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ABSTRACT

As reported in 1954, more than a half century ago, C. Cox andW. Munk developed an empirical model

of the slope distribution of ocean surface waves that has been widely used ever since to model the optical

properties of the sea surface and is of particular importance to the satellite remote sensing community.

In that work, the reflectance of sunlight was photographed from a Boeing B-17G bomber and was then

analyzed. In this paper, surface slope statistics are investigated from airborne scanning topographic lidar

data collected during a series of field experiments off the coast of California and in the Gulