2). The constant B corresponds to a uniform velocity.
The physical interpretation of y is less clear, but it contributes to the mean
pressure and is thus related to the mean level of the water.

If definition (i) for still water is chosen, then B = 0. On the other hand,
with definition (ii),

2njo

ph=— | U_‘hw dz] dt. (2.14)

Y
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This value of B is often called the mass transport velocity of the waves. The
contribution to the integral comes mainly from the region above the lowest
value of { in the troughs of the waves. Thus for small amplitude waves it is of
order a? and can often be neglected.

For deep water this ambiguity disappears since the still water at great
depth provides a reference frame. However the mass transport is still
nonzero.

As an example of a finite-amplitude solution the first terms in a Stokes’
wave expansion are

k(3 — T2

{=b+ a[cos X+ L“,gji) cos 2y + O(azkz)J, (2.15)

_ . ao[cosh k(z + h) .

dp=Pp-r—yt+ P [ sinh kn SR x
3ak cosh 2k(z + h) ,
Sk '4(kh ) sin 2y + O(azkz)], (2.16)
and the dispersion relation
— 1072 2
o — B + k) = gk tanh k(h + b)[1 + (0 = 1075 + 9T5) a*k? + O(a*k*) |,
8T§

(2.17)

where T, = tanh kh. The parameters k, w, a and B, y, b define a specific wave
train within a phase shift 8, and the dispersion relation (2.17) provides one
equation between them. The choice of a frame of reference determines B, e.g.,
definition (ii) for still water gives

B = $ka’c coth kh + O(a’k?c). (2.18)
Either y or b may be chosen arbitrarily but they must satisfy the relation
y=4B% + gb + [(1 — T3)o*a*/4T3] + O(a*ka?) (2.19)

obtained from the constant terms in Bernoulli’s equation. More details of
finite-amplitude waves are given in Section II,C, which shows the advantage
of leaving B, 7, b in these expressions.

Now, consider infinitesimal waves on the surface of a uniform stream U.
The dispersion relation (2.10) becomes

(w — k * U)? = gk tanh kh (2:20)
after using (2.7). This may be conveniently rewritten

w=+ok)+k-U, (221)
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where
o(k) = +(gk tanh kh)'/2. (2.22)

A common and direct use of dispersion relations is to find the value of k
once  is known (or vice versa) in order to calculate other wave properties.
For example:

(i) Measurements of {() at one point may be available and a measure of
velocity fluctuations on the bottom may be required; or

(i) waves may be generated at a fixed frequency w, as in many
experiments.

In the absence of a current, k is determined uniquely but the direction of k is
undetermined. In the k plane (i.e., a plane where k is a position vector) the
locus of possible solutions is a circle. There is a greater lack of uniqueness in
solving Eq. (2.21) for k when there is a current, even if U is known.

The easiest way of appreciating the solution of the dispersion relation for
k is to consider the intersection of the plane

m=w-k-U (2.23)
with the surface of revolution
m= tao(k) (2.24)

in (k, m) space. [This is a development of the graphical method of solution
given by Jonsson et al. (1970) for k parallel to U.] The general form of the
locus of solutions for U +# 0 is seen by noting that if k is perpendicular to U
then the current does not affect the solution, while for k in any other direc-
tion, specified by a unit vector e, a diametral section of (2.24) yields a curve
as shown in Fig. 1. The trace of a typical plane (2.23) is also shown, and four
solution points 4, B, C, and D in that diametral plane are labeled.

The solution point A corresponds to waves with a component of k in the
direction of the current, being swept along by it so that the measured
frequency o is greater than the frequency o relative to the water. Similarly, B
represents waves with a component of k opposed to the current direction
traveling more slowly relative to a fixed observer so that w is less than o.
These solutions effectively exhibit the Doppler effect, with appropriate cor-
rections for dispersion.

The solution represented by point C does not occur without the current,
or for nondispersive waves. It corresponds to waves propagating against the
current, in the sense that their crests move upstream, but their energy is
being swept downstream. That is,

—c<Ucos @< —c,, (2.25)

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18ES0B84669D...  14/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

Interaction of Water Waves and Currents 23

FiG. 1. Solution of the dispersion relation showing multiple values of k for given w, h,
and U.

where 0 is the angle between k and U. These waves have to be generated on
the current.
The point D corresponds to waves with

6<0 and k-e<O. (2.26)

They are waves with a phase velocity relative to the water in the —e direc-
tion on a current with a relatively strong component in the +e direction,
that is, waves whose direction of propagation is partly upstream but which
are being swept downstream faster than their phase velocity.

For a sufficiently strong current, the solutions B and C may coalesce for
some value of 6. It is easily shown that this occurs when

¢+ Ucos 6=0. (227)

In these circumstances the wave energy is either at rest or moving perpendi-
cular to the current. This is just the property required of a hydraulic break-
water in order to stop incident waves being transmitted. It is convenient to
call such a current velocity a “stopping velocity.” Since the phase velocity of
gravity waves is always greater than their group velocity the waves’ crests
would be progressing against the stream but the wave energy would not.
This can give rise to a fascinating sight, either in a laboratory flume or on a
river, of a small group of waves generated at an appropriate point, to all
appearances continually moving but in fact just staying put. If

¢, + Ucos 6 <0, (2.28)
then solutions of the types B and C do not exist.
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Another interesting case is when w =0, that is, waves are stationary on
the current although their energy is being swept downstream. The condition
for stationary waves may also be written

¢+ Ucos §=0. (2.29)

Such waves occur frequently, usually caused by a fixed obstacle or a boun-
dary of the flow.

The difference between the dispersion relation (2.20) for waves on a cur-
rent and (2.10) for waves on still water can be an appreciable source of error
if the presence of a current is overlooked. Such errors are greatest if relations
between wave properties at the surface and on the bottom are used, for
example, if measurements of {(¢) are used to deduce bottom velocities, or if
measurements of pressure at the bottom are used to deduce surface wave
amplitudes. [Jonsson et al. (1970) give one numerical example.]

Taking the latter of these two examples, if a Fourier component of the
pressure fluctuation at z = —h has amplitude p(w), then the corresponding
surface amplitude component is

a(w) = p(w) cosh kh/pg. (2.30)

The maximum errors will clearly occur when k is parallel or antiparallel to
U. These are best displayed in dimensionless form.

Introduce
Q =w(h/g)'* and F=U(gh) '3 (2.31)
so that the dispersion relations (2.10) and (2.20) become
Q% =ptanh p (2.32)
(Q — Fg)* = g tanh g, (2.33)

where kh is written p in the case of no current and g when a current is
included. Thus if (2.32) is used in error for (2.33), the computed amplitude a,
and the correct amplitude a, are in the ratio

a,/a, = cosh g/cosh p. (2.34)

This has been computed and the relative error (a, — a,)/a; is shown in
Fig. 2. For the case of small F and Q > 1.5, it is sufficient to use the deep-
water approximations for the dispersion relations, and the computation of
this error is then a simple exercise.

Inspection of Fig. 2 shows that adverse currents have the greatest effect.
As an illustration, Table 1 displays the minimum period of waves for which
a current of 0.5 m sec™! can be ignored if errors are to be kept within 5% or
within 20%,. This velocity is typical of tidal currents in many parts of the
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FiG. 2. Relative error in surface wave amplitude calculated from bottom pressures due to
ignoring a current component parallel with the wave direction.

world. Most of the combinations of depth and period are within the range
that may be measured by this technique. For the shallowest depth given,
much of the error comes from the size of the current velocity compared with
the wave velocity, whereas at the other extreme the differing variation of
pressure with depth is most significant.

TABLE 1

MINIMUM PERIOD OF WAVES FOR WHICH A CURRENT OF 0.5 m sec™ ! May
BE IGNORED IN CALCULATING SURFACE AMPLITUDES FROM BOTTOM
PRESSURE MEASUREMENTS IF ERRORS ARE TO BE LESS THAN 5 AND 20%

Depth (m)

—

2 S 10 100

Period with error of 5% (sec) 45 54 6.9 8.0 14
Period with error of 209 (sec) 27 32 43 53 11

Simultaneous measurements of bottom pressure and surface elevation are
reported by Draper (1957), and a comparison is made with the theoretical
ratio, based on still water. Quite a wide scatter is shown. However, most of
the results are within the range

100 < a,/a, < 1.16 (2.35)

and can be explained by currents setting against the waves with velocities up
to 1.2 m sec™! (i.e,, assuming a depth of about 6 m, which is mentioned for
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the two records shown). The measurements were made on Eastbourne pier.
Charts of English Channel tidal streams (Hydrographic Department, 1973)
indicate that currents in that region can reach 2.6 knots (1.3 m sec™!) for
ordinary spring tides so that the scatter is adequately explained, except
for the paucity of records with a,/a, < 1.00 corresponding to favorable
currents. Maybe measurements were only made at certain states of the tide.

For waves generated by wind, it is a common belief that if the wind is
opposed to the current the waves are larger. Naturally this is most simply
explained by the greater velocity of the wind relative to the water. However
this is insufficient to explain experimental results such as those of Francis
and Dudgeon (1967). Vincent (1975) points out that the effective fetch of the
wind is increased when there is an opposing current, since the wave energy
must travel correspondingly slower. This provides a satisfactory explanation
for Francis and Dudgeon’s experiments. In particular, it shows that if
U + ¢, = 0 then large wave amplitudes may be found at very short fetches.

There are many other problems of waves on uniform currents, but most of
them do not merit attention here since there is no important difference from
the corresponding problem for still water. For example, the waves generated
by an obstacle in a uniform flow are identical to those generated by the same
obstacle moving at constant speed through still water. However, if there are
also other waves on the flow that are incident on the obstacle, there may be
significant interaction. This is particularly the case where the frequency of
the waves is such that eddy shedding by the obstacle is enhanced. Recent
experimental work on circular cylinders in a uniform flow by King et al.
(1973) shows the wide range of frequencies at which vortex induced oscilla-
tions do occur, and work reported by Tanida et al. (1973) describes some of
the effects of oscillating the cylinders. Experimental work to explore the
effects of water waves is being initiated in view of its importance to large
maritime structures. '

C. WAVES ON SLOWLY VARYING CURRENTS

Large-scale variation of a current can change all the parameters describ-
ing a wave train. Some aspects of these changes are relatively simple to
interpret. For example, if the flow accelerates or decelerates, the frequency of
the waves, o, will increase or decrease, the well-known Doppler effect. On
the other hand, if waves propagate onto a faster or slower flow, the
frequency will remain constant, but the wavelength will either increase or
decrease. To a certain extent this is due to the extension or contraction of the
water surface. If there is a nonzero angle between the wave number vector
and the current then a change in current will lead to refraction of the waves.
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At first sight it might appear that the consequent amplitude changes might
be found by assuming conservation of wave energy. This is not the case;
there is a transfer of energy between the current and the waves. However,
there is a conserved quantity. It is “wave action” and is equal to the wave
energy density divided by the frequency of the waves relative to the water.

In commencing a study of waves on slowly varying currents it is natural to
start by specifying the current field:

U=U 1). (2.36)

However, in general this is not possible. As is described in Section II,B there
is an ambiguity in the definition of still water for finite-amplitude waves,
which is usually interpreted as a mass flow associated with the waves. Thus
superposition of waves on a current changes the current and its determina-
tion becomes part of the problem. Whitham (1962) highlights this aspect of
the subject and gives specific examples. There are two important situations
where the mass transport has negligible effects on the current field. One is in
deep water, and the other is for infinitesimal waves. For these the current
field may be specified in advance.

For a consistent approach the current field should satisfy the equations of
motion, and this is essential for proving general mathematical results. Much
published work assumes either that there is potential flow or that the flow
satisfies the finite-amplitude shallow-water wave equations. However, in
experimental or natural conditions the current field is usually turbulent and
the mean flow U(r, ¢) satisfies no simple set of equations. Whether or not it
may be reasonable to neglect the effect of turbulence on the waves is a matter
discussed further in Section V. It is likely to be impractical to include it in
any detailed analysis, except in those cases where it is sufficiently strongly
developed to have a marked dissipative effect.

Although the flows considered in this section are assumed to satisfy the
inviscid equations of motion, it is reasonable to apply the techniques
described to any flow that is very nearly uniform over a distance of a few
wavelengths, a time of a few periods, and to a depth of one wavelength, or to
the bottom if that is less deep. To simplify presentation, the free surface of
the flow without any waves is assumed to be approximately horizontal.
Large-scale flows with appreciable surface slopes and vertical accelerations
are considered in Section ILF.

The method that is most effective in describing wave propagation in
slowly varying media is the use of an averaged Lagrangian developed by
Whitham for nonlinear dispersive waves. [A full account is given in
Whitham (1974).] Two other approaches are also valuable; one is direct
integration with respect to z and averaging of the equations of motion; the
other is to assume an appropriate form for the solution in terms of a pertur-
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bation expansion and substitute in the equations of motion. All three have
their value but the Lagrangian approach is most informative and is given
correspondingly more attention.

1. The Averaged Lagrangian and Its Application

A variational formulation of the water wave problem is provided by Luke
(1967) for the exact irrotational case, and some indication of how to proceed
for rotational flows. Appropriate approximate Lagrangians for long-wave
equations are given by Whitham (1967a). An averaged Lagrangian is found
by substituting an appropriate plane wave solution, or approximate solu-
tion, into the Lagrangian, integrating with respect to depth, and averaging
over the phase y.

The water wave Lagrangians all involve potentials so that appropriate
parameters corresponding to f, y, and b of the Stokes’ wave approximations
(2.15) and (2.16) need to be included. Thus in general the averaged Lagran-
gian is a function

Z(k, w,a;p, 7 b; U, h) (2.37)

In particular examples it may be convenient to combine  and b with U and
h, respectively.

The primary assumption is that if the wave properties are slowly
varying—not only because of variations in U and h, but also due to slow
variations in initial or boundary conditions—then the variational principle

5% =0 (2.38)

applies for variations of all the wave parameters. Examples of averaged
Lagrangians are given at the end of this subsection.

The derivation of the Euler equations corresponding to the variational
principle (2.38) is simplified by reintroducing the phase x, by the relations

k = Vy and = —Jy/ot, (2.39)
and by introducing a pseudophase y defined by
p=Vy and y = —0oy/ot. (2.40)
The second derivatives of these phases provide four consistency conditions
(0k/dt) + Vo =0, (2.41)
Vxk=0, (2.42)
(oB/ot) + Vy =0, (2.43)
Vxp=0, (2.44)
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which are sometimes called kinematic relations. There are then four Euler
equations corresponding to variation with respect to a, y, b, and .

The averaged Lagrangians do not include any derivatives of a and b, so
that the corresponding Euler equations are simply

8%/0a =0, (2.45)
82/0b =0, (2.46)

and are relations between the parameters of (2.37) involving no derivatives.
Indeed, (2.45) corresponds to the dispersion relation and (2.46) to the Ber-
noulli relation (2.19) between B, y, and b.

Since y and ¥ do not appear explicitly in .#, the Euler equations for their
variations are

0 (0% 0¥
5(6(3») =V ke (247)
0 (0¥ 0¥

where d/0k and /0B denote the gradient operator in k space and P space,
respectively. Equation (2.48) only occurs for finite-amplitude waves in water
of finite depth and is found to be an equation for the conservation of mass,
including the effects due to changes of level and mass flow associated with
the waves.

By defining

A=0Z /0w (2.49)
to be “wave action density” and
B=—-0%/0k (2.50)
to be “wave action flux,” Eq. (2.47) takes the form
(0A/3t) +V - B =0, (2.51)

of a conservation equation for wave action. Equation (2.47) is given in
Whitham (1965b), but specific attention is drawn to the advantages of using
wave action, when considering moving media, by Bretherton and Garrett
(1968). A more general definition of wave action, but equivalent to (2.49)
where waves are locally plane, given by Hayes (1970), allows the assertion of
conservation of wave action in general conservative systems with periodic
waves.
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30 D. H. Peregrine
For linear waves the set of equations to be solved is (2.41), (2.42), the
dispersion relation (2.45), and (2.51). The wave action density
A=E/o (2.52)
and the wave action flux
B =(U+c)4 = (U +c,)E/s, (2.53)

where E = 4pga® is the wave energy density, o the frequency of the waves
relative to the water, and ¢, their group velocity relative to the water.
The dispersion relation for linear waves has the form

o=k U+ a(k, h), (2.54)
so that Eq. (2.41) becomes
7 do 0h U,
[E“l" (U+Cg) V]ka— -—ﬁa_xa—kﬁa_x’

after using (2.42). Another useful equation that may be obtained from the
same three equations is

(2.55)

0 oU 0o dh
[at+(U+cg) V]w_k o tana
It is most easily obtained by first differentiating (2.54) with respect to time,
and its real value lies in the fact that in many problems the right-hand side of
the equation is zero.

The solution of problems involving linear waves is eased by the absence of
amplitude from Eqgs. (2.41), (2.42), (2.54), (2.55), and (2.56). They are not all
independent, as is clear from their derivation, but by choosing the most
suitable of them it is often a straightforward matter to find w and k.

Inspection of Egs. (2.55) and (2.56) shows that their characteristics are
given by the lines

(2.56)

(dr/dt) = U +-c,. (2.57)

If there are no simplifying features as in the examples of Sections II,D and E,
numerical methods may be used. In general it is appropriate to calculate
these characteristics or “rays,” using Eq. (2.55) for the components of k.

Once rays are found, the wave amplitude is then derived from the wave
action equation, which can be written

L% +(U+c,)- v} (f-) + [V “(U+ cg)] (f) =0, (2.58)

which expresses the conservation of wave action between rays. The types of
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solution that may be obtained in various circumstances are illustrated by
examples in Sections II,D and E, where analytic solution is possible.

One defect of this type of approximation is that sets of rays may meet and
the solution is then singular with the amplitude of the waves becoming
infinite. For example, this occurs at a caustic of rays where two sets of rays
are tangential to a line in space, and also at a point where U + ¢, is zero and
the rays are tangential to a line in space-time. Such singularities occur at
points where the approximation of a locally plane wave is not valid.
Typically there is reflection, and a different type of solution, valid in the
neighborhood of the singularity, is required. Typical examples are given in
following subsections. Even when such solutions are found, it is prudent to
check that the parameters (2.12) are within reasonable bounds for
infinitesimal theory. Singularities of this general nature also occur for finite-
amplitude waves but the details are different, as is shown for one example in
Section ILE. So far, no corresponding solution valid near the singularity has
been described.

For finite-amplitude waves the dispersion relation includes the amplitude,
so that it is not in general possible to solve for k and w independently.
However, it is possible to use the dispersion relation (2.45), and the Bernoulli
relation (2.46), to eliminate one variable each. [For example, Lighthill (1965)
eliminates g in discussing two-dimensional deep-water waves and by retain-
ing x as a variable finds a second-order equation for it.] For the resulting
equations there are four sets of characteristics. Two have velocities close to
+(gh)'/? and correspond to propagation of changes in mean level and flow
rate. The other pair of characteristics may be real, in which case their veloci-
ties are near U + c,, or they may be imaginary. (For infinitesimal waves
these characteristics are real but coincident.)

Equations with imaginary characteristics are of elliptic type and are effec-
tively unstable for initial value problems. Lighthill (1965) shows that equa-
tions for deep-water gravity waves are elliptic and this ties in with other
approaches to the stability of a plane wave train (Benjamin, 1967; Phillips,
1967). An unstable wave train does not necessarily break, but a certain class
of modulations of the wave train can grow from an infinitesimal initial
magnitude until they substantially modify the wave train.

The stability of a wave train is unaltered by a current, and although most
applications may be worked out in terms of an initially uniform wave train
instabilities should not be ignored. In some examples, their rate of growth
may be slow enough for them to be ignored; on the other hand, propagation
times may be long enough for instabilities to significantly affect weakly
nonlinear waves, for which one might at first sight expect linear theory to be
adequate. Numerical integration is also likely to be difficult when the
governing equations are unstable.

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18ES0B84669D...  23/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

32 D. H. Peregrine

For capillary-gravity waves on deep water Lighthill (1965) using a third-
order approximation shows that characteristics are imaginary except for the
parameter range

—1+2(3)" 1 < Tk?/pg < 4. (2.59)

For large-amplitude deep-water gravity waves an approximate Lagrangian
(2.69) enables Lighthill (1967) to show that the characteristics become real
for

kH > 0.679, (2.60)

where H is the crest to trough height.

For gravity waves in a finite depth of water, Whitham (1967b) confirmed
Benjamin’s stability analysis for two-dimensional disturbances by showing
that characteristics are imaginary for

kh < 1.36. (2.61)

The analysis, using a third-order Stokes wave solution, is continued to three-
dimensional modulations by Hayes (1973), who indicates that waves are
unstable in this approximation for all kh, but that for kh less than 0.5 the
region of instability is small and a better approximation should indicate
stability.

Hayes (1973) also presents a different, and in some ways simpler,
approach to manipulating the equations. By using wave action A as an
independent variable, instead of wave amplitude, it becomes simple to eli-
minate w. By its definition

A=0%/0w, (2.62)
which integrates to
¥ = Aw — #(k, A), (2.63)

where the “constant” of integration is a Hamiltonian. Further, the disper-
sion relation is now

0ZL[0A =0, (2.64)
which is an explicit expression for w,

w=0H[0A. (2.65)
The k gradient of this expression for w,

0*H# [0 A Ok,

is a velocity, which Hayes calls the basic group velocity, and it is of value in
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interpreting the propagation of changes in wave action for a finite-amplitude
wave train.

It seems inappropriate to summarize this work in any more detail since
applications to waves on currents have yet to appear; the interested reader
should refer to the original papers and to Whitham (1974). However, it is
appropriate to record the various forms of average Lagrangian that have
been evaluated.

For pure capillary waves on deep water, Crapper’s (1957) solution gives

¥ = 2T — po?/k® ~ T*>/po?. (2.66)
A second-order solution for capillary-gravity waves on deep water gives
g 1-2 (a? 2
T e e
= {2x2+x+8(gk ")
24k ~ 116x* — 74ic® + 351k% — 110k + 64
(26 + k + 8)*(3k — 1)

x(g—l-x)3+-~J, (267)

where

k = Tk?*/pg, (2.68)
and in both (2.66) and (2.67) the amplitude has been eliminated by use of the
dispersion relation. These results are from Lighthill {1965; Eqgs. (80) and

(91)).
For deep-water gravity waves of all amplitudes, Lighthill’s (1967) approxi-
mation is

& = (pg/8k?)(s® — 5* — s%), (2.69)

with
s = o%/gk — 1, (2.70)
and the range of s from small-amplitude to maximum steepness waves is

0<s5<02. To find the trough to crest height, Lighthill suggests the
approximation

s = k%a?, (2.71)

where here 2a is that height. It would be worth reexamining this useful
approximation in the light of the properties of high waves calculated by
Schwarz (1974) and Longuet-Higgins (1975) (e.g., the quantity s has a maxi-
mum value of 0.193).
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For gravity waves on finite depth of water, Whitham (1967b, 1974) finds,
from the Stokes’ approximation,

(0 —B - k)?
gk tanh k(h + b)

1 1 1
& =p(§ﬂz —*/)(h+b)+§pgb2 + P07 |1 -

pk?a*(9T§ — 10T; + 9) .o
64T2 ’

(2.72)

where the symbols are the same as in Eq. (2.15) and thereafter. There is no
need for B to be small in expression (2.72) and it could be used to represent
the total current. In using most Lagrangians for waves on currents, ¢ would
be substituted by (w — U - k).

This method of using an averaged Lagrangian is justified by using a
two-time (and length) scale expansion. Further approximations are possible.
Chu and Mei (1970) discuss details for Stokes waves, and also (Chu and Mei,
1971) give specific examples, in particular showing how the instability of a
uniform wave train develops into stronger modulations that settle down into
groups of waves of permanent form. Whitham (1974, Ch. 14 and Sect. 15.5)
shows how such an analysis can be derived from the Lagrangian approach.
No applications have been given to waves on a variable current, but the
solutions discussed in Sections II,D and E indicate that when singularities
occur it may be because the basic assumption of a nearly plane wave is at
fault, rather than too high a modulation rate.

2. Averaged Equations of Motion

A more direct approach to waves on a current is to start with the equa-
tions of motion and to divide the velocity and other variables into mean and
fluctuating parts. The equations may then be averaged over the phase of the
fluctuating motion after integration with respect to z. Then each term needs
to be identified with appropriate physical quantities such as the wave energy
density E. The method is straightforward in concept but appreciable alge-
braic manipulation is needed. Details are not presented here, but are given in
the book by Phillips (1966). [Mei (1973) gives a minor correction; a term
Py 0d/dx, should be added to the left-hand side of his Eq. (3.6.11).]

The advantage of this approach is that it is easier to appreciate the physi-
cal significance of terms and hence to make appropriate additions to the
equations in order to account for wave dissipation, wave generation, or even
wave breaking.

The simplest case is for infinitesimal waves. The consistency conditions
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(2.41) and (2.42) and the dispersion relation are again applicable. Instead of
the wave action equation an energy equation is derived:

OE & oU,
6—t + a—x[(Ua + cg,)E] + S"”a—xa

The term S,; is called the radiation stress (Longuet-Higgins and Stewart,
1960) and is given, to a first approximation, by

+0. (2.73)

o o_
Sp=p J_hu,uﬂ dz + 0, '[_ hp dz = O(a®), (2.74)

where u, and p are the velocity and pressure fields associated with the waves.
This expression indicates that S,; may be considered as a wave momentum-
flow tensor, or alternatively as minus a wave Reynolds’ stress tensor. Its
product with the current gradient in (2.73) gives the rate of energy transfer
between waves and current.

The energy equation (2.73) is exactly equivalent to the wave-action con-
servation equation (2.58). Bretherton and Garrett (1968) show the equi-
valence for a current satisfying the finite-amplitude shallow-water equations.
Most other relevant flows are such that the waves are effectively on deep
water, and it is a simple corollary of their proof to show the equivalence for
deep-water waves.

For capillary-gravity waves, expression (2.74) for S, is

Ekh P kh . 1+ 3k
sinh 2kh ** * [sinh 2kh  2(1 + x)

where x = Tk*/pg and k, are the components of a unit vector in the k
direction (Longuet-Higgins and Stewart, 1964). For gravity waves this may
be written

]El?a i, (275)

¢, 1 Cy -
Szﬂ = E('c! - 5) 5aﬂ + E‘c! kz Eﬂ . (2.76)

Radiation stress is a valuable concept when interpreting the generation of
longshore currents by waves incident on a coast; see Longuet-Higgins
(1972) for a detailed account.

A somewhat different way of identifying terms in the averaged equations
of motion is given by Hasselmann (1971). Emphasis is on the Eulerian view
for the mass flow associated with the waves, that is, that it occurs only in the
surface layer above the wave troughs. Particular attention is given to short
waves riding on much longer waves, which are discussed further in Section
ILF.
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3. Perturbation Equations and Asymptotic Expansions

In a sense this title covers nearly all the work discussed in Section II. Most
of the plane-wave solutions used result from a perturbation expansion in
powers of the wave steepness or similar parameter. The equations for the
behavior of the wave trains can also be derived as the first terms of an
expansion in powers of k™!, or some other parameter expressing the small
size of the waves relative to the scale of the current. Indeed, this section
could have been introduced with a formal expansion in terms of ¢ and k1.
Valuable though such an approach may be in improving the theoretical
foundations of the equations, it seems inappropriate in this particular field,
where in most instances a first approximation in terms of k™! is all that has
been found, and experiment and observation are still needed to assess the
value of theoretical results.

The purpose of this subsection is to indicate where a direct approach has
been used or could be used with advantage. This is at present confined to
infinitesimal waves, whose motion is sufficiently small that it is a perturba-
tion of the current satisfying linear equations of motion. In the body of the
water,

g+(U-V)u+(u-V)U+:—’VP=0, 2.7)

V-u=0, (2.78)
with boundary conditions

p=pgl, (0L/ot)+ (U - V) =w, (2.79)

at the mean free surface if the vertical acceleration of the current is negligible
(if not, see Section ILF).

An alternative is available if the current velocity field is also very weak.
Then one may assume that the two velocity fields are simply additive with
any interaction appearing as a second-order perturbation. Radiation stress
was first introduced in order to give a physical interpretation of the results of
such a perturbation analysis (Longuet-Higgins and Stewart, 1960). The
weak-current approach is also used by Taylor (1962) and can be of consider-
able value since results can often be found without any assumptions about
the scale of the current. In principle it is possible to solve any problem, but in
practice the solutions are often singular, demonstrating that the implicit
assumption of a weak interaction is not always tenable.

Ideally one would like to solve Egs. (2.77) and (2.78), with their boundary
conditions (2.79), exactly for particular flows. Then no approximation about
the scale of the current field is required. The only such solutions the author is
aware of are for some flows of the form U = (U(z), 0, 0) (Section IV,B)
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and for stationary waves on a uniform flow bounded by vortex sheets
(Section IIT).

Once it is assumed that the current varies on a much larger scale than the
waves, examination of the perturbation equations and boundary conditions
(2.77)-(2.79) shows that the only term involving derivatives of U is the third
one in (2.77). Thus, any first approximation does not include it, and U then
appears in the equations in the same way as for a uniform velocity. This
suggests the most usual way of finding solutions, which exactly parallels the
results described in Section II,C,1. A solution for a uniform current is
chosen, such as a plane wave, and the parameters describing that solution,
such as a and k, are thought of as functions, varying slowly with U. Typically
they are expanded in an asymptotic series of the form

—a + 4%
a=dot tat (2.80)

and after substitution in the perturbation problems, coefficients of each
power of k are set equal to zero. The actual details can vary appreciably and
multiple-length scales may be introduced.

If a plane wave is chosen as the assumed form of solution (or “ansatz”),
then the first approximation gives an “eikonal” equation for the rays and
the second approximation a “transport” equation for the amplitude, corre-
sponding to the wave action equation.’An advantage of this approach is that
for a velocity field that can be expressed in simple analytic terms higher
approximations in k™! can be readily found.

The major advantage of choosing an “ansatz” and substituting it in the
perturbation equations is in dealing with cases where the wave field is not
locally a plane wave. (For example, however many terms in k™! are taken, it
is not possible to describe any reflection if the initial assumption is that there
is a single wave train.) In particular, this approach can be used to describe
regions where rays form a caustic, and the plane-wave approximation gives a
singular solution for the amplitude.

At least two types of caustic may be identified. If the rays forming the
caustic are straight in its neighborhood, then the caustic is similar to a
caustic in a uniform medium and is not directly affected by the current field.
At the other extreme, if the caustic is caused entirely by the curvature of rays,
it is the refracting effect of the current that is the prime cause of its existence.
In this case the wave properties at the caustic depend on the value of the
current and on its gradient. (Note that where the ray theory gives a good
approximation the wave properties depend only on the value of the current.)
Two very different examples of this latter class of caustic are discussed in
Sections II,D and E.
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It is instructive to note the analogy with short-wavelength solutions of the
linear second-order ordinary differential equation,

(d*u/dx?*) + N(x)u = 0. (2.81)

When N(x) > 0, sinusoidal solutions with slowly varying amplitude are
found by the well-known WKB (or Liouville-Green) method. These corre-
spond to the ray solutions in our problems. The exponential solutions for
N(x) < 0 can be found in a similar manner and correspond to regions where
waves do not penetrate. These are joined near points N(x) = 0 by connect-
ing solutions in terms of Airy functions (e.g., see Lanczos, 1961). Such points
correspond to caustics and solutions in the neighborhood of a simple caustic
usually involve Airy functions, though not necessarily in the relatively direct
form that is found for equations of the form (2.81).

Similarly, when the function N(x) has two zeros within a reasonably short
distance, parabolic cylinder functions are appropriate for approximating
solutions. Two examples of the corresponding problem, when the ray solu-
tions indicate two adjacent caustics, are mentioned in Section ILE.

Another wave pattern that needs special treatment is a focus of rays. There
is no simple analogy with ordinary differential equations. Most foci form as
cusps of caustics, and Pearcey (1946) gives an appropriate “cusp ” function
together with numerical values. Uniform asymptotic expansions for a
cusped caustic are discussed by Ludwig (1966). If rays form a perfect focus
(ie., all crossing at the same point) a solution of the form

Y. a,r'J (cos nh)e" (2.82)

may be used, and the asymptotic form of the Bessel functions used to match
with the ray approximation at a sufficiently large value of r. It is particularly
easy to find the amplitude at the geometric focus, r = 0, with expression
(2.82), but Pearcey’s cusp function shows that the maximum wave amplitude
is not usually at that point. A large-scale current distribution can cause
waves to form different types of caustic. It is possible that there might be
different types of focus.

Waves patterns where the ray approximation gives a singularity in the
amplitude, such as caustics and foci, have often been interpreted as regions
where water waves break. This interpretation is only justified if a local
approximation gives a large amplitude, and more significantly a high wave
steepness, in its vicinity.

Following this general discussion, the next two subsections consider two
very simple examples of unidirectional flow. A variety of solutions can be
found analytically, which illustrate some of the effects that can happen in a
more complex problem. There appear to be very few examples published
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where more realistic flows have been tackled. The change in period of ocean
waves, measured in Cornwall, due to tidal currents encountered in their
passage over the continental shelf is one example calculated by Barber
(1949) and is in satisfactory agreement with measurements.

D. STEADY CURRENT, VARYING WITH DISTANCE ALONG THE STREAM

A current of the form
U=[U(x), 0, 0] (2.83)

can describe the flow in channels and rivers where the velocity varies in
response to the depth h(x) and slope of the bottom. The flow from a hydrau-
lic breakwater may also be described in this way, although in practice such a
flow is best confined to a surface layer, and (2.83) is then only a reasonable
approximation for very short waves.

A closely related flow can occur with a propagating wave, when

U = [U(x — Ct), 0, 0]. (2.84)

If C is constant this flow is of the type (2.83) in a frame of reference moving
with velocity C. Examples are the surface currents due to internal waves or
to long shallow-water waves. The form (2.84) may describe tidal currents,
but more usually the tide is made up of more than one propagating mode.
However, in all these possible applications it is likely that the basic long-
wave motion is of sufficiently small amplitude that different modes may be
superposed.

The simplest example is when waves travel perpendicular to the current,
that is,

k-U=0. (2.85)

There is no interaction.

A simple, less trivial example is when waves travel parallel to the current,
so that

k-U= +kU. (2.86)
For definiteness we take k in the positive x direction so that if waves propa-
gate against a current U is negative. Initially, attention is restricted to
infinitesimal waves.
Since the current is steady, or considered in a reference frame in which
that is so, Eq. (2.56) implies that on rays
dx/dt =U + ¢, (2.87)

= const. (2.88)
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The waves must vary slowly for the theory to apply so that there is little loss
of generality in considering a steady state situation in which w is constant
everywhere; the dispersion relation

0? = (w — Uk)? = gk tanh kh (2.89)

is then the only equation needed to determine k and hence o.

The ambiguities in solution of Eq. (2.89) mentioned in Section ILB are
avoided by requiring continuity of solution as U and h vary. For numerical
solutions this suggests that the numerical integration of a differentiated form
of (2.89) is likely to be preferred to direct solution, though care should be
taken near double roots. Explicit solutions can be found for deep-water
waves, in which case it is usually more convenient to work with the phase
velocity of the waves relative to the water, that is,

¢ =alk = +(g/k)'"* = g/o, (2.90)
which with (2.89) gives
w =k(c + U) = g(c + U)/c? (2.91)

as the equation for c.
The conservation of wave action implies that the wave action flux

B = pga*(U + ¢,)/20 (2.92)

is constant and equal to its value at the point where the waves are generated.
For deep-water waves this becomes

a* = 2B/pc(U + ic¢), (2.93)

and there is no difficulty in finding the amplitude.

Even where the depth is significant in the dispersion relation there is no
difficulty in calculating the wave properties numerically. The results of such
calculations are presented by Jonsson et al. (1970) in both tabular and
graphical form for the case of steady channel flow, where

U(x)h(x) = Q. (2.94)

Expression (2.92) indicates that the amplitude may become unrealistically
large if either o becomes very large or U + ¢, approaches zero. The former
case does not arise for waves generated on still water, but can do so for
waves initially on a current. Since large ¢ implies very short waves the
deep-water relations hold, and (2.90) shows that ¢ large corresponds to
¢ — 0. Typical curves representing Eq. (2.91) in the (U, c) plane clearly show
that ¢ — 0 only as U — 0 (Fig. 3). That is the situation in which

-U>g¢, (2.95)
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FiG. 3. Relation (2.91) between ¢ and U for deep-water waves for different values of w.
Units are chosen with g = 1. The letters A, B, C, and D in the sectors shown refer to the four
solutions in Fig. 1.

and the waves are being swept downstream although they propagate
upstream relative to the water. As the water slows down the waves con-
tinually shorten and increase in steepness so that small-amplitude theory
becomes invalid. In practice the waves break and little or no energy is
propagated into still water.

The other singularity when

U+e,=0 (2.96)

is more interesting. At such a point the wave number and frequency are both
finite, and if a subscript 0 indicates still-water values and subscript 1 condi-
tions at (2.96), then

Ul = _%cl = _%CO ’ kl = 4k0 ) 0y = 20'0 . (2.97)

The velocity U, is conveniently called the “stopping” velocity since for
waves propagating against a stream it has the effect of stopping them. It is
behind the idea of a hydraulic breakwater and can also be observed in rivers
and in “tide races,” which occur off headlands or in channels where tidal
currents are locally enhanced. Such a stopping velocity leads to very rough

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18E50B84669D...  33/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

42 D. H. Peregrine

water surfaces as the wave energy density increases substantially. Upstream
of such points, especially if the current slackens, the surface of the water is
especially smooth as all short waves are eliminated. As (2.97) shows, the
current required is only one-quarter of the phase velocity for the waves in
still water, because the waves have a smaller wavelength.

Most accounts of this phenomena (e.g., Phillips, 1966) assume that, be-
cause of the singularity in amplitude, waves necessarily break before reach-
ing the stopping velocity, finite amplitude effects only serving to give a
different value to U,. This is not necessarily the case since the stopping
velocity corresponds to a caustic of rays. There is a corresponding set of rays
being swept downstream. It is thus possible for the waves to be reflected and
swept downstream, as shorter waves, by the current. Details of this process
are found by looking for a solution of the perturbation equations (2.77)-
(2.79) in the neighborhood of the stopping velocity.

Specifically, by using a perturbation stream function of the form

Y(x, z)e™ ", (2.98)
the equations can be reduced to
AViy=0 in z<0, (2.99)
with the boundary condition
X0z =y 0*Yj0z2 on z=0, (2.100)
where the operator
X = U(x)% + Z—Z - iw. (2.101)

To solve these equations near the stopping point it is necessary to choose a
simple form for U(x) that has a value and a gradient at that point that equal
those for the actual velocity. Two possible choices are

Ux) = —3e,(1 + B) (2.102)
and
U(x) = —4c, e~ (2.103)

For both of these functions it is relatively straightforward to find the com-
plex Fourier transform with respect to x of Eq. (2.99) and its boundary
condition (2.100). If U were constant (= U, ), then the Fourier transform of
Y would be

W(k, z) = 5(k,)e*. (2.104)
For small Bx it is expected that the solution will be a perturbation of this
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solution, so it is assumed that the only relevant values of the transform
variable k are those such that

k= (k—ky)/ky, <1. (2.105)

This assumption simplifies Eq. (2.99) to Laplace’s equation and gives the
form

Y(k, z) = A(k)e*. (2.106)
With the further, short-wave assumption that
B <k, (2.107)

the boundary conditions resulting from either (2.102) or (2.103) can be
simplified to a first-order differential equatnon in k for kA(k). This can be
integrated to give, near fx =0,

aC

¥ = const X '[ expik,(ix + z) + if2k, k3/12 + [k, B(ix + z) — B/4]} dx,
- (2.108)

which may be rewritten in terms of the Airy function,
W(x, y) = A explk,(ix + z)] Ai[(4k3 B)'*(x — iz + i/4k,)]. (2.109)

This is a local solution for the wave motion, valid near the stopping point.
It has no singularity, indicating that reflection can occur. However, to be
useful it needs to be matched to an outer solution corresponding to the two
branches of Eq. (2.91) for ¢ and the solution of (2.93) for the amplitude with
B positive for waves traveling upstream, but with B of the same magnitude
and negative for the reflected waves. Such matching can be done by using the
asymptotic expansion of the Airy function. Since solution (2.109) is valid
when

fx <1, (2.110)

and the asymptotic expansion applies when
(4k$B)'*x > 1, (2.111)

there is a matching region of overlap where
B3> x3> (ki) !, (2.112)

which is nonzero because of (2.107).
The result, in terms of the amplitude a, on still water, is

A = 4n'2(2k, /B)" ay, (2.113)
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and the amplification in wave steepness is
0.536 4k, = 17.1(k,/B)""®agk, , (2.114)

where 0.536 is the maximum value of the Airy function. This indicates that
although the small-amplitude approximation may be uniformly valid, it is
so, for waves starting on still water, only for extremely gentle initial waves,
since even if the large parameter k,/f is not very big the factor 17.1 is
appreciable.

Further light is shed on the matter by Fig. 4, which shows the variation of
k, a, and ak with a logarithmic scale, according to the simple ray theory. The
ak curve for the reflected waves is particularly interesting. It has a minimum
value where U = 098U, corresponding to an amplification of 33.6. This
implies that any reflected waves continually increase in steepness as they are
swept further away from the stopping point. Indeed, it is likely that the
minimum will be obscured by the reflection process.
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Fi1G. 4. Variation of wave number, amplitude, and wave steepness for deep-water waves on
a current, according to the ray theory, Egs. (2.91) and (2.93). A subscript 0 refers to still-water
conditions and subscript 1 to conditions at the stopping velocity, U, = —4c,.
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Reflection has not been reported by experimenters with hydraulic break-
waters. The reason is easy to see. The reflected waves cannot propagate to
still water and have a shorter wavelength. For example, at a point where
U =0.75U,, the ratio of wavelengths, incident to reflected, is 9 to 1. Such
short waves are unlikely to be recognized as a direct reflection without prior
knowledge.

Because of the substantial amplification, all wave trains eventually
become too steep to be described by an infinitesimal wave theory if they
meet substantial adverse currents. In practice they will break either before,
at, or after reflection. Finite-amplitude effects can alter the stopping velocity.
Experimental results for hydraulic breakwaters (e.g., Evans, 1955, Fig. 5)
indicate an appreciable variation of stopping velocity with wave steepness,
so that it is valuable to have some theoretical results for finite-amplitude
waves.

The result

o =k(c+ U) (2.115)

still holds for finite-amplitude waves. In deep water we know that the disper-
sion relation has the form

¢ = (g/k)[1 + f(a*k?)). (2.116)
Thus
c? = vo[1 + f(a*k*)](c + U). (2.117)

where v, = g/w is the velocity of infinitesimal waves of frequency w on still
water. For a given value of f(a?k?), Eq. (2.117) has coincident roots for c if

U = —4vo[1 + f(a?k?)]. (2.118)

Thus the maximum magnitude of U is given by substituting the maximum
value of f(a%k?) in (2.118). This is 0.193 (Schwartz, 1974), and the corre-
sponding minimum stopping velocity is

U, = —0.2980, . (2.119)

By using Lighthill's approximate Lagrangian (2.69) the analysis may be
carried further. A number of numerical solutions obtained from it are given
by Crapper (1972). The function f(a*k?) in (2.116) is replaced by s so that

c? = vg(1 + s)(c + V). (2.120)

The wave action flux 0.#/dk can be found explicitly in terms of s and ¢, and
the requirement that it be constant gives

2v(c + U)*P(s) + c(c + U)*(c + 2U)P'(s) = 2voc3 P(so) + c5 P'(s0)-
(2.121)
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in which
P(s) = s? — 5% — s* (2.122)

and a subscript 0 refers to conditions where U = 0. Although Egs. (2.120)
and (2.121) may be solved for the unknowns s and c, (2.121) is sufficiently
complex to obscure interpretation.

However, by using the argument leading to Eq. (2.118) we can investigate
whether waves break before meeting a stopping velocity. That is, choose s at
the stopping velocity, s, say, then

Ul s ‘—'41_'00(1 + Sl), (2.123)
¢ = —2U,. (2.124)

Substitution of these values in the left-hand side of Eq. (2.124) then gives an
equation for the corresponding value of s,, which is easily solved since for
values of s, less than or equal to that for the highest wave, s, is small. Indeed,
for s, = 0.193, 5, = 0.00067. For small s,

s = a’k?, (2.125)

so that g4k, = 0.0258 in this case. The implication is that for greater values
of aq ko, waves must break before a stopping velocity is reached, and that for
smaller values, waves may be reflected before they break.

Another simple result is obtained if s, is also very small, in which case
(2.121) simplifies to

S% = 6430 or al kl = S(ao ko)”z. (2.126)

Experimentally, it is found that the greater the still-water steepness of
waves, the greater is the velocity required to stop them. This is in apparent
contradiction to the above analysis. However, experimental waves have been
sufficiently steep that they can be expected to break before the stopping
velocity, and details of the breaking process are likely to affect the result. For
example, the momentum lost from the waves in breaking is transferred to the
current, and although this does not make a significant contribution to the
mean current in deep water it will certainly affect the current distribution in
the surface layer that directly influences the waves. Effects of a variation of
mean velocity with depth are examined in Section IV.

Holliday (1973) has calculated a few solutions for finite-amplitude
capillary-gravity waves. These show a considerable variation from gravity
waves near stopping points. This is not unexpected because of the variation
of ¢, relative to c; however, the paper contains no discussion of this.

If waves are at an angle to the current, that angle is an extra variable in the
problem. Let 0 be the angle between k and U. The assumed current distribu-

38/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

Interaction of Water Waves and Currents 47

tion (2.83) introduces no asymmetry, so that only the range 0 < 6 < n need
be considered. As already mentioned there is no interaction at § = /2 so
that the analysis proceeds most naturally by considering 0 < 6 < n/2. There
is no loss of generality as long as both positive and negative values of U(x)
are considered.

The extra equation needed to determine 8 comes from the second consis-
tency condition (2.42), which integrates immediately, since all-the wave pa-
rameters are independent of y, to give

k sin 0 = m. (2.127)

For steady wave conditions, or following waves along a ray, mis a constant.
Again the frequency ’

w = k(c + U cos 6) (2.128)

is constant, and the dispersion relation may be used. The wave action flux B
is also constant: the x component, which is the most relevant, is

B, = pga*(U + ¢, cos 8)/2¢ (2.129)

for infinitesimal waves.

By limiting consideration to deep-water waves it is easy to eliminate k and
¢ from Eq. (2.127), (2.128), and the dispersion relation to find an equation
for 6:

U*(x) cos @ = sin 6 — (M sin §)!/2. (2.130)
In this equation U* is a dimensionless velocity,
U*(x) = U(x)m/w. (2.131)

The velocity w/m is the phase velocity of the waves in the y direction. The
constant

M = gmjw? (2.132)

and equals the value of sin @ for the waves where U = 0. However, M may
be greater than one if the waves are generated on moving water and cannot
propagate onto water at rest.

Once 6 has been found from Eq. (2.130) it is straightforward to find the
corresponding values of k, ¢, and a. In order to illustrate the behavior of
(2.130), a graphical method of solution is illustrated in Fig. 5. Each side of
Eq. (2.130) is plotted against 6 for a number of values of M and U*. A given
set of waves may be followed by looking along a line corresponding to the
right-hand side of the equation.

For waves generated on still water it is apparent that as they propagate
onto a current with a component in the same direction, 6 increases and their
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L-0.5

FIG. 5. The two families of lines correspond to the left- and right-hand sides of Eq. (2.130).
Their intersections give values of @ that solve the equation for the appropriate values of U*
and M.

wavelength, from Eq. (2.127), also increases. The opposite happens when
they propagate onto an adverse current, and there is a stopping velocity such
that

U+c, cos=0. (2.133)

In Fig. 5 this corresponds to a double point of intersection of the two appro-
priate curves.

The behavior near the stopping point is similar to that already described
for @ = 0. That is, if the waves are sufficiently gentle they are reflected into
waves that are swept downstream. In this case the value of § diminishes
toward zero for the reflected wave train. Alternatively the waves become
sufficiently steep for nonlinear effects to become important and may break.
Crapper (1972) gives the results of three numerical calculations for this
problem, using Lighthill's approximation. No unexpected behavior is
apparent.

There are three solutions for 6 of Eq. (2.130) in the parameter range

3/24>M>1, —/2/4<U*<0. (2.134)
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Hence there are two ways in which a double root can arise. The new type,
which only occurs in this range, corresponds to waves that are being swept
downstream to a stopping point. This can happen to waves that initially are
propagating almost directly across the stream. If they are swept downstream
into slower moving water they are refracted until their component of ¢,
upstream is large enough to allow

U+ ¢, cos 8 =0. (2.135)

At this stopping point they may be reflected upstream and will continue to
be refracted toward the direction from which the stream comes. If the
adverse current increases sufficiently upstream, a normal stopping point
may be reached. A second reflection may occur and the waves are once more
swept downstream. Now the crests would be nearly perpendicular to the
stream and the wave number substantially increased. Figure 6 gives a sketch

-03

ordinary stopping point

}\ -0.25
e
=~ !
4 -0.2
W_ -0.15
U
extraordinary stopping point -0.1

F1G. 6. A sketch solution for the wave crests of a wave train, with M = 1.02, reflected at
two stopping points. The arrows denote the direction of propagation of the waves (i.e, ¢, not
the ray direction ¢, + U).

of what wave crests may look like for such waves on a stream with a
constant velocity gradient dU/dx. The rays do not conveniently fit on the
same diagram. They are tangent to the lines of crest cusps. As is usually the
case for nonzero currents, the rays are not perpendicular to the wave crests;
indeed, for

tan § = —mU/w = —U*, (2.136)
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the rays are parallel to the wave crests. In Fig. 6 this occurs at a velocity just
below the normal stopping velocity for the rays reflected at that point.

The preceding analysis is clearly relevant to waves on rivers and flows in
channels. Waves on such flows are usually generated either by wind, by ships
or boats, or by obstacles. The latter waves are stationary and this a special
case, with w = 0. The other two generating mechanisms generally form
waves directly on the current and thus not necessarily with the parameters
relevant to still-water conditions.

The effects near the stopping velocity are readily observed, and result in
steep waves as the theory indicates. An account of waves generated by a
launch becoming steeper as they propagate upstream and hence giving an
unusual sequence of events to an observer is given by Peregrine (1972). For
example, a launch traveling upstream at constant velocity relative to the
water, against a current with velocity increasing with distance upstream,
generates waves. To an observer stationed at a point below the stopping
velocity, the waves appear to increase with time after the boat’s passage. This
is easily explained by the theory at the beginning of this subsection.

For sea waves, the group velocity of significant waves is usually much
greater than current velocities except for regions of especially strong cur-
rents near coasts. The effects of such currents producing tidal races at head-
lands have already been mentioned. Other strong currents are found at the
entrance to harbors, rivers, and enclosed bays or lagoons. Again the effects
of currents on incident waves, lengthening or diminishing their wavelength,
is often clear. Johnson (1947) gives two aerial photographs showing the
effect of an opposing and a helping current.

Laboratory experiments to investigate the phenomenon, reported by
Hales and Herbich (1972), showed strong effects. However, their photo-
graphs indicate that the current was too narrow for a theory based on
large-scale current variations to be applicable. This also appears to be the
case for rip currents, which occur near beaches.

Rip currents are the strongest of the currents generated in, and confined
to, the region just outside and within the surf zone on beaches. They are
jetlike currents, usually returning toward the sea the mass flow associated
with the incident waves. Quite often their position is stabilized by minor
beach features, such as longshore bars, but they can and do occur on
uniform beaches. There are a number of papers trying to account for the
generation of rip currents, especially those on uniform beaches. For exam-
ple, Noda (1974) shows how the interaction of waves and minor beach
topography gives rise to strong rip currents; in a following paper (Noda et al.
1974) a partially successful attempt to include the effects of the currents on
the waves demonstrates how important this is. Arthur (1950) gives a
computed ray diagram showing the effect of a current over a uniformly
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sloping bottom. Le Blond and Tang (1974) use a more complete approach,
including the whole cycle: incident waves generate a current that in turn
influences the waves. Their method is to look for a perturbation to a steady
two-dimensional solution.

However, the width of rip currents is rarely much greater than the
wavelength of the dominant incident waves. Thus, as Arthur (1950) acknowl-
edges, the assumption of a slowly varying wave train is inappropriate.
Indeed, whereas one might expect a more rapid increase in incident wave
amplitude on the rip current, observations indicate appreciably less growth
in wave amplitude. For example, a descriptive paper by Shepard et al. (1941)
comments that a gap in the breakers often occurs at the site of a rip current.
As this subsection shows, it is possible for the waves to be reflected by the
current, but this seems a little unlikely. The results of Section ILE indicate
that the lateral variation of current ought to concentrate the wave energy
near the current’s center. It seems more likely that the waves are diffracted
away by the current and a completely different approach is required (e.g., see
Section IIT). In practice the currents are usually unsteady, and the bed topo-
graphy also needs to be considered.

Although the more dramatic effects of the interaction between waves and
currents require relatively strong currents, the more usual currents of seas
and oceans do exert an appreciable influence on waves. For such weaker
currents, analysis is simplified by assuming all changes to be small and then
using the differentials of Egs. (2.89) and (2.92). For deep-water waves this
results in

do/26 = dk/k = —2 dcjc = dU/(U + }c), (2.137)
daja = —(3U + 2¢) dUJQ2U + c)2. (2.138)

Explicit results like this may also be found when the depth of water
influences the wave’s velocity.

This type of approach is particularly appropriate to currents associated
with long traveling waves of the form (2.84). The most commonly en-
countered long shallow-water waves are the tides. The above formulas can
easily be used where waves and tidal current are approximately unidirec-
tional, even if the tide is not simply a progressive wave. A standing wave
component in the tide can be written as the sum of two progressive waves,

e.g.,
2A cos Kx cos Qt = A cos K(x — Ct) + A cos K(x + Ct), (2.139)
where C = Q/K, and the contribution due to each of these is added together.

The velocity U in (2.137) and (2.138) is equal to minus the phase velocity of
the long wave, and dU equals the variation in velocity. This case of waves on

43/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

52 D. H. Peregrine

tidal currents is examined in detail by Vincent (1975). It is readily shown
that wave amplitudes are amplified most at high tide, for unidirectional
flows. Vincent shows that statistics derived from wave measurements in the
southern North Sea are consistent with this result.

For long internal waves results (2.137) and (2.138) still hold, but there is
an interesting complication. Although the currents involved are weak, the
phase velocity C of an internal wave is such that it is possible for

C=c,. (2.140)

That is, effects associated with stopping velocities may occur, for surface
waves traveling in the same direction as an internal wave. Gargett and
Hughes (1972) report regular surface markings in a region of strong internal
wave activity, which on closer inspection are regions of steep, long-crested,
short waves. The paper contains two photographs of them as well as a
theoretical analysis. The various stopping velocities for waves at an angle to
the current are identified, and their importance is discussed. However, their
physical nature and detailed solutions are not found. The waves look as if
they are associated with a stopping velocity.

Experiments on long internal waves with short gravity waves propagating
in the same direction are reported by Lewis et al. (1974). They particularly
investigated conditions near the stopping velocity. In the frame of reference
moving with the internal waves, the conditions of the laboratory experiment,
where both wave trains are generated at the same point, do not correspond
to a steady state, so the analysis of this subsection does not directly apply.
The paper presents an analysis of a perturbation about the basic state. This
indicates that the situation in which the group velocity of the surface waves
equals the phase velocity of the internal waves may be considered a resonant
interaction. Detailed measurements are presented that are in good agree-
ment with the theoretical results.

For many purposes sea waves are best considered in terms of their energy
spectra, and the transformation of spectra by currents has been discussed by
Phillips (1966, p. 60), Huang et al. (1972), Vincent (1975), and Gargett and
Hughes (1972), although the latter is only a brief discussion in connection
with internal waves.

Huang et al. (1972) give the most extensive discussion. They take an
empirical form of energy spectrum E(w) for wind waves, assume that the
waves are generated in still water, and then use relationships equivalent to
(2.91) and (2.92) to calculate the corresponding energy spectrum after propa-
gation onto a current. For adverse currents this results in a cutoff at high
frequencies corresponding to those waves which cannot propagate
upstream. For waves that are being actively generated by the wind, these
higher frequencies will be in the “saturated” part of the spectrum (Phillips,
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1966, Sect. 4.5). On the other hand if the waves propagate onto a current
traveling in the same direction this part of the spectrum will be appreciably
diminished. Huang et al. suggest that since the high wave number part of the
spectrum contributes most to surface roughness, this may be used as the
basis for a method of measuring surface currents. They fail to note, as
Phillips (1966) points out, that an adverse current will keep the spectrum
saturated, so that significant changes will be essentially due to the change in
current from its maximum adverse value. For ocean currents there is the
added complication that waves are generated by the wind, not only in re-
gions of no current but also where there are currents. This is aggravated by
the variable nature of most currents since the time history of both waves and
currents becomes important, for example, in Barber’s (1949) calculation of
the changes in wave period, due to tides, of swell from distant storms cross-
ing the area of the continental sh&lf southwest of Britain.

Some idea of the practical importance of such changes may be obtained
from Tung and Huang (1973), although a number of simplifying assump-
tions are made in their analysis, which is a sequel to Huang et al. (1972). A
“force” spectrum is deduced for the forces exerted on an obstacle fixed to
the sea bed, e.g, a coastal structure or oil rig. For example, using a wave
spectrum corresponding to a generating wind speed of 18 m sec™! (40 mph),
their calculations show (in their Fig. 4) that an adverse current of 1 m sec™!
(3.3 ft sec™!) increases the force spectrum maximum by over three times,
whereas a simple superposition of waves and current doubles this maximum.

The angular spread of a wave spectrum is also an important parameter.
Inspection of Fig. 5 shows that an adverse current U tends to concentrate
the wave spectrum around the — U direction, while a favorable current tends
to widen the angular spread for waves generated on still water.

E. STEADY CURRENT, VARYING ACROSS THE STREAM

A current of the form
U= (U(y), 0,0) (2.141)

is the simplest form of shear flow. For any function U(y) it is a solution of
the inviscid equations of motion for water bounded by a horizontal free
surface and a bottom with depth variation h(y). The real flows that support
gravity waves are turbulent, but even so form (2.141) can be a reasonable
approximation in appreciable portions of the flow field. The results derived
from this simple form can be used to interpret real flows. This discussion is
confined to steady wave trains on flows of deep water.
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If 6 is the angle between the wave number vector and the current, we again
have that

w=0c+kcosf U (2.142)
is constant. The consistency condition (2.42) gives
k cos 8 =1, (2.143)

another constant, and the y component of wave action flux gives a third
constant,

, = pga’c, sin 6/20, (2.144)

which with the dispersion equation is sufficient to determine the waves.
Equations (2.142) and (2.143) immediately give

c=w—IU. (2.145)

k and c follow from the dispersion relation, and substitution for k in (2.143)
gives

cos 8 = gl/(w — IU). (2.146)

Clearly, for a range of values of U this expression can have a magnitude
greater than one. For those velocities there are no waves with parameters w
and ]. The critical velocities bounding the region without waves are

w g 1/2
U=-—+|+] . 2.147

() (2147
At this velocity 8 = 0 or =, so the waves travel parallel to the current. From
the equations for the rays

dx/dt = U(y) + ¢, cos 8,  dy/dt = c, sin 6, (2.148)

it is easy to show that they generally have nonzero curvature at the critical
velocity. Thus the rays are tangent to a caustic line at such points.
The conservation of wave action gives

a® = 81B,/pg sin 26. (2.149)

The amplitude becomes unreasonably large as 6 approaches 0, n/2, and .
We have already noted that the values 0 and = correspond to a caustic, and
hence it is a place where the approximation of a plane-wave train becomes
invalid. The case 8 — n/2 is where waves are refracted so much that the
wavelength becomes very short and the small amplitude approximation is
no longer valid since the waves are too steep. This latter effect shows more
strongly in the expression for the wave steepness

a*k? = 4I°B,/pg sin 6 cos® 6. (2.150)
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FiG. 7. Curves showing the amount of refraction of wave trains on a shearing current. The
angle 6 is plotted against the dimensionless velocity change U*.

The behavior of wave trains can be followed graphically with the aid of
Figs. 7 and 8. The amount of refraction is found from Eq. (2.146), which can
be cast into the form

cos 8 = cos B,/(1 — U* cos 6,)%, (2.151)

where the wave train initially has a phase velocity c, and is traveling at an
angle 0, to a stream U,. The dimensionless change in velocity

U* = (U - Uo)/Co . (2.152)
Figure 7 shows curves giving 6 as a function of U* for a comprehensive
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F1G. 8. The variation in amplitude, wave number, and wave steepness for a wave train
refracted by a parallel shear flow.
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range of values of 6,. The corresponding variations of amplitude, wave
number, and steepness, ak, are shown in Fig. 8 on a logarithmic scale. The
curves are normalized by the value of each quantity at 8 = n/6, which is the
angle at which ak is least. The singularities at both ends of the range of § are
apparent. However, reference to Fig. 7 shows that, starting with some
“middling” value of 6, the change in current required to reach 6 = 0 is much
less than that required to approach n/2. Thus caustics may occur more often
than extremely steep waves due to refraction.

There are uniformly valid small-amplitude approximations including
caustics. Such solutions are presented in both McKee (1974) and Peregrine
and Smith (1975). McKee considers the case of a shear flow with a mono-
tonic velocity distribution U(y) in the neighborhood of the caustic. Pere-
grine and Smith consider stationary waves (ie, w=0) on a velocity
distribution that has a maximum value. This leads to waves being trapped
between two parallel caustics. In all these parallel-flow problems there is no
loss of generality in considering stationary waves since the phase velocity in
the x direction (w/k cos 0) is constant; thus there is always a frame of
reference in uniform translation in which a wave train is stationary.

These two papers differ a little in the form of solution assumed, but for the
first approximation in powers of k™! there is no significant difference, except
that McKee (1974) allows for a depth variation h(y). The solution has the
expected form in that it depends directly on an Airy function. If the caustic is
taken to be at y = y, and U(y) increases with y so that the region with waves
is y <y, then

{ = Alka/c,1)'*(dY/dy)™ '/ Ai(-Y), (2.153)
where for y <y,

yor =3 [“ksin6d (2.154)
= 2 y’ .

y

and k, ¢, 6, and ¢, take the values that may be deduced from Egs. (2.142) and
(2.143) and the dispersion relation.

The asymptotic expansion of the Airy function shows that the waves are
perfectly reflected and that the solution is consistent with Eq. (2.144) for the
flow of wave action if

A% = 8niB,/pg. (2.155)
Close to the caustic, this means that (2.153) may be written
{ = (8naB,/pgcy)'*(c l/2U")"® AI[(2PU' /e,) *(y — y.)),  (2.156)

where all the parameters and U’ = dU/dY are evaluated at the caustic.
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McKee’s (1974) result incorporating the effect of varying depth is obtained
by replacing U’ with

U + ;Z—ZZ—: (2.157)
Some simplification is obtained for deep water, since at the caustic
¢, = 20/l (2.158)
In this case the maximum amplitude is
0.536A4(20/U")"S, (2.159)

and the corresponding maximum steepness is I/ times the same expression.
Since the waves have a minimum amplitude at 6 = n/4, the maximum
amplification is calculated to be

1.065(a/U")!S, (2.160)
and the maximum amplification of steepness from its minimum at 6 = xn/6 is
0.496(a/U") 6. (2.161)

Clearly, large amplification near a caustic is not likely. For example, the
largest values of the parameter /U’ are likely to occur for sea waves, but
even then it is unlikely to exceed 10, which gives a maximum steepness less
than 5 times the minimum. Thus in many instances small-amplitude theory
will be valid at such caustics.

The natural way to consider a caustic after reading the above is to think in
terms of a stronger current refracting waves until they are propagating in the
current direction and reflected. An alternative view of the same wave system
is to consider waves propagating with a component of their direction being
upstream. Then a less adverse current may refract them to form a caustic.
This is particularly likely to happen on a river or similar stream of water
where the flow has a central maximum and slackens toward the edges. When
such flows are sufficiently rapid they can sustain stationary waves, and in
such circumstances the two caustics, one on each side of the maximum
velocity, are easily seen by a casual observer. This configuration is con-
sidered in detail by Peregrine and Smith (1975). A sketch of the rays is given
in Fig. 9a.

When the caustics are far apart, the analysis is similar to McKee’s (1974)
except for the matching of the solutions for the two caustics. This gives an
eigenvalue problem for the wave number /, which is found in the first
approximation from

1 »2
(N + —)1: = j k sin 9 dy, (2.162)
2 »
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F1G. 9. Ray diagrams for waves encountering a jetlike flow. A velocity profile is at the
left-hand side of each diagram. (a) Waves trapped in the region of maximum velocity. (b) Waves
excluded from the region of maximum velocity. (c) Waves partially reflected by a “near
caustic.”

in which y,; and y, are the positions of the caustics and N the number of
zeros of the amplitude between them. Peregrine and Smith (1975) give a
further approximation and solve the case where N is small, the two caustics
are close together, and the appropriate ansatz involves Hermite functions.

Examination of Fig. 7 shows that if the range of 6 across the stream is
relatively small (e.g., +15°) then the waves exist only on velocities very close
to the maximum. Thus a line of waves trapped between caustics on a stream
of water gives a very meager indication of the actual velocity distribution
across the stream.

The converse situation, where waves are refracted away from a stream
traveling in their own direction, is examined by McKee (1975). In this case,
the waves are outside the region between the two caustics; a ray diagram is
sketched in Fig. 9b. If these two caustics are close together, some of the wave
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action incident on one is reflected while the rest is transmitted. The ansatz is
in terms of parabolic cylinder functions (Hermite functions are a relatively
simple set of these).

McKee’s (1975) results indicate that the reflection coefficient decreases
from unity for widely spaced caustics to 2™ /2 for the case when ray theory
indicates that they coincide and the maximum stream velocity equals that at
a caustic. It is unlikely that the reflection drops abruptly to zero for a slightly
lower maximum current; thus if a ray diagram indicates a “near caustic”
some reflection is likely. A near caustic is sketched in Fig. 9c. It is a line of
inflection points in rays where the angle between the rays and the inflection
point line is small. This may be investigated with the same analysis as
McKee (1975).

The diagrams in Fig. 9 also partly illustrate the behavior of waves on a
current such as a river. The shear flow refracts waves that are propagating
downstream out of the region of maximum velocity. On a river this increases
the dissipation and scattering of such waves by the river’s banks. Conversely,
waves propagating upstream are refracted toward the center of the stream
and as a result suffer little scattering or dissipation. This is especially evident
for wind-generated waves, which even propagate upstream around corners
into reaches sheltered from the wind. Similarly in these circumstances winds
opposing currents will be able to generate larger waves than comparable
winds in the current direction. However, in most rivers this latter effect will
be obscured by the greater effective fetch available for the upstream wind.

Finite-amplitude effects may be worked out for deep-water waves, away
from any caustics, by Lighthill’s approximate Lagrangian (2.69). Crapper
(1972) shows the results for a few representative initial conditions but be-
cause of his computation method fails to note that there is a singularity in
the solution differing from that which occurs at a caustic for infinitesimal
waves.

Equations (2.143) and (2.145) still hold, so that using

1+ s =o%/gk (2.163)
instead of the linear dispersion relation gives
cos 0 = gl(1 + s)/(w — IU)?* = a(y)(1 + s). (2.164)

Note that a(y) is the value (2.146) of cos 6 for small-amplitude waves; thus
one effect of appreciable wave steepness is that 0 is diminished on a given
current for the same parameters ! and .

The relevant equation for constant wave action flux is

0% /0m = const (2.165)
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where
m = k sin 0. (2.166)
After substitution of & this may be reduced to
sin 0 cos® 0 s(2 + s — 9s% + 65°) = 28, (2.167)

where f is a constant. Equations (2.164) and (2.167) are two equations for §
and s. For a given wave train, § is constant but « is a function of y; thus if
curves given by (2.164) are drawn in the (6, s) plane for a range of values of ,
then the appropriate curve (2.167) immediately shows the variation of both s
and 0.

Curves for representative a and f are shown in Fig. 10. The velocity U

0.20
0.15
o.10

0.0

90°

FIG. 10. Solutions for the wave steepness (s =~ a?k?) and direction of propagation of
finite-amplitude deep-water waves on a shear flow. The lines ay) = const may be identified by
the value of @ at s = 0, and use of Fig. 7 then gives the corresponding value of U(y). The lines
B = const do not touch either axis, and the dashed line is where lines of the two families touch.

corresponding to different values of « can be found from Fig. 7 since
o = cos 6 for zero amplitude. An immediate and striking result is that there
are no solutions for velocities corresponding to sufficiently small values of 6.
Each curve B = const touches one of the family of a curves and does not
meet any of the « curves between that point and the origin. At each of these
points, joined by a line in Fig. 10, ds/da (and hence ds/dU and ds/dy)
approaches infinity, even though s is finite and may be quite small. The
solution for s as a function of U has two branches, which in the (s, U) plane
are represented by a single smooth curve. This means that for given , /, and
U there may be two solutions (s, ).

The conclusion to be drawn from the singularity of the s derivatives is that
the plane-wave assumption does not hold. There is a caustic, but the singu-
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larity differs from that for infinitesimal waves. Observation of shear flows
does not reveal any tendency for waves to become unduly steep near
caustics, so it is likely that the reflected waves generally correspond to
solutions on the lower branch of the s, U curve.

The difference from the infinitesimal case is quite striking. For example,
for s = 0.11 and a velocity that causes infinitesimal waves to be at 30° to the
current, the finite-amplitude solution stops with 8 = 16°. The difference is
still there as s — 0. The line of double points is

s = a2 = 60, (2.168)

near the origin.

Thus, given a sufficiently small value of dU/dy, even the gentlest waves
may meet this singularity an appreciable distance from the zero-amplitude
caustic position. However, one is reassured by the existence of uniformly
valid approximations for infinitesimal waves reflecting at a caustic.

This singularity is not an artifact of Lighthill’s approximate Lagrangian
since it occurs for arbitrarily small s for which any finite-amplitude approxi-
mation should give the same result. It is also very similar to a singularity in s
arising from an initial-value problem investigated by Lighthill (1965, Sects.
13-15). It seems likely that a similar singularity may be found in caustics
caused by varying depth. In that case there is an exact linearized solution for
edge waves, which provides a starting point for a uniform finite-amplitude
approximation, and, hence, a possible way of gaining further understanding
of the problem.

There has been little experimental work on this problem. One of the major
problems in experiments is to set up a uniform current with shear since most
large-scale flows are turbulent and not unidirectional. Hughes and Stewart
(1961) measured the propagation of capillary-gravity waves across a shear
flow. Their elegant approach to the turbulence problem was to set up a
stable Couette flow. The measurements of wave slope confirm that energy is
not conserved and the results are consistent with inclusion of the effects of
radiation stress. [Longuet-Higgins and Stewart (1964) point out that the
effects of radiation stress are underestimated since an incorrect expression
was used.]

An interesting application of refraction analysis is given by Kenyon
(1971). The propagation of waves across the Pacific Ocean from storms in
the Antarctic Ocean was measured by both Munk et al. (1963) and
Snodgrass et al. (1966). In the former paper, it is noted that “ wave inferred
directions [to storm centers] are to the left of the location from weather
maps,” and in the latter paper, measurements were obtained “though the
stations are totally shadowed.” Kenyon suggests, and gives some detailed
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figures, that the refraction of waves by the Antarctic circumpolar current is
sufficient to account for these anomalies.

Abnormally large waves off the southeast coast of South Africa have been
reported over a number of years, but with increasing frequency over the last
decade. For example after meeting a large wave the 28,000-ton tanker World
Glory broke in two in 1968, and the 260,000-ton ore/oil tanker Svealand was
severely damaged by a wave in 1973. Some of these incidents are reported in
Marine Observer published by the Meteorological Office, and Mallory
(1974) gives details of several incidents together with meteorological and
hydrographic information.

Mallory’s report shows that these exceptional wave conditions occur off
an almost straight coastline stretching in a southwesterly direction, with a
relatively narrow continental shelf of between 10 and 30 km width. The
Agulhas current runs in a southwesterly direction, bounded by the outer
edge of the shelf (200-m contour), with its maximum current of over
2 m sec” ! just seaward of the shelf edge. Its width is 95-160 km, but it does
not usually flow on the shelf, where a countercurrent of up to 1 m sec™?
flows when a cold front passes.

The abnormal waves are all observed on the Agulhas current, and their
occurrence is either coincident with or a few hours after the passage of a cold
front through the area. The southwesterly winds behind the cold front have a
fetch of over 1200 km and have been blowing for more than 24 hours. The
waves generated in this long fetch will have developed on the westward-
flowing Antarctic circumpolar current, but meet the Agulhas current head
on, resulting in an increase in amplitude of around 259 on the linear theory
for uniform wave trains.

A further increase in amplitude is to be expected because of the jetlike
nature of the current. Waves are concentrated by refraction onto the region
of maximum velocity and most of the wave energy is confined to this region
by bounding caustics. This fits in well with the observations reported by
Mallory of higher waves outside the continental shelf on the current. Thus
the current and wind systems combine to give a very high level of wave
activity. The abnormal waves encountered have usually been much greater
in amplitude and length than the general level. However, in any sea the
largest waves occur with small probability.

One aspect of caustics that needs investigating in this context is the behav-
ior of a short group of waves traversing a caustic region. This may be a
suitable way of modeling the real sea waves, which are rarely coherent for
more than a few wavelengths. It seems likely that a solution would show just
one or two large waves persisting for a limited time.

Ocean current and wave systems of this sort merit further study since it
should prove possible to forecast them and advise shipping accordingly.
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Also such waves may occur elsewhere in similar conditions; Casey (1974) in
a brief letter mentions an incident off Ushant, where tides would cause the
currents, and off Japan.

F. FLows WITH SIGNIFICANT VERTICAL ACCELERATIONS

The foregoing theory does not apply directly to flows in which the water
has appreciable vertical acceleration or surface slopes. Examples of this type
of flow are surface gravity waves on deep water and the flow over a waterfall
or weir. The former example is of most interest, and the behavior of short
waves riding on long waves has been discussed by several authors; it was in
Longuet-Higgins and Stewart’s (1960) paper on this subject that the concept
of radiation stress was introduced.

In that paper a careful perturbation analysis for short waves riding on
long waves is presented. Both sets of waves are assumed to have small
amplitude and the interaction occurs in second-order terms. Once the
appropriate amplitude variation is described, a physical interpretation is
discussed, including among other things the idea of radiation stress. It is seen
that the effect of the vertical acceleration of the water on the dispersion
relation needs to be taken into account. At first sight this appears inconsis-
tent, since all other derivatives of the long-wave velocity field are ignored. In
that example, a confirmatory check is available from the perturbation
analysis. A more general illustration of the effect of vertical acceleration is
given here.

For simplicity of presentation consider the basic flow to be steady and two
dimensional; this includes periodic plane waves that are steady in a frame of
reference moving with their phase velocity. Introduce orthogonal curvilinear
coordinates (s, n) near the water surface such that s is measured along the
surface and n increases along normals outward from the surface. Let the
basic flow have (s, n) velocity components (U, V) and pressure P satisfying
the equations of motion. Then the boundary is n =0, and the boundary
conditions are

V=0 and P =const. (2.169)

This flow together with infinitesimal waves riding on it may be described
by velocity components (U + u, V + v), a pressure P + p, and the free sur-
face n = n. These satisfy linearized inviscid equations of motion:

w1 @ 2 1 o
Eg+m5;(uu)+%(lju)+KuV+KUU+;(l—;"K—n)aS—-O, (2170)
ov 1 0

(Uv) + (%(Vv) - 2%Uu + Top_ 0, (2.171)

E+(l+xn)a pon
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together with linearized boundary conditions applied at n = 0:
on U dn_

6t+(1+xn)a—v’

0P
In these equations x is the curvature of the free surface of the basic flow, with
k > 0 if the center of curvature is within the fluid.
The equations of motion for the basic flow give

—8PJon= (DV/Dt) — g - i, (2.174)

where g is the gravitational field and @ the unit vector normal to the free
surface. Thus, taking (2.169) into account the boundary condition (2.173)
may be rewritten

(2.172)

p=(—g-h—xUn. (2.175)

Flow along the surface streamline will satisfy Bernoulli’s equation so that U
is of the order (gL)'/2, where L represents the length scale of the basic flow.
This is the case for deep-water long waves since U is then approximately
equal to the phase velocity, which is (gL/2n)!/2, where L is the wavelength. If
the radius of curvature k™' is also of order L, then the terms xU? and g - i
are of the same order of magnitude and should both be included in the first
approximation.

For a small-amplitude deep-water long wave x~! is of order A/I?, where
A is the wave amplitude, and xU? is of order (4/L)g * . For small A/L it
might be assumed negligible. However, this is nat the case since the varia-
tions in U that are of interest are also of order (4/L)U. Thus the term xU?
should again be included.

Typical terms in the equations of motion are

U 0u/ds ~ O(Uuk),
u 0U/ds ~ O(UuL™ 1),
kUu >~ O(UuL™?).
For these terms, the primary assumption that the waves are short compared
with L clearly indicates that velocity gradients and the curvature of stream-

lines need not be included in a first approximation. Thus the dispersion
relation for short waves is

0% =(w — kU)? ~ (—g - i + DV/Dt)k = g*k, (2.176)
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where g* is the “effective gravity” in a frame of reference moving with the
free surface of the large-scale flow.

For a steady situation it is reasonable to suppose that wave action is
conserved and that the wave action flux

B=EU +c,)/o (2.177)
is constant, where
' E = {pg*a’. (2.178)

However, as Bretherton and Garrett (1968) point out, there is ambiguity
possible in defining E, the “perturbation energy density” in moving refer-
ence frames. This is made apparent by Longuet-Higgins and Stewart (1960)
where the form

E = {pg*a® + 4pga’® (2.179)

is chosen for waves on a basic flow with small surface slopes, the second term
representing potential energy in the gravitational field only. The choice
(2.178) seems more appropriate since it corresponds to equipartition of
kinetic and potential energy densities. This choice is also supported by
consideration of the Lagrangian for a perturbed flow derived by Bretherton
and Garrett, Eq. (4.19), although it should be noted that this involves energy
per unit horizontal area rather than per unit area of mean free surface.

The solution of these equations differs from that for the simpler flows of
Section IL,D only in the substitution of g* for g, so that most results carry
over directly once g*(s) and U(s) are prescribed. However, the example of
short waves riding on long waves traveling in the same direction involves a
different solution from that discussed in Section ILD.

In a frame of reference in which the long waves appear stationary, the
current is

U(s) = —C cos y + U*(s), (2.180)

where C is the phase velocity of the long waves, y/(s) their surface slope, and
U*(s) the water velocity due to the waves. That is, the short waves in this
frame of reference are meeting an adverse stream of magnitude C. The phase
velocity of the short waves is much less than C, so that

w = kic + U) (2.181)

is negative, showing that c is always less than — U(s). Similarly the wave
action flux B is also negative, and the solution illustrated in Fig. 4 does not
represent this situation.

For the case g* = g, the variation of g, k, and ak relative to their values at
U = —2c are shown in Fig. 11. A large range of velocities are shown in the
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0.24

0.1

Fi1G. 11. The variation of amplitude, wave number, and wave steepness ak on a current U(s)
for negative values of w and B. Note both ordinates are logarithmic. The suffix 2 refers to values
where U = —2¢.

figure, since for a large amplitude long wave, — U(s) varies from a value
greater than C in the trough to almost zero near the crest. The relatively
rapid variation of steepness ak of the short wave with velocity U(s) is clear.

The solutions shown in Figs. 4 and 11 can also be used when g* differs
from g. Let

7 =g%g0 (2.182)

where g, is the value of g* at a point where values of the wave parameters
are known. Introduce new variables
[

k* = k/y, c* =y, a* = afy, * = yU. (2.183)

Then the equations to be solved for the starred variables are those for
constant g* = g,.

The simplest example with significant vertical acceleration is where the
long waves are of infinitesimal amplitude with surface displacement

A sin(Kx — Qt).

58/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

Interaction of Water Waves and Currents 67
Then
U(s) ~ —C + AQ coth Kh sin Ks, (2.184)
g*(s) >~ g — AQ? sin Ks. (2.185)
Since A is small the analysis is simplified by assuming
U=~-C+dU and g*(s)=g + dg* (2.186)

and using the differentials of Eq. (2.177) and (2.181) and the dispersion
relation.

The results of this analysis, after identifying dU and dg* with the appro-
priate terms in (2.184) and (2.185), and after simplifying even further by
neglecting ¢ compared with C, are

do/o = $AK(coth Kh — tanh Kh) sin Ks, (2.187)
dk/k = AK coth Kh sin Ks, (2.188)
daja = $AK(3 coth Kh + tanh Kh) sin K, (2.189)
d(ak)/ak = AK(7 coth Kh + tanh Kh) sin Ks. (2.190)

Longuet-Higgins and Stewart (1960) derive results corresponding to and
agreeing with (2.188) and (2.189) in their perturbation analysis. Vincent
(1975) points out that although ¢ < C, it is often not small enough to be
neglected. There is only a simplification of algebra gained by its neglect.

It is clear that short waves steepen as the crest of a long wave overtakes
them. If the long wave has appreciable amplitude they may steepen
sufficiently to break at some point on the forward facing slope of the long
wave. If short waves travel in the opposite direction to the long waves, then
U(s) is positive (supposing that the short-wave direction is again taken to be
positive). However, Eqgs. (2.187)-(2.190) still hold for infinitesimal long
waves since dU/U still has the same value.

It is suggested by Longuet-Higgins (1969) that the variation of steepness
of short waves on longer waves may contribute to the growth or decay of the
longer waves. Two mechanisms are proposed, one weak and one strong
interaction. The weak effect is the viscous decay of the short waves, which is
proportional to wave steepness. One result of the decay is to transfer
momentum from the short waves to the “current.” Since the short waves are
steeper at crests than in troughs, more momentum is transferred at the crest,
leading to a growth or decay according to whether the short waves are
traveling with or against the longer waves. Longuet-Higgins discusses details
of the momentum transfer, introducing a virtual tangential stress at the
surface, and makes an estimate of its value for a typical wind-driven system.
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It may account for more than 109 of the stress due to the wind at low wind
speeds, and less for high winds. It is also shown that

1dA 4

:‘i *d}* = ? (ak)on3, (2191)
where v is the kinematic viscosity; the strong dependence on the frequency of
the long waves is evident, but it is possible that the effect may be significant
in their amplification.

A stronger effect can be expected when the short waves steepen sufficiently
to break. This gives a very direct transfer of momentum, and also, since
much of the wave energy may be dissipated, more of the wave momentum
may be transferred. If the wind can regenerate the short waves between the
long-wave crests, this could be an efficient mechanism for generating waves
with phase velocities greater than the wind speed. Longuet-Higgins’ (1969)
estimates for the rate of growth of the waves are consistent with this mechan-
ism being important for certain sea states.

A contradictory result is obtained by Hasselmann (1971). The inviscid
equations of motion are averaged and the interactions are considered from
an Eulerian viewpoint. This represents the mass flow associated with the
short waves as a surface flow occurring between the wave troughs and their
crests. This results in a new kinematic boundary condition for the mean
flow. At the mean free surface, z = Z,

0Z/ot)+ (U -V,)Z - W= -V, - M/p, (2.192)

where M is the mass flow associated with the short waves. The term on the
right-hand side gives the rate at which the mean surface Z must be lowered
to supply water to feed increases in the mass flow of the short waves.

This mass flow is greatest down the front face of a crest of the longer wave,
effectively transferring water from the crest to the trough of the wave, and
hence reducing its potential energy. Hasselmann (1971) deduces that this
term is as effective in damping a wave, as the momentum transfer is at
amplifying it. Using infinitesimal wave theory he analyzes the residual terms
in an expression for the rate of change of the long wave and deduces that,
whichever way the short waves travel, the long wave is damped. In a discus-
sion of radar measurements of short-wave spectra he concludes that the
magnitude of this damping is “ of marginal significance.”

The approaches in these two papers are difficult to reconcile. Clearly
Hasselmann introduces an important interaction, which Longuet-Higgins
was unaware of, but the momentum transfer in his inviscid model may be a
poor representation. This is especially so for breaking short waves, where the
vorticity generated may spread below the surface layer. Similarly, the re-
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liance on linear theory for order of magnitude estimates may not be ade-
quate, especially as for short waves of small amplitude there is no significant
energy transfer. More work is needed on this problem, but it is reasonable to
conclude that Longuet-Higgins overestimates any amplification of long
waves.

A closely related subject is the generation of capillary waves near the crest
of a steep gravity wave. These are interpreted as waves of the same phase
velocity generated by the excess pressure at the sharply curved crest due to
surface tension. Longuet-Higgins (1963) analyzes their generation by a per-
turbation scheme and discusses the results in the context of short waves on a
large-scale flow. Crapper (1970) starts from this point of view and uses his
solution for finite-amplitude capillary waves (Crapper, 1957) to calculate the
variation in their steepness along the gravity wave profile. In this problem,
as in most problems where surface tension is important, it is necessary to
take account of the dissipation of the short-wave motion by viscosity. For
this reason wave action is not conserved and it is more appropriate to use an
energy equation, with radiation stress, dissipation, and an input function.
For short waves of this type, if surface tension is dominant then both gravity
and surface accelerations are unimportant and may be neglected. It is clear
from the last few paragraphs that the dissipative effects of these capillary
waves may be important and should be investigated further.

Another mechanism for generating capillary waves on the front of a grav-
ity wave becomes evident once the properties of capillary-gravity waves are
considered. These waves have a minimum value of their group velocity. We
have noted that U + ¢ is always negative for short waves traveling with
longer waves, in the frame of reference with the long waves stationary. For
gravity waves, this implies U + c, is never zero, but this is not so for gravity-
capillary waves. U + ¢, may be zero and there is then a stopping point. The
magnitude of the velocity U at the stopping point, and hence at the crest of
the long wave, must be less than the wave velocity at which ¢ = ¢,, which
equals the minimum phase velocity. For normal gravity and clean water, this
is 0.23 m sec™!. These reflected capillary—gravity waves are longer than
those generated at the crest. This is easily seen from graphical consideration
of the equations

oc=w-— kU,
o = (gk + Tk3/p)'/2.

The reflected waves have w <0, while those generated at the crest have
= 0 (note that U < 0).

A further factor influencing short waves riding on long waves on the sea is
the vorticity distribution in the water due to direct wind stress and the
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dissipation and breaking of waves. Shemdin (1972) gives experimental mea-
surements of velocity profiles and estimates the effect on the dispersion rela-
tion, and Banner and Phillips (1974) discuss its effect on the maximum
amplitude of the shorter waves (see Section IV).

As already described, when the crest of a steep long wave catches up with
short waves they increase rapidly in steepness. Dagan (1975) makes the
interesting suggestion that for the highest waves, where U(s) is near zero at
the crests, the rapid increase of amplitude of the short waves may be in-
terpreted as an instability of the basic flow. That is, the initiation of breaking
might be described in these terms.

Two properties of the breaking process are described by this hypothesis:
(i) its initiation is rapid, (ii) breaking occurs on the front face of a wave. On
the other hand, breaking does not resemble an oscillatory short wave. If U(s)
is always greater than the minimum phase velocity, then sufficiently small-
amplitude wave disturbances may pass over the wave crest, while if U(s) has
a lower value, there is a stopping point near the crest where waves may be
reflected, and for sufficiently small initial waves, infinitesimal wave theory
may be used to find the amplification. Thus the usual requirement for insta-
bility of indefinite amplification of an arbitrarily small disturbance is not met.
Dagan’s analysis is for a steady flow and makes no assumption about the
rate of change of the short waves, in which respect it is valuable. It certainly
indicates that short waves may sometimes precipitate or influence breaking.

In confirmation of this the author has a 16-mm film showing a small wave
disturbance meeting a wave on the point of breaking on a beach. The larger
wave breaks with two sheets of water projected forward. By running the film
backward frame by frame it is clearly seen that one of the sheets of water is
directly connected with the incident disturbance.

HI. Small-Scale Currents

A common way of finding solutions to difficult mathematical problems is
to look for parameters that may be either very large or very small and then
to solve the problem for those cases by making appropriate approximations.
This approach is successfully used in Section II to deal with large-scale
currents. At the other extreme are current distributions with a scale much
smaller than a wavelength. Some important examples are best discussed in a
context covering all length scales; thus flows that vary with depth are treated
in the next section, and the interaction of the flow around a ship with the
waves it generates is considered in Section V. This leaves few situations of
interest where much analysis may be done, and most of this section is
devoted to thin shear layers.
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There has been very little work on this problem, so it is of interest to note
an analogous problem that has been studied more intensively. The propaga-
tion of sound through moving fluids is one such case; indeed, two-
dimensional sound waves in a uniform atmosphere satisfy exactly the same
equations and boundary conditions as infinitesimal shallow-water waves in
water of constant depth. This subject is reviewed in a paper by Lighthill
(1972) and the book by Goldstein (1974) gives mathematical details of some
of the topics. Naturally many of the problems that arise in acoustics have
little relevance to water waves and vice versa, although the mathematical
methods are applicable to both fields, or at least provide a useful starting
point.

When all dimensions of a current system are very small compared with
those of the waves, the wave may simply be taken as giving the local mean
water level and current as slowly varying functions of time. For example, this
is often done in relation to the tides for small-scale coastal problems. The
effect on the waves is negligible, unless there are many such small current
systems. In any case, the author does not know of important or interesting
examples.

More interesting currents are those which have one long length scale but
which are otherwise short compared with the waves. A thin shear layer
between two different, nearly uniform flows is the simplest example. A thin
jet is another example. In real flows regions of strong velocity gradients only
remain thin if there is some factor opposing their usual turbulent spread.
However, in many cases a portion of the flow field might be well described as
a thin shear layer, and any solution for that case can be of value in interpret-
ing or predicting behavior in the problem where the current scale is of the
same order as that of incident waves.

In searching for mathematical solutions to problems involving thin shear
layers, it is a natural step to look at the limit as the thickness of the shear
layer goes to zero. That is, to consider a flow with a vortex sheet across
which the velocity is discontinuous. In practice both vortex sheets and thin
shear layers are unstable flows, so that steady solutions to such problems
cannot be expected to give more than a crude approximation to real situa-
tions. This is better than nothing and may be quite adequate in some
circumstances.

If a vortex sheet at y = n(x, z, t) separates two regions of flow, denoted by
subscripts 1 and 2, then the boundary conditions on the vortex sheet are (i)
that the pressure is continuous,

Pr =02, (3.1)

and (ii) the fluid particles each side of the vortex sheet move with the sheet,

63/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37FAOECA03C96B30E14CD18E50B84669D...

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

72 D. H. Peregrine

that is,
on dy on _ .
at+uia+wia—z-~v,-, for i=1,2. (3:2)

This latter boundary condition has been incorrectly formulated in a number
of papers, both for compressible flows and for water wave problems, by the
omission of the last two terms on the left-hand side of Eq. (3.2).

The simplest problem is for an undisturbed flow that consists of a plane
vortex sheet with uniform flows (U, 0, 0) and (U,, 0, 0) on its two sides.
The incident wave is simplest if it is plane periodic, making an angle 0, with
the flow direction. Solutions for the acoustic problem were given indepen-
dently by Miles (1957) and Ribner (1957).

The corresponding linear shallow-water problem is quite straightforward.
Matching phases on both sides of the vortex sheet gives

k, cos 8, =k, cos 0, (3.3)
secf, + F,=secO,+ F,, (3.4)

where 6, is the angle the transmitted wave makes with the flow and F; is the
Froude number U;/c = U gh)™'/%. These show that there are two critical
angles, and incident waves are totally reflected if

—1<sech, +F, —F, <1 (3.5)

The amplitudes of waves are easily found from the linearized boundary
conditions. If 4; and B; are the amplitudes of waves propagating in the +y
and —y directions, respectively, on the appropriate sides of the sheet, then

Al +Bl =A2+Bz, (36)
kz Sin OI(AI - Bl) = kl Sln 92(/42 - Bz) (37)

If the signs of cos 8, and cos 0, differ, then the reflected and transmitted
waves may be many times larger than the incident wave. This solution only
occurs for

|F, — F,|>2 (3.8)

and appears to be a mathematical curiosity since the amplification is much
diminished if a finite shear layer is incorporated into the mathematical
model (Graham and Graham, 1969).

Much further work has been done on the acoustic problem: in particular,
Jones and Morgan (1972) solve for an instantaneous line source situated off
the vortex sheet. After the wave produced has interacted with the vortex
sheet for a finite time, an “instability wave” arises, which has an exponen-
tially growing amplitude. Jones and Morgan (1974) use a very simple
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method of modeling the turbulence that must arise, and this leads to a more
complete discussion of the scattered sound. The papers are also of interest
for the mathematical techniques used to ensure that the solutions satisfy
causality.

For waves in deep or moderately deep water, the acoustic analogy is not
available. Even the simplest problem of linear plane waves on a vortex sheet
has not been solved. The difficulty arises in satisfying the boundary condi-
tions on the vortex sheet at all depths. Matching the phase of the wave in x
gives

k, cos 6, =k, cos 0, (39)

again, but matching the frequencies leads now to

(U; = Uy) cos 8, ]* _ cos 6,

1- =
¢ cos 0,

(3.10)

for deep water instead of (3.4), because of the different dispersion relation.

Given k, and ,, this is sufficient to determine k, and 8,, and thus the
range of total reflection, which again lies between two critical angles, and is
given by

—(]cos 8, |)*? < (U, — U,) cos 8, /ey < (|cos 6, |)''2. (3.11)

However, k, # k,, except in one isolated case. Thus the variation of the
wave motion with depth, that is, exp(k; z), is different on the two sides of the
vortex sheet. A solution that includes terms whose influence is confined to
the neighborhood of the vortex sheet is needed.

If the velocity potentials are assumed to vary like exp{i(Ix — wt)}, where

I=k; cos @, (3.12)

then the remaining problem looks deceptively simple and symmetrical. The
equations to be solved are

(azd’i/ayz) + (az¢i/522) - 12¢i =0 (3.13)

in the region y <0,z <0,ifi = l,andiny > 0,z <0, ifi = 2. The boundary
conditions on z = 0 are

0:/0z = al¢;, (3.14)
and those on y =0 are

196, _ 199,

15
a, ay o, dy (3.15)

a @y =00, and
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where

o; = rw""Ul'lg-UZ- (316)

Those who are mathematically inclined may like to prove the existence, or
nonexistence, of solutions, or find some.

Evans (1975) has succeeded in reducing the problem to that of solving a
pair of singular integral equations. Conservation of wave action is proven
and approximate solutions are found. Figures 12 and 13 show the results for
four angles of incidence. The reflection and transmission coefficients given
are simply the ratio of the surface amplitudes in the relevant waves. It may
be noted that unless 6 is small the reflection is low except in the vicinity of
critical angles, or when there is total reflection. When there is little reflection
the transmission coefficient differs little from that for a wide shear layer for
which results are given in Section ILE and shown on Fig. 12. Evans used
two different approximations; both are shown in Fig. 13 and thus give an
idea of the accuracy that may be expected. For

|Uy = Uy |<cy (3.17)

it appears to be quite adequate for any application.

Another solution involving vortex sheets is given by Peregrine and Smith
(1975). The solution is for stationary waves on a “top-hat ™ jet. This type of
solution is relatively simple since, on introducing a velocity potential within
the jet and noting that there can be no motion outside it, the boundary
condition (3.1) on the bounding vortex sheet reduces to

8¢p/ox =0, (3.18)

while (3.2) becomes an equation for finding its displacement. For a rectangu-
lar jet of width b and depth h, surface waves of the form

{ = a sin(nmy/b) cos Ix (3.19)
have a dispersion relation
gk = U?P? tanh kh, (3.20)
where
k? = 2 + n’n?/b%. (3.21)

If the currents are taken to be as weak as the water velocities in the wave
motion, then it is appropriate to make a perturbation expansion with the
first approximation being a simple superposition of the two (as mentioned in
Section ILC,3).
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30
| 75°

L 1 [l 1 ]

-3 -2 -1 (U‘o_ U,)/c,

F1G. 12. The modulus |T| of the transmission coefficient for waves of unit amplitude
incident on a vortex sheet (solid lines) compared with the transmission coefficient for a slowly
varying change of velocity (dashed lines). The angle 6, is the angle between the crests of the
incident waves and the current and differs from the angle 6, used in the text. (From Evans, 1975,
Fig. 1.}

0
( U,-U)/c,
FI1G. 13. The modulus of the reflection coefficient for waves of unit amplitude incident on a
vortex sheet, two different approximations, solid lines and dashed lines. The angle 6, is the

angle between the crests of the incident waves and the current and differs from the angle 0, used
in the text. (From Evans, 1975, Fig. 2.)
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IV. Currents Varying with Depth

A. INTRODUCTION

There are two major causes of steady currents that vary with depth. Wind
stresses at the surface and frictional stresses acting on the bottom. Viscous
stresses and turbulent Reynold’s stresses transmit these to the body of the
flow, setting up a mean velocity profile.

One class of such flows are those where viscosity and surface tension are
important. These may be described as thin-film flows and are of great impor-
tance in chemical engineering and hence have a substantial literature, both
theoretical and experimental. No more than occasional reference is made to
those flows here since they are outside the scope of this paper.

For two-dimensional high-Reynolds-number flow in a stream with a free
surface, the velocity profile is often taken to have the form

U(z) = Az, (4.1)

although measurements indicate a maximum velocity below the free surface
(this may be due to surface stress from still air or to three-dimensional

effects). Near a rigid bottom, z = — h, the velocity may be better represented
by the “law of the wall” logarithmic profile
U(z) = (U, /x) log[(z + h)/z,]. (4.2)

Similarly, near the free surface, z =0, the wind-induced current may be
described by

U(0) — U(z) = (U, /) log(z/zo). (4.3)

Shemdin (1972) reports measurements from a wind/wave flume and shows
that they are in reasonable agreement with this formula. Wu (1975) also
reports measurements from a flume that indicate a linear variation of velo-
city in the top few millimeters, that is, a laminar sublayer.

In many cases the major part of the velocity variation is confined to
boundary layers at the surface and on the bottom. Then the wind drift will
only directly affect the shortest waves and only long waves, influenced by the
whole velocity profile, will be affected by the bottom boundary layer. Thus a
whole range of “intermediate ” length waves will be only slightly influenced
by the velocity variations.

Two other causes of flows varying with depth are (i) density stratification,
which can lead to internal waves and to “selective withdrawal” from a
stratified reservoir, and (ii) sudden increases in depth of river beds or
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artificial channels with a resulting separation of the flow such that in ex-
treme cases it may form a surface jet. Hydraulic breakwaters also take the
form of a fast surface current.

In the rest of this section it is assumed that the current is in one direction
only. Waves may be at an angle to the current. However, this three-
dimensional problem is not discussed in most examples since if a two-
dimensional solution is known then a corresponding solution atan angle 6 to
the current is readily found, as indicated below, following Benney (1966).

The x axis is chosen in the direction of wave propagation so that the basic
flow is

(U(z) cos 6, U(z) sin 6, 0), (4.4)

and the wave motion depends on x and z only. The momentum equations in
the x and z directions, the continuity equation, and the boundary conditions
are then exactly the same as for two-dimensional waves on the flow
U(z) cos 0 in the direction of their propagation. (That is, as long as the
pressure boundary condition is not rewritten by using a form of Bernoulli’s
equation.) This is because the motion is independent of y, and the velocity
components in the y direction only occur in the y momentum equation,
which thus becomes an equation for finding the y component of velocity
once the rest of the problem is solved. This is true for finite-amplitude waves,
but in that case can only apply for a single wave train or for two wave trains
traveling in exactly opposite directions.

B. INFINITESIMAL WAVES

1. Equations for Variation of Wave Motion with Depth
Taking a basic velocity field
U=(U(2),0,0) (4.5)

and the inviscid equations of motion, linearized equations for a perturbation
may be written. If the depth is assumed constant with the bottom of the flow
at z = —h, the perturbation quantities may be taken to vary like

f(z) exp{i(kx — wt)} (4.6)

without loss of generality. It is then straightforward to eliminate all but one
variable, giving a second-order equation for its z variation.
If pressure is chosen, the equation is

p'(z) — [2U'/(U = o)lp'(z) — k’p(z) = 0, (4.7)
where a prime denotes a derivative with respect to z, and ¢ = w/k. Another
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convenient variable is the vertical velocity, which gives the alternative
equation
UII
" — | k? =0. 4.8
w ( + U= C)w (4.8)

This equation is the “inviscid Orr-Sommerfeld equation” or “Rayleigh
equation” of hydrodynamic stability theory. Clearly, if the velocity profile is
such that it is unstable, the unstable perturbations are possible solutions as
well as solutions corresponding to periodic surface waves. Stability is dis-
cussed in Section IV,D. A full discussion of this equation, in the context of
the stability of flows with rigid boundaries, is given by Drazin and Howard
(1966) and a shorter account may be found in Yih (1969, Ch. 9, Sect. 6).

At a rigid bottom z = —h, the boundary conditions for these equations
are
pPI(U~¢)=0, (4.9)
w=0. (4.10)
At the mean free surface z = 0, the linearized boundary conditions are
gp' = kK*(U —c)’p, (4.11)
(U=c)*w =[g+ (U=c)U]w. (4.12)

Equations (4.7) and (4.8) can only be solved explicitly for a few simple
functions U(z), so that it is often useful to consider composite profiles. The
matching conditions at a discontinuity of velocity and/or velocity gradient
are that either

p and p/(U-c)? (4.13)
or
w/(U—-¢) and (U—cw —Uw (4.14)

be continuous. Occasionally continuity of w' has been wrongly used at
discontinuities of velocity.gradient instead of the second of (4.14).

For general wave numbers and frequencies, analytic solutions are only
available for uniform currents and for currents depending linearly on z.
Solutions for w are easily found and p is obtained from the relation

ki*p=Uw—(U—cw. (4.15)

Crude approximations to most velocity profiles may be made with two or
more linear regions. Although analytic dispersion relations are found, even a
bilinear profile leads to complicated relations that take some effort to inter-
pret. A number of authors have used linear and bilinear velocity profiles in
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different circumstances. For example, Taylor (1955) finds stopping velocities
for a hydraulic breakwater, and Betts (1970) studies instabilities in a flume
where the flow emerges from a closed section.

For stationary waves, ¢ = 0, analytic solutions may be found for a wider
range of velocity profiles. Peregrine and Smith (1975) give a short table of
solutions for various jetlike flows over still water, and corresponding solu-
tions for finite depth are possible. Lighthill (1953) gives the solution for

U(z) = Ug(h + 2)", (4.16)
and Fredsee (1974) uses the velocity profile
U(z) = U, cos B(z — z,) (4.17)

very effectively to model stream flow over an obstacle.

There is no intrinsic difficulty in numerical integration. Fenton (1973)
gives a method that is appropriate when an analytic expression is available
for U(z), but it may need modification if tabulated values of U(z) are used
since it involves U”(z). Fenton presents full dispersion diagrams showing ¢
as a function of stream velocity for a wide range of wave numbers for the
simple linear profile and the one-seventh power profile (4.1). Numerical
integration is also used by Shemdin (1972). For wind waves, he takes the
profile (4.3) together with the corresponding velocity profile in the air.
The results for the phase velocity of short waves are in agreement with his
experiments.

2. A Particular Class of Velocity Profiles

One can give a-picture of the effect of different velocity profiles on waves
by considering the solutions for stationary waves on flows satisfying

U"=al, (4.18)
where « is a constant. That is,
U(z) = U, cosh a2z + Uy~ /2 sinh a'/?z, (4.19)

where « may be positive, zero, or negative. There are three disposable con-
stants «, Uy, and Uj, so that this form can be used as a rough approxima-
tion to a variety of flows, and, although only stationary waves are
considered, traveling waves can be included if ¢ is supposed known.

The solution for w(z) for the profile (4.19), with a rigid bottomatz = —h,
is

w(z) = sinh{(k? + «)'/(z + h)}, (4.20)
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and the surface boundary conditions give the dispersion relation
(k? + a)'2h coth{(k? + «)"/2h} = (gh/U3) + (U h/U,). (4.21)
If k? + « is negative, this relation still holds, noting that

coth ix = —i cot x. (4.22)
The corresponding dispersion relation for a uniform flow
kh coth kh = gh/U} (4.23)
is included. Introducing
Z =gh/Ug, (4.24)

the inverse of a Froude number squared, we consider the two relations (4.21)
and (4.23) as functions of (Z, k2h?). In the (Z, k*h?) plane the curve (4.21) is
identical to (4.23) if the latter is displaced (—Ugh/U,, —ah?), or more
conveniently, if a graph of (4.23) is given, then a new origin is chosen at the
point (U, h/U,, ah?) to give the curve (4.21).

Figure 14 shows Eq. (4.23) on the (Z, k*h?) plane. One advantage of this
plot is that local, exponentially decaying surface disturbances are also
included, in the region k% <0. The curve has other branches, for
k?h? < —n?, which do not appear in the diagram. Such disturbances are
needed to describe fully flow near an obstacle or wave-generating object.
Figure 15 is a complementary diagram showing velocity profiles corre-
sponding to different choices of origin. The effects of velocity gradient and
curvature in determining the position of the curve are clear. The origin is on
the curve if U(—h) is zero, and if the velocity profile has a zero above the
bottom the corresponding origin is on the right-hand side of the dispersion
curve. These cases are discussed below.

An advantage of these velocity profiles is that Eq. (4.8) has constant
coefficients and it is thus straightforward, in principle, to use Fourier trans-
forms to find solutions. Fredsee (1974) makes use of this. He chooses an
appropriate “truncated cosine” profile to model the stream flow and
proceeds to calculate details of the stationary waves formed by a small
oblique ridge on the bottom of a wide stream. The theory agrees well with
experimental results, which Fredsee presents for the variation of wave
number with Froude number. Another example is calculated corresponding
to a rounded bulge in the middle of a channel of finite width.

The results of these two calculations are shown in various ways. When
compared with a uniform flow with the same surface velocity they exhibit a
reduction in surface amplitudes. However, the paths of fluid particles at the
bottom of the flow show that their transverse displacement is considerably
larger (e.g., twice as much) in the shear flow than it is in irrotational flow. A
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Fi1G. 14. The dispersion relation for stationary waves on a uniform stream. Z = gh/U3%.
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F1G. 15. The velocity profiles corresponding to the dispersion relation given by choosing
the point indicated as a new origin in Fig. 14.
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rough physical interpretation is given. To first order the fluid moves with the
velocity appropriate to its level in the flow. Thus if its path has curvature k, a
horizontal pressure gradient of magnitude pxU? is needed. However, the
perturbation pressures are unlikely to vary in the same way as U?(z), so the
curvature must vary. For the cases where perturbation pressures vary slowly
compared with U?(z) the curvature must increase relatively rapidly to bal-
ance any marked reduction in U(z). (Compare with boundary layer theory,
where pressure is taken as constant through the layer.)

A more mathematical way of looking at this particular phenomenon is to
note that Egs. (4.7) and (4.8) have a singular point just below the bottom, in
the cases studied by Fredsee (1974).

3. A Critical Layer in the Flow
A singular point of Egs. (4.7) and (4.8) occurs at z = z, if

U(zy) - c=0. (4.25)

If z = z, is in the fluid, this means that there is a critical layer at that level.
The solutions in the neighborhood of a singular point, for sufficiently differ-
entiable U(z), may be found by expanding U(z) in a Taylor series in

Z=2z-1z,.

As is well known from the theory of second-order differential equations, one
solution is always regular and the other may be singular. In Fredsee’s exam-
ple, both solutions for p and w are regular but u and v have a singular
solution. If part of the singular solution is needed to satisfy the boundary
condition at the bottom, u and v could be large without there being a critical
layer actually in the flow.

It is instructive to look at the general solution for an oblique wave
exp{i(Ix + my — wt)} near a critical layer. In this case

U(z,) ~ @ =0, (4.26)
or
U(z,) cos 6 = c. (4.27)

The results are

p = B[1 — $k2Z% — 2k3(U}/U,)Z% log| Z|] + AZ® + O(Z* log| Z|),
(4.28)
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Bm 2Bk*U
(u, v, w) = m(m’ -1,0) + FJ_&)T lOng‘ (1,0,0)
BU’I’ 2 2 L2Y 7! "
+ B(U,)? (31 + m?, ml, —ik*U,JUY)
A
- P%— (1,0,0) + O(Z log|Z|), (4.29)
1

where A, B are constants multiplying the regular and singular solutions,
respectively, and k% = > + m?.

The most striking aspect of this result is that the most singular behavior is
in the perturbation velocity in a direction perpendicular to the wave number
vector of the wave train. This Z~! term goes to zero for waves traveling
against the current since its variation with 6, the angle between k and U, is
sin 0 sec? 6. This becomes very large for 0 near =/2, but the possibility of a
critical layer then is remote because condition (4.27) becomes difficult to
satisfy at a depth where the effects of the wave motion are significant.

The singular solution cannot be used directly as a description of wave
motion. At a critical layer other properties of the flow, neglected in the
present analysis, must be introduced in order to find a physically sensible
description. This aspect of critical layers is extensively studied in the theory
of hydrodynamic stability. The usual method of proceeding is to include the
effects of viscosity, which are used to get a solution valid in the neighbor-
hood of the critical layer. This may be matched with an inviscid solution
each side of a layer. This is relatively straightforward for unstable, growing
modes of which there are usually only a finite number. The inclusion of
viscosity also introduces a set of damped modes. For the water wave prob-
lem, Craik (1968) presents an analysis for resonant interactions among a
triad of waves on flow with a uniform shear, and Velthuizen and van Wijn-
gaarden (1969) consider long waves in a channel and attempt to find their
rate of decay. Velthuizen and van Wijngaarden are concerned about the
problem of upstream propagation against fast flows (see Section IV,B,5) so
they assume a critical layer for very long waves even though there is a
solution without a critical layer. However, a full discussion of solutions with
critical layers should take into account how the waves may be generated,
and a new proposal is presented below.

For high-Reynolds-number flows it may be more appropriate to include
nonlinear effects or effects due to the turbulence in the flow to find a local
solution for the critical layer. No such applications have been made to this
field.

75/109



8/5/2019 doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

84 D. H. Peregrine

For a realistic class of flows satisfying
U'(0) <0, U"(z) =0, U'(z) finite, (4.30)

in —h < z <0, Yih (1972) shows that if there is a critical layer at z = z,, then
¢ must be real and the boundary conditions are not consistent with a solu-
tion for which w(z,) is nonzero. He incorrectly excludes the case w(z,) = 0.
By multiplying Eq. (4.8) by the complex conjugate function w*(z) and inte-
grating from —h to z,, he finds

lw[? dz =0, (431)

“ /|2 2 2 i Y
J_h(|w [>+ k*|w| )dz-&-j_’l T e
after putting w(z,) = w(—h) = 0. Since conditions (4.30) imply U"/(U — c)is
positive in —h < z < z,, the only possible value for w(z) in that interval is
zero. There may be a discontinuity in w'(z) at a singular point, and thus a
solution regular for z > z, and zero for z < z, is possible.t Direct examina-
tion of the equations of motion shows that this type of solution satisfies
them, and it will be called a “surface layer solution.” Such a solution is also
possible for other flows; they do not need to satisfy conditions (4.30), so that
other solutions may also be possible in some cases.

Where more than one solution is possible, the relevant one in any circum-
stance might be determined by solving an initial value problem. It seems
reasonable that if the waves are generated by surface disturbances or by
disturbances above the critical layer then the surface layer solution is appro-
priate; but if the wave generation is by a disturbance extending below the
critical layer, other possible solutions may be expected to be relevant.

It is desirable to ascertain when the surface layer dispersion relation dif-
fers significantly from the “conventional” solution. As usual, the only case
that is simple to investigate analytically is the linear profile, for example,

U(z) = Uo(l + z/h). . (4.32)

1 When this result was communicated to Professor Yih, he agreed that it is possible for the
differential equation {4.8) to have a solution with a discontinuous w' at z = z, a possibility that
had simply escaped his attention. He notes, however, that for k = 0 the solution regular at

z=1zis
w=U-—g¢,

and this cannot possibly satisfy the free-surface condition. Thus for long waves Yih’s conclusion
still stands. How large k* has to be in order to have a solution with discontinuous w’ can be
decided by following the development in Yihs paper (1972, pp. 214-216) for the case
U”(z,) = 0. The condition U”(z,) =0 can now be removed since we admit a solution with a
discontinuous w’, and an estimate of k for the longest possible waves may be made using the
long-wave approximation given in Section IV,B,4.
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This has the “conventional” dispersion relation
k coth kh = g/(Uqy — ¢)* + Uy /h(Uq — c). (4.33)
If there is a critical layer at a depth h,,
hy = (Uy — c)h/U,, (4.34)
and the surface layer dispersion relation is
k coth khy = g/(Uy — ¢)*> + Uy /WU, — ¢). (4.35)

The two dispersion relations can only differ appreciably if kh, is sufficiently
small for tanh kh, to be noticeably less than one, say kh; < 2. The dispersion
relation (4.35) can be rewritten in this particular case as

khy coth khy = 1 + gh/(Us — c)Us , (4.36)

the right-hand side of which has a minimum value 1+ gh/U3 for
0 < ¢ < U,. For kh, to be less than 2, the left-hand side of (4.36) must also
be less than 2. Thus the surface layer dispersion relation differs significantly
from the conventional one only if

gh/U2 < 1. (4.37)

But this condition is appropriate for the case c¢=0, where in fact they
agree, so in practice the condition is

U > gh (4.38)

which implies that the shear must be quite large. The two dispersion rela-
tions are plotted, in two different ways in Fig. 16 for the case

U2 = 4gh, . (4.39)

These results are of academic interest only since such high-speed flows
develop finite-amplitude waves as instabilities of greater practical impor-
tance (see Section IV,D).

For short waves, for which the depth of the flow is not significant, it is
straightforward to show that the surface layer dispersion relation is only
significantly different if

IO > %U, (4'40)

where ¢ is the frequency of the waves relative to the surface water, that is,
w — kU, . Again, this is a strong shear.
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F1G. 16. Dispersion curves for the velocity profile U(z) = 2(gh)!/*(1 + z/h). The dashed line
is for the surface layer solution.

4. Approximate Solutions

Approximations may be made for long waves and for short waves. For
long waves, kh < 1 and an appropriate way to write Eq. (4.7) is

[P/AU = ¢)*Y = k*p/(U — ¢)?, (441)

which may be integrated twice to give the integral equation

z z 2 (U _C)Z
=A — )2 k2 ( 2
p(Z) + B '[—h(Ul C) dzl + J.-', f—h (U1 . c)zp(zl) dzl dzl ’
(4.42)
in which the abbreviation
U, = U(z,), (4.43)

is used, and A4 and B are constants to be determined by boundary condi-
tions. It is now easy to find successive approximations to p(z) as a power
series in k.
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For flow over a rigid bottom, B = 0, and, setting 4 = 1 without loss of
generality,
z z2 2
- 2 (U2 - C) d d
p(z)=1+k j J._h U, Zof z, dz,

~h

zZ . Z4 ,Z3 22 (U - C)z(U _ C)
4 4 2
+k J-hj—hf—hj—h (U3—C)2(U1—-c)dzl dz, dz; dz,

+ O(K®HS), (4.44)

with a dispersion relation

1] le 0 z3 22 (U —C)2
—1 4 gk? 2 dz, dz, dz
gJ.-h (Ul_c)z g I-hj-hj—h (Us—c)z(Ul_C)z PR
0 z2 (U _c)2
= 2 2 v 414
=1+k L.J-h (T oy 41 422 + OUK*HY) (4.45)

This result is given by Thompson (1949), but the first approximation

0
g | Az /(U — o = 1 (4.46)

is better known from Burns’ (1953) paper.

The same approach can be used for problems where the flow is uniform
except for a thin layer, e.g., a boundary layer at the bottom or at the free
surface, or to the surface layer solution when that layer is thin. For example,
consider waves on still, deep water with a thin wind-driven boundary layer
of thickness h. The pressure perturbation p(z) must vary as exp(kz) below the
layer, and if U is effectively zero at z = —h, matching p and p’ with solution
(4.42) leads to

c?A = kB, (4.47)
and to the approximate dispersion relation

k ¢° 0 dz
2 —_ — )2 = 2 1 252
) [1-+—c2 J‘-n(Ul c) dz,] gk(l+kc th (Ul—c)2+0(k h*)|.

(4.48)

Not one of the dispersion relations (4.45), (4.46), and (4.48) is easy to use
or interpret. Perhaps the simplest is the first approximation to stationary
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waves on a surface jet. This is obtained by putting w = 0 in (4.48) and leads
to the result

0
g—k? f hUz(z) dz =0, (4.49)

given by Peregrine and Smith (1975). The integral is proportional to the
momentum flow in the surface jet. A thin sheet of momentum flow at the
surface of a fluid acts rather like a negative surface tension. Compare
Eq. (4.49) with

g + (Tk?/p) = kc?, (4.50)

the deep-water dispersion relation, when ¢ = 0 (but also see “surface shear
waves” in Section 1V,C).

At the other extreme, when waves are short compared with the current
variations, wave properties are determined by the flow close to the surface.
One can either use a WKB approximation for w(z) as Dalrymple (1973,
Appendix 1) does, or expand systematically in inverse powers of

ko =g/(Uo — c)?, (4.51)
as is done by Peregrine and Smith [1975, Eq. (48)]. The first three terms of
the dispersion relation are

¢, U (U=l
(Up—¢)  (Up~c) 29

k= (4.52)

where a zero subscript indicates that the function is evaluated at the surface.
Further approximations involve higher derivatives of U(z) that would be
difficult to evaluate from measurements of a real flow.

Some idea of the accuracy of these approximations may be obtained from
Fig. 17 which shows the dispersion relation for stationary waves on a deep
flow of the form

U(Z) = UO eaz,

with k plotted against U,, using appropriate dimensionless variables.
A few bounds for c are available. Thompson (1949) proves

Umin - (gh)l/Z <c< Umax + (gh)l/Z, (4'53)

and that when U is a monotonic and nondecreasing function of height above
the bed,

€ < Upax + (g/k)"2. (4.54)
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Rl=

-~

{
o/u;

W

FiG. 17. Dispersion relation for two-dimensional stationary waves on the velocity profile
U(z) = U, exp az, together with approximations. §,, S,, and S, are successive short-wave

approximations and L, is the first long-wave approximation. (From Peregrine and Smith, 1975,
Fig. 4.)

With similar conditions,

U >0 and finite, U”"<0, (4.55)
Yih (1972) extends a result of Burns (1953) to prove that there is one solu-
tion with
c< U(—h), (4.56)
and another with
¢ > U(0). (4.57)

It is worth noting that there is no simple equivalent of the linear long-
wave equations for irrotational flow:

. a L ou
5 t95,=0  Z+h=0. (4.58)

There is only the result (4.46) for the long-wave velocity.
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5. Upstream Propagation

Conditions (4.55) are such that many profiles U(z) that may be chosen to
represent stream flow would satisfy them. If U(— h) is zero, condition (4.56)
indicates that that solution corresponds to upstream propagation of waves,
regardless of how large the surface or mean velocities may be. Benjamin
(1962, p. 108) suggests that the solution (4.56) may not be physically realiz-
able when the mean velocity U is much greater than (gh)'/2. He argues that
the relatively high velocities near the bed due to the wave in such a solution
severely limit the amplitude of the wave if separation of the boundary layer
is not to occur. Yih (1972) discusses this further, confirming the high pertur-
bation velocities near the bed, and arguing against a conjecture of Benja-
min’s that the maximum velocity of propagation upstream should be of the
order —(gh)''? + U.

There are several facets to this problem. There is no doubt of the existence
of the mathematical solution corresponding to (4.56) with conditions (4.55)
for any value of U. The conditions (4.55) certainly apply to a real flow if the
Reynolds number is low enough for it to be laminar. However, in that case it
is less realistic to omit viscosity in the analysis. If viscosity is included these
waves do not occur, as is shown by a stability analysis [see Benjamin (1957)
or Yih (1969, Sect. 9.9) for further results].

For a turbulent high-Reynolds-number flow, many model profiles U(z)
would give either a nonzero velocity at the bottom or an infinite velocity
gradient U’(— h) as in the frequently used one-seventh power profile (4.1). In
the latter case, Lighthill (1953) shows there is no upstream propagation for

U > 1.0353(gh)""2. (4.59)

There is also the problem of generation and detection of such waves. For
example, using the linear velocity profile (4.34) a rough calculation shows
that if a low-frequency oscillating surface pressure is applied over an appro-
priate length of the surface, the two long-wave modes are generated with
amplitudes inversely proportional to their phase velocities. This means that
for a high-Froude-number flow, the controversial upstream propagating
mode would have a substantially smaller amplitude than the waves propa-
gating downstream. Its group velocity upstream would also be small, so that
it would suffer appreciable damping, by neglected effects, before it got clear
of the generating area.

In summary, these particular upstream propagating waves appear to be a
mathematical solution with little physical relevance. There is an exception,
when the flow separates from the bed. This is discussed further in Sections
IV,C and D.
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6. Group Velocity

In many applications, the most important wave parameter is the group
velocity; for example, it is needed to find the stopping velocity in a hydraulic
breakwater. Once again, the only simple case is the linear velocity profile

U(z) = Uy + 2zUj . (4.60)
The group velocity ¢, is given by

(e — Uo)[B(kR) + & — Bkh))(c — Uo)Us/g]
= T—He = Uo)Us/a - (461

C‘_ Uo

in which B(kh) is the ratio c, /c for waves of the same wave number in still
water of depth h. The denominator of the right-hand side of (4.61) cannot be
less than 4 since the maximum value of (¢ — U,)Uj /g is 1, which it attains at
k=0.

From Eq. (4.61) one may see that (¢, — Uo)/(c — U,) behaves rather like
B(kh) but “skewed” in the direction one would expect from the underlying
shear. Inspection of Fig. 16 shows that the surface layer solution has similar
properties, except at ¢ = 0, a point that may merit further attention.

For most applications, numerical solutions need to be found; even when
analytic solutions are found it may be more convenient to determine c,
graphically or numerically, e.g., Taylor (1955) finds the stopping velocities of
a sectionally linear profile graphically.

C. FINITE-AMPLITUDE WAVES

One familiar method of finding finite-amplitude wave solutions becomes
relatively inappropriate when the basic flow varies with depth. This is the
method of expanding the free-surface boundary condition in a Taylor series
about the mean level. If this approach is adopted, the mean flow U{z) must
also be expanded in a Taylor series. While this may be sensible for a flow
chosen for its mathematical convenience, such as a linear profile with con-
stant vorticity, it is quite inappropriate if actual velocity measurements are
used, since even second derivatives may be quite uncertain.

A number of transformations of the equations of motion for steady flow
enable this problem to be avoided, at least for steady periodic waves. A few
transformations are now given, followed by some solutions.
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1. Transformations of the Equations

For steady flow in two dimensions, the introduction of a stream function
i leads to the expression —V?2y for vorticity and to the equation

Vi =f(¥) (462)

to express the fact that for inviscid flows vorticity is constant along stream-
lines (Batchelor, 1967, Sect. 7.4). Transformations of coordinates that effec-
tively replace z with  thus have two desirable properties. The free surface
becomes a fixed boundary, Y = const, and the basic distribution of vorticity
is explicitly stated.

The most obvious transformation is the direct one,

u(x, z) = u(x, ¥), (4.63)
a von Mises transformation. The continuity equation and Eq. (4.62) become
ou ou ow

ow ow Ou
Wi Ul =), (465)

respectively. These are two equations for the two components of the total
velocity in a reference frame moving with the wave. Gouyon (1958) and
Moiseev (1960) have used these equations for existence proofs in the case
where the variation in the basic flow is small compared with the wave
velocity, so that to a first approximation they are additive.

A less direct approach is to use the height z of a streamline as an indepen-
dent variable, that is,

z = z(x, ¥). (4.66)
The total velocity components are then
u=1/z, and w=z/z, (4.67)

where subscripts are used to denote partial derivatives. The vorticity equa-
tion (4.62) becomes

ZoxZd — 220 2,2y + 24y (1 + 22) = 2, f(Y). (4.68)

Dubreil-Jacotin (1934) uses this equation for an existence proof. Dalrymple
(1973) gives a finite-difference approximation to Eq. (4.68) and presents
sample results of finite-amplitude waves on a linear shear and on a one-
seventh power profile.

Benjamin (1962) takes this approach a step further in his derivation of a
solitary-wave solution. He introduces a new height variable s, equal to the
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value of z in the undisturbed flow. Thus the undisturbed flow is given by
¥ ="¥(s), (4.69)
where
U(s) — ¢ = d¥/ds. (4.70)
The vorticity equation now becomes

(U(s) - C){zxxzsz - 2lezxzs + zss(l + Zi)} + U,(s){zs3 - zl(l + zi)} = 0'
(4.71)

An advantage of this equation is that U(s) appears explicitly. Note that itis a
nontrivial matter to find f(y) to substitute in Eqgs. (4.62), (4.65), and (4.68)
for most velocity profiles, since it is given by

fW)=¥"), ¥ ="¥() (472)

2. Solutions

The earliest finite-amplitude wave solution is Gerstner’s (1802, in Lamb,
1932, Sect. 251) and it has a vorticity distribution. As Lamb shows, following
Stokes, the uniform flow corresponding to that vorticity distribution is

U(Z) = —ce?, (473)
where
k(z — zo) = kb —4e®*®,  c* =g/k,  kzo = %a’k* — In ak.

The flow is in the opposite direction to the waves’ propagation and for the
highest wave the vorticity is singular at the free surface. This solution is
unlikely to be relevant to waves on real flows.

As might be expected from the difficulty of finding solutions for
infinitesimal waves for most velocity profiles, the only analytic solution
corresponding to the Stokes wave for irrotational flow is for flow with
uniform vorticity. Tsao (1959) gives a third-order approximation for arbi-
trary depth. The algebraic complexity of the solution is somewhat daunting,
despite the fact that for uniform vorticity it is possible to introduce a velocity
potential for the wave motion.

For the linear profile

U = bz, (4.74)

it is relatively simple to show that for deep-water waves, the wave motion is
given by a velocity potential

ace®* sin k(x — ct) + 4a*b(3 + S)e?** sin 2k(x — ct) + O(a®k®),  (4.75)
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with a surface elevation
{ = a cos k(x — ct) + $a®k(1 + 28 + 35?) cos 2k(x — ct) + O(a?),

(4.76)
in which
k2 +bc—g=0 (4.77)
S = b/ck = b/o. (4.78)
The constant in Bernoulli’s equation is increased by
C, = a?b(ck + 3b), (4.79)

and this may be interpreted as either a change of level of the free surface by
C,/(g — bc) or an additional uniform velocity —C,/c. Tsao (1959),
Eq. (2.19), is not in agreement with the result (4.79).

From the wave elevation (4.76) it is easily seen that the usual asymmetry
between crest and trough increases as the shear increases for waves traveling
in the + x direction. That is, if the maximum current is at the surface, waves
traveling in that direction have sharper crests than corresponding irrota-
tional waves. Conversely, waves traveling in the opposite direction are more
nearly symmetrical about the mean level. The wave profile is sinusoidal to
second order when

S=-2+./2 (4.80)

We may see that
S>> -1 (4.81)
by rewriting the dispersion relation (4.77) in terms of S,
(1 + 8)=g/k. (4.82)

However, for ¢ negative a surface layer solution should be found, which may
modify the results.

Numerical techniques to solve the finite-amplitude problem for steady
waves have been developed by Dalrymple (1973, 1974). He extends Dean’s
stream function method (Dean, 1965), which essentially is a double Fourier
expansion of the stream function. A considerable number of results are
presented for waves of flows with linear velocity profiles. The results include
large-amplitude waves. Dalrymple (1973) also presents some results from a
finite-difference approximation to Eq. (4.68) for other velocity profiles.
These methods appear to be an effective approach to solving specific prob-
lems, and by comparison with irrotational waves, the effects of vorticity may
be better understood.
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Solitary-wave solutions may be found for any velocity profile without a
critical layer. The solution is given by Benjamin (1962) and has been derived
by several other authors since then. The corresponding Korteweg de Vries
equation is given by Benney (1966) [which appears to have an error in
Eq. (54)] and by Freeman and Johnson (1970). The equation is

zzs(g—f— + ¢ %) ~ 3914% - Jjj;, (483)
where
00 dz
bl e 9
(0 0 72 (Uy— o) dzy dz, dz
=0 OO (483)
and ¢, is the linear long-wave velocity given by
gl, =1 (4.86)
Note that the I, are negative for n odd.
The solitary-wave solution is
{ = asech? B(x — ¢, t), (4.87)
in which
¢y =c¢o—alug/2l,4, (4.88)
p* = al,g/4J. (4.89)

These reduce to the usual irrotational results for water at rest far from the
wave,

c; = (gh)"*(1 + 3a/h),  B* = 3a/dh>. (4.90)

Benjamin (1962) discusses the results for waves propagating on a stream
and deduces that the effect of the vorticity is small unless the Froude number
of the flow is near one. In that case the waves most commonly met are
stationary waves. Strictly in such a case there is a critical layer at the bottom
of the flow, but if the one-seventh power velocity distribution (4.1) is used to
model the flow the analysis is not affected since all the integrals converge. A
comparison, of stationary waves on such a flow, with the corresponding
irrotational flow, is given in Fig. 18.

The example calculated corresponds to the waves generated by a small
obstacle, stationary in a stream with Froude number

F = O(gh)~ 2. (491)
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It is supposed that the momentum flow
¢
S=p J (p + pu?) dz (4.92)
-h

is reduced by a small amount
pU2hD?, (4.93)
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which corresponds to the force on the obstacle. The energy of the flow is
assumed to be unchanged. [See Benjamin and Lighthill (1954) for a full
discussion in the case of uniform flows, and Fenton (1973) for an application
to a linear profile.] The right-hand boundary in the figures corresponds to
the solitary-wave solution. At first sight the slope of this curve is surprising,
since the larger the wave the faster it travels. However, one result of the loss
of momentum flow is to reduce the mean level of the stream, so there is no
inconsistency in a larger wave being on a slower stream. The most noticeable
difference between Figs. 18a and b is the increase with vorticity of the area of
the (a, F?) plane in which waves may occur. Essentially this is due to the
increased speed of the solitary wave, which is noted by Benjamin (1962).
Other differences are quantitative rather than qualitative. The biggest of
these is an increase in wavelength for the stream with vorticity when
F? < 0.85, but the theory is less appropriate there.

For finite-amplitude shallow-water waves, the position is similar to that
for linear long waves. Benney (1974) shows that there is no pair of “simple
shallow water equations to characterize long waves in a general flow.” On
the other hand, if attention is focused on waves propagating in one direction
only, some progress has been made by Blythe et al. (1972). By looking for an
equation of the form

8¢/t) + ¢ 8 Jox = 0, (494)

where c is a function of {, equations leading to a simple-wave solution are
found for flows without a critical layer. An example is given for the case
where the flow has uniform vorticity, but no guidance is given for other less
simple flows.

A rather specialized class of finite-amplitude waves has been described by
Peregrine (1974) and named “surface shear waves.” The basic flow
configuration is a sheet of rapidly moving water traveling over water at rest
or nearly so. Stationary waves may form on such a flow. Below weirs or
sluices they may have an amplitude much greater than the initial thickness
of the surface sheet. The wide range of conditions in which this form of wave
occurs is shown by Moore and Morgan (1959), who call it a “ wave hydraulic
jump.”

A very simple theory is possible when the Froude number

(M/pgh?)"" (495)

is large. Here h is the thickness of the jet and M its momentum flow,

jo pU(z) dz. (4.96)
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To a first approximation the surface flow is deflected only by the pressure
difference across it. That is the difference between atmospheric pressure and
the approximately hydrostatic pressure in the slow-moving water beneath.
The appropriate equation for the surface elevation is

Mk = pg(, (4.97)

where « is the curvature of the surface. This is also the “elastica” equation
for the bending of a thin sheet of elastic material. Thus the shape of the
waves is easily reproduced by bending a sheet of paper.

The steepness of the waves is not limited in theory, and in practice it is
easy to produce them with slopes greater than 30°, the maximum for Stokes
waves. The crests and troughs are rounded and symmetrical.

Peregrine (1974) also draws attention to superficially similar waves that
occur on beaches in the backwash from surf, described in more detail in the
next section. If their structure is also similar, then they are formed by the
high-velocity backwash separating from the beach and riding up over a
separation bubble. This hypothesis is supported by experiments with the
wave hydraulic jump, where by raising backwater levels, it can be formed by
separation of flow from the plane spillway of a weir.

3. Highest Waves

For irrotational waves, Stokes (Lamb, 1932, Sect. 250) showed that the
highest waves in steady motion have a 120° corner at their crest. The same
method of local analysis can be applied to waves on a rotational flow, and
Miche (1944, pp. 386-406) shows that the result is unchanged. Miche
proceeds further and shows that vorticity affects the curvature each side of
the crest. In particular, vorticity b gives a free surface

n b{r\¥?
9—i3+3(g) + (4.98)
where 6 is measured from the downward vertical. Grant (1973) shows that
for irrotational waves the next term in an expansion like (4.98) has a (prob-
ably) transcendental power of r approximately r!-2.

Delachenal (1973) also considers this problem but assumes that the vorti-

city has the form

Ar~1%(6), (4.99)
which is singular at the crest. Thus his solution is in the same unrealistic
class as Gerstner’s highest wave.

A different aspect of highest waves is the maximum amplitude that may be
attained. If the phase velocity of the wave in question is known, then the use
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of Bernoulli’s theorem in a frame of reference moving with the wave gives the
maximum amplitude corresponding to a stagnation point at the crest.
Banner and Phillips (1974) draw attention to the effect a surface drift due to
wind has in this context. If the surface drift velocity has magnitude g, then
the maximum amplitude of a wave of phase velocity ¢ relative to deep water
in the same direction as g is

;g (1 - g)z. (4.100)

Note that for an irrotational wave of given wavelength ¢ only varies by 209,
as the amplitude increases to its maximum. It is unlikely that a thin shear
layer can cause a much larger variation. Thus if g/c is near 1, the maximum
wave can be expected to have quite a small amplitude, and any small ampli-
tude approximation is likely to be very limited in its applicability. As Banner
and Phillips point out, this is likely to be the case for the shorter waves in a
wind-driven sea.

Phillips and Banner (1974) investigate the effect of large waves on a sur-
face drift layer. The water motion in the large wave causes the surface drift to
vary, with its maximum velocity at the crests of the long wave. As discussed
in Section ILF, short waves become shorter near long-wave crests, and thus
their phase velocity relative to the water below the surface layer decreases,
just when the velocity of that layer increases. When g = ¢ they cannot propa-
gate, and however small their amplitude, it seems that they must break.
Phillips and Banner estimate these effects using linear wave theory. If the
long wave has appreciable steepness, then the amplification of the surface
drift at the crest of the wave is substantial. Thus the interaction of long
surface waves with a surface drift layer may have appreciable effects in
suppressing shorter waves. The proportionate reduction in wave energy is
estimated for the shorter waves and is found to be in surprisingly good
agreement with experimental measurements.

For irrotational waves, Longuet-Higgins and Fenton (1974) and Longuet-
Higgins (1975) show that the highest wave is not the wave with most mass,
momentum, or energy. This is very relevant to both wave breaking and to
actually producing a highest wave. Presumably, similar results are likely to
hold for rotational waves.

D. STABILITY

Except for flows in thin films, which are not considered in this work, the
currents of interest are turbulent flows, so discussion of stability may seem
inappropriate. This is not so. If an instability transfers energy to surface
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wave motion, then it is of direct interest in the present context. Also it has
been suggested, with respect to other turbulent flows, that “instabilities ” of
the mean velocity may determine the large-scale structure of the flow
(Landahl, 1967).

The stability of inviscid flows (U(z), 0,0) over a rigid bottom to
infinitesimal disturbances is considered by Yih (1972). He extends several
theorems for flow between two rigid walls to this case and shows that the
requirements for stability are very similar in that unstable modes are asso-
ciated with inflection points in the velocity profile.

Silcock (1975) examines the surface jet flows

U=sechz and U =exp(—14z?) (4.101)

in detail and computes the growth rates of infinitesimal disturbances. The
stationary-wave solutions form part of the stability boundary, but for small
Froude numbers (based on the jet “thickness”) the growth rates of the
associated instabilities are very small. There are also instabilities that have
little effect on the surface.

Unlike many topics in this paper, there are some experimental results.
Sarpkaya (1957) reports on a substantial experimental work in which waves
were propagated against a stream flowing under gravity. Measurements
were made of wave phase velocity, amplitude, wavelength, and shape, for
those particular waves that propagated unchanged in amplitude. Higher and
shorter waves were amplified, and smaller and longer waves were damped.
Figures 19 and 20 are taken from Sarpkaya (1957) and summarize some of
the results. It may be noted that only waves of finite amplitude are amplified.
It is odd that a set of neutral waves, varying in frequency, was not found for
each flow.
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F1G. 19. Stability boundaries of stream flows of different Froude numbers with waves
propagating upstream. Amplitude/wavelength is plotted against Reynolds number. (From
Sarpkaya, 1957, Fig. 2, p. 575.)
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propagating upstream. Depth/wavelength is plotted against Reynolds number. (From
Sarpkaya, 1957, Fig. 3, p. 575.)

It is of particular interest that there is no critical layer for any of the waves
measured in these experiments; thus an explanation may need to include the
interaction of the water waves and the turbulence in the flow, or interaction
with the boundary layer on the bed of the channel. The latter seems most
likely. By using the results shown and linear irrotational theory it is possible
to work out u(— h)/U (that is, the particle velocity due to the waves at the
bed divided by the mean velocity). For a high proportion of the experimen-
tal results, this ratio lies in the range 0.6-0.7 with no systematic variation
apparent. This may well be sufficient to cause separation or substantial
thickening of the bottom boundary layer.

~ A more marked instability occurs in uniform streams at high Froude
numbers. Large-amplitude waves form and develop bores at their fronts.
These progress downstream with variable frequency and amplitude. They
are called roll waves. This instability may be demonstrated theoretically
(Jeffreys, 1925) by using the linear long-wave equations for irrotational flow
and adding a Chézy friction term, that is, a quadratic resistance term that
also varies inversely with depth of water. Dressler (1949) gives more details
of solutions and Dressler and Pohle (1953) consider more general friction
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laws. Experimental measurements of the development of roll waves are given
by Brock (1969), and numerical examples are calculated and discussed by
Jolly and Yevjevich (1974).

Friction laws for streams are one way of representing the turbulence that
also gives rise to the mean velocity profile. Laminar flow down a plane is
also unstable if the Reynolds number is greater than

2 cot B, (4.102)

where f is the inclination of the plane to the horizontal, and Benjamin (1957)
points out the analogy with roll waves. More details may be found in Yih
(1969, Ch. 9, Sect. 9) and experimental results in Benjamin (1961). Corre-
sponding calculations for turbulent stream flow would require an eddy
viscosity or other hypothesis to represent the turbulent Reynolds stresses.

Another type of instability gives rise to the surface shear wave in back-
wash on a beach, mentioned at the end of Section IV,C,3 (Peregrine, 1974).
When the backwash is not affected by a following wave it usually forms a
nearly stationary turbulent bore where it meets the still water. After a time a
long smooth wave may emerge in front of the bore and travel upstream,
gaining height, usually until it dwarfs the bore it sprang from. If a hypothesis
of a separation of the flow from the bed is correct, the wave may start in the
following way. According to linear theory, a small disturbance, exponen-
tially decaying upstream, may precede the bore. If this disturbance is
sufficient to cause flow separation on the bed, the wave may appear. It will
grow by entrainment of water into the separation “bubble.” It seems pos-
sible that such an instability may only occur for certain velocity profiles, e.g.,
flow that starts from rest on a slope, or may depend on the Reynolds number
of the flow.

E. WAvEs oN FLow IN CHANNELS
This pertains to waves on a flow

U = (U(y, z), 0, 0), (4.103)

confined in a channel. Peters (1966) treats the case of long waves, deriving
the equation

j J dy dz/(U(y, z) — c)* = b/g (4.104)

N

for the long-wave velocity, in which S is the cross-sectional area of the
channel and b its surface breadth.
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The linearized equation corresponding to Eq. (4.7) is

2
% [(7;1—0)-5 %ﬁ] z [(U - c)zgﬂ o= (109
with
dop/on =0 (4.106)
on the walls of the channel and
g 0p/oz = k*(U — ¢)’p (4.107)

on the mean free surface. No solutions have been found with any y variation.

Peters (1966) also finds the equation for a solitary-wave solution, but
a subsidiary partial differential equation, similar to (4.107), must be
solved in S.

However long the waves are, such solutions are only likely to be of value
for channels that do not have a large aspect ratio (width/depth). In the
irrotational case, Peregrine (1968) shows that a second long-wave approxi-
mation (which is needed for the solitary-wave solution) has a term that
increases with the square of the aspect ratio for nonrectangular channels.

V. Turbulence

In considering the interaction of waves and turbulence, a useful way to
develop ideas is to take a simple view of the turbulence. That is, characterize
the turbulence by a length scale and a typical maximum fluctuation of
velocity. Although turbulence has important small-scale properties, it seems
likely that interactions are dominated by the most prominent turbulent
motions, and the ratio of their lengths and velocities to those of the waves.

Perhaps the simplest case to understand, though a difficult one to analyze,
is when the turbulence has a scale much greater than the waves and veloci-
ties comparable with the wave group velocity. The waves are then refracted
in accord with the equations derived in Section II,C. However, consideration
of the solutions in Sections II,D and E shows that unless the waves are
reflected, by refraction, out of the region of turbulence, they are likely even-
tually to encounter currents causing their wavelength to diminish con-
siderably so that a high proportion of their energy is lost by breaking. Thus
large-scale turbulence acts as a wave absorber. Such behavior is easy to see
on rivers, where wind waves get little chance to grow if the turbulence is
strong enough. Usually this seems to coincide with a level of turbulence,
which noticeably deforms the free surface so that its dominant features are
small ripples and dips above vortex cores.
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Much stronger turbulence leads to relatively violent surface motions that
can generate some propagating waves, or in extremes as in turbulent hydrau-
lic jumps, it leads to the surface breaking up into drops and irregular masses
of water. The whole range of behavior may be observed, on a relatively small
scale, in the boundary layer of ships.

An example that is commonly observed is the effect of a ship’s wake on
short wind waves that are incident upon it. The turbulence is relatively
strong and often of larger scale and thus acts to absorb or reflect the waves
by refracting and steepening them. However, the mean motions associated
with a wake are also likely to be important. There is the flow along the wake
in the direction of motion of the generating vessel and also the transverse
motions due to trailing vortices (from bilges or propellors or both). That
these latter may be dominant is indicated by the relatively stronger effect
that a curved wake has on waves.

When the turbulent velocity fluctuations of large-scale turbulence are
weak compared with the wave velocity, one may think in terms of waves
being scattered by the turbulence. Phillips (1959) attempts to analyze this
scattering for very weak turbulence, using a Fourier decomposition of the
velocity field. It is difficult to make use of such an approach since the
components of a spatial Fourier decomposition of turbulence are virtually
unknown except for very special cases. Phillips uses estimates based on
the inertial subrange of turbulence, but the author does not think this is
likely to be an important part of the interaction. It seems somewhat more
likely that Howe’s (1973) method for treating scattering may be applicable.

Turning to the other extreme, we have small-scale turbulence. This may
actually be the same turbulent flow but viewed with respect to different,
longer waves. Small-scale turbulence is more amenable to study in labora-
tory experiments and to the extension of empirical methods established in
other fields. For example, the “friction laws ” established for steady flows in
channels are often extended to unsteady flows such as long waves (see the
case of roll waves mentioned in Section IV,D). On the other hand, Sarp-
kaya’s (1957) experiments (also mentioned in Section IV,D) show that some
waves on a turbulent flow are amplified.

Taking another viewpoint, the rate of strain tensor for a plane irrotational
wave train is

eij = 62¢/6x,- axj . (5.1)

This is oscillatory, but as Phillips (1959) points out, the Stokes’ drift may be
more important. More precisely, the finite-strain tensor has a component of
second order in ak increasing linearly with time. It acts to stretch vortex lines
and thus may lead to stronger interactions than the oscillatory part. Experi-
ments by Green et al. (1972), described below, appear to give some support
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to this idea. If it is important, then the common eddy viscosity hypothesis
may be of limited value.

A few experiments have been performed to measure the scattering and
dissipation of water waves by turbulence. In none of these experiments has
scattering attributable to the turbulence been detected. The most interesting,
from the viewpoint of the rest of this paper, are two experiments Savitsky
(1970) reports. In both experiments turbulence was generated by towing a
grid in a ship model testing tank. Waves were sent along the tank to over-
take the grid and its turbulence. In the first experiment the grid spanned a
12-ft (3.7 m) tank. In the second experiment, the grid was only 3 ft (0.9 m)
wide in a 75-ft (23 m) tank. Savitsky was unable to detect any scattering or
dissipation by the turbulence, since in both cases the effects of the mean
currents set up by the moving grid dominated the wave behavior. In the first
experiment, there was a velocity defect at each side of the tank and the waves
became unsteady with curving crests. In the second experiment the wake-
type flow refracted and diffracted the waves. The maximum mean velocities
in these experiments were more than 109 of the group velocity of the waves.

A more successful experiment is reported by Green et al. (1972). In a
laboratory tank, turbulence was generated by a grid oscillating vertically. A
false bottom was inserted, for all but the longest waves, to protect the surface
layer of water from mean currents. The turbulent eddies had a scale of
around 1 cm and the shortest waves had a wavelength of about 5 cm. Damp-
ing of the waves was observed. Measurements were made on various waves
before and after propagating through the turbulent region, the turbulence
being approximately the same in all cases.

The results are presented in two different ways, one assuming an exponen-
tial decay with distance, the other assuming a quadratic decay law

da/dx = —ya® (52)
for the turbulent damping. The coefficients obtained from the measurements

show appreciable scatter, but assumption (5.2) gives the smaller scatter. The
coefficient y is found to depend on frequency in such a way that

y = Co?, (5.3)
where C is a dimensional constant. Green et al. (1972) note Phillips’ (1959)
suggestion that the most effective interaction with the turbulence may be of
second order in ak. Also, one may note that the time that any wave group
spends in the turbulent region is inversely proportional to its group velocity.
For this purpose it is adequate to assume the linear deep-water gravity wave
dispersion relation, in which case Egs. (5.2) and (5.3) may be rewritten

da/dx = —Cg*a*k?/2c, (54)
which supports the hypothesis that second-order effects are relevant.
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A rather different experiment is reported by Green and Kang (1976). In
this case, a single long wave, the fundamental resonant mode of a wave tank,
was allowed to decay in the presence of different intensities of turbulence.
The turbulence was due to thermal convection generated by heating the
bottom of the tank. The intensity of this turbulence depends on the Rayleigh
number. A major problem in interpreting the results of this experiment is
that less than 209 of the observed damping could be ascribed to turbulence.
However, after careful analysis and estimation of the other dissipative
effects, Green and Kang present results for the turbulent damping that show
an appreciable dependence on Rayleigh number. They also provide an inter-
pretation of the interaction.

Convective turbulence takes the form of intermittent thermals arising
from the bottom boundary layer. When there is a horizontal flow, such as
that due to long waves, a rising thermal carries relatively stationary fluid
from the bottom boundary layer into the main moving mass of fluid. This
can be interpreted as giving a Reynolds stress approximately equal to npuw,
where n is the fraction of the horizontal area over which thermals occur at
any instant, u the horizontal velocity of the main mass of fluid, and w a
typical vertical velocity in a thermal. Green and Kang’s (1976) results are
consistent with the estimate of this Reynolds stress that they make.

VI. Ship Waves

A major aim in the study of ship hydrodynamics is the prediction of the
total hydrodynamic resistance of a ship. This is a difficult and complex
problem, so that another more practical topic is also studied: how to relate
measurements on ship models to the behavior of the prototype. The tradi-
tional approach has been to divide the resistance into two parts, “viscous
resistance” and “wave resistance,” and to scale the first according to the
Reynolds numbers of the ship and its model and scale the second with their
Froude numbers. A similar approach is used for studying the primary prob-
lem of predicting ship resistance theoretically.

Independent methods of measuring the viscous and wave components of
resistance, by measuring the water velocities and wave amplitudes behind
ship models, have shown that this simple view is inadequate. Explanation of
the actual resistance involves consideration of the interaction between waves
generated by a ship and the flow around and in the wake of the ship.
Important papers illustrating this point are those by Lackenby (1965) and
Shearer and Cross (1965). The wave resistance of ships is the subject of a
recent substantial survey by Wehausen (1973), which gives more details on
many of the topics mentioned here.
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There are different ways of looking at this subject. One can look at physi-
cal quantities and interpret them directly, or, from a theoretical viewpoint,
start with some approximation and interpret higher-order terms as interac-
tions. For example, a direct physical approach to a finite-amplitude water
wave does not lead to the concepts of linear and nonlinear waves that arises
from mathematical approximations. However, interpreting and estimating
the physical quantities depends on adequate theoretical backing.

A “physical” analysis of ship resistance is illustrated in Fig. 21, which is
an adaptation and extension of a diagram in Brard (1972, Fig. 2). Some of
the subdivisions in the diagram are not easy to define, especially with respect
to form drag, but it does help to understand the exchanges between the
viscous and wave components. Two different ways these may be defined are
indicated by the dotted lines. However, in neither case can the viscous
component be expected to be entirely independent of the Froude number or
the wave component independent of the Reynolds number.

The direct viscous drag is approximately dependent on the wetted surface
area, but this depends both on the shape of the water surface around the ship
and on the trim of the ship. Both of these depend on the waves generated by
the ship in its own vicinity. In the same way the form drag, which may be
largely due to regions of flow separation and to trailing vortices, depends on
the same two “wave” variables, waterline and trim.

When waves break, as is very often the case near the bows of ships,
momentum is transferred from the wave motion into the water. Even for
steady ship motion, breaking can be an unsteady process in which case there
can be momentum transfer into other wave components. For full-size ships,
breaking is probably the most important form of wave dissipation, but there
is also some due to turbulence in the boundary layer and wake and due to
viscosity. At the lower Reynolds number of ship models, viscosity may be
more important and surface tension effects near wave crests can also be
relevant.

The current field associated with flow around a ship may also be con-
sidered a wave generator. It is propagating into still water at the same speed
as the ship. This notion is given approximate quantitative form in the papers
by Beck (1971), Brard (1972), and Tatinclaux (1970). There is some impreci-
sion here since this effect could also be termed a wave-current interaction.
Most wave-current interactions involve a transfer of momentum between
the two components. The mean flow and waves are steady in a frame of
reference moving with the ship, and as the work in Section II indicates, in a
steady situation wave action flux is conserved in those cases where it can be
defined; but conservation of wave action does not normally imply conserva-
tion of momentum in one part of the system. The waves generated by the
ship interact with the flow around it, the approximately inviscid flow, as well
as the boundary layer and wake.
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F1G. 21. An analysis of the hydrodynamic resistance to a ship’s motion. The quantities
within ovals are often measured for ship models. The dotted lines indicate two different

divisions into viscous and wave resistance.
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While the mathematical problem to be solved in predicting ship resistance
can be stated, its solution requires a number of substantial approximations
and simplifications. The usual approximations are to assume inviscid irrota-
tional flow, a linearized free-surface boundary condition, and some geome-
trical ratio, such as breadth/length, to be small. Such approximations may
be thought of as a first term in a perturbation expansion, but with so many
parameters in the problem it needs careful analysis when looking for higher
approximations to ensure a consistent approach. This is discussed in Weh-
ausen (1973), so only the current-wave interactions are mentioned here.

There are two particularly important aspects in the mathematical prob-
lem of the interaction of the waves generated by the ship and the flow
around it. One is the interaction with the potential flow, and the other is the
interaction with the boundary layer and wake.

If the inviscid problem were solved without any approximation involving
the speed and shape of the ship, then the first-named interaction would be
automatically satisfied. However, this is not usually the case. (Note that
unless the ship is very slender or deeply submerged, linearizing the free-
surface boundary condition is a poor approximation in the vicinity of the
ship.) The ship is usually taken to be “slender ” or “ thin,” or else the Froude
number is supposed to be small or large. The thin-ship approximation does
take some wave interaction into account at first approximation; the sinkage
and trim of the vessel may be calculated. However, the flow around (or
perhaps one should say along) the ship and the wave motion are both small,
so that interactions come in at the second approximation. On the other
hand, if the ship is assumed to have finite bulk and a low Froude number,
the first approximation has no waves, so the second approximation neces-
sarily includes solving the wave pattern on the flow field of the first approxi-
mation. Dagan (1972) gives an interesting account of this last type of
problem, using as a simple example a two-dimensional submerged body.
Submerged bodies introduce some further considerations (e.g., see also
Farell and Guven, 1973) but two-dimensional potential flow is much simpler
than flow in three dimensions.

The interaction of waves with the turbulent flow in the boundary layer
and wake is also a difficult problem, even when only mean flows are con-
sidered. The approach of representing both the boundary layer and wake by
a corresponding displacement thickness, that is, taking a semiinfinite body
that is an appropriate amount larger than the ship, has been tried several
times with only a relatively small improvement in the results. However,
other approximations made at the same time may be more important.

Another approach is to assume that the flow is inviscid but has a vorticity
distribution that is chosen to model the actual flow. This seems better than
introducing a simple eddy viscosity since the effect of the eddy viscosity on

101/109



8/5/2019

https://reader.elsevier.com/reader/sd/pii/S0065215608700875?token=123513CF3AC4E74F8D6A657A274441576 A37TFAOECA03C96B30E14CD18E50B84669. ..

doi:10.1016/S0065-2156(08)70087-5 | Elsevier Enhanced Reader

110 D. H. Peregrine

the waves may not be representative of the effect of the effect of the tur-
bulence (see Section V). The simplest example is to consider a wave-making
source at the center of a “ wake ” that is uniform in the direction of motion of
the source. Peregrine (1971) uses this model and simplifies the analysis by
supposing the waves are so short that the “ray theory ” of Section II applies.
The resulting wave pattern differs from that for a point source in motion
through water at rest. The envelope of wave cusps is inside the Kelvin angle
of 195° once the maximum wake velocity is greater than 0.1 times the velo-
city of the wave-making source; the transverse waves behind the source are
strongly distorted, although since these are the longest waves the approxi-
mation is less likely to be accurate. No information is given about wave
amplitudes and with any ray theory approach to the problem initial values
on a ray for the wave amplitude are difficult to ascertain. However, the
approach is easy to understand.

Rather more detailed descriptions of wake flow are used by Tatinclaux
(1970) and Beck (1971). The former has a distribution of vorticity to repre-
sent the wake behind a thin vertical two-dimensional cylinder of ogival cross
section. Beck uses vortex sheets to model the wake behind a thin ship. Both
papers assume that fluid velocities are small and use linearized boundary
conditions at the free surface. The contribution of the wake to the wave
resistance is calculated for one ship in each paper.

Tatinclaux (1970) chooses a particular vorticity distribution, which decays
relatively rapidly behind the cylinder, and calculates solutions for a range of
Froude numbers. The wake has most effect for Froude numbers less than
0.5. It increases the wave resistance by an amount that varies considerably
with Froude number, in an oscillatory manner, from over +10 to —359%,.
Beck (1971) considers variation of the dimensions of the wake in his model.
The effect of his wake is around + 109, of the irrotational wave resistance.
All these papers indicate the importance of wave-wake interaction.

A very direct experiment on the interaction of waves and a wake has been
performed by Gadd (1975). Two identical ship models were towed in a
catamaran arrangement. Where the bow waves of the models intersected, a
steep pyramidal wave formed at high enough speeds. A vertical flat plate was
introduced along the centerline between the two hulls, so that its trailing
edge was just ahead of the steep pyramidal wave. This meant that the bow
waves of the twin hulls met the wake of the plate. The introduction of the
plate considerably modified the steep wave. It flattened and moved forward
the wave peak and caused extensive turbulent flow. A large superficially
similar wave often occurs with its crest at a ship’s stern. This experiment is
expected to give an insight into the interaction between that wave and the
ship’s boundary layer and wake.

The behavior of this flow brings to mind Banner and Phillips’ (1974)
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paper, which is discussed in Section IV,C. The effect of the reduced velocity
in the boundary layer relative to the waves is a decrease in the maximum
height attainable. For example, if the velocity of the flow is one-half the
ship’s speed, use of Eq. (4.100) shows that the maximum elevation of the
water is one-quarter its maximum for irrotational flow. Gadd’s (1975, Fig. 3)
photograph shows that the wave is breaking. One consequence of this obser-
vation is that one must expect nonlinear effects to become important at
much lower amplitudes in this type of problem than in cases where irrota-
tional flow is a good approximation.

Further details, including wake traverses and wave measurements, are
included in Gadd’s (1975) paper. They show more details of the interaction
that occurs in this experiment. Interesting points are the appreciable changes
in the wake behind the hulls when the plate is introduced and the associated
differences in the waterline near the stern of the models and in the waves
radiated. These appear to be largely due to the bow wave of one hull
influencing the stern of the other and its modification when the plate is
introduced.
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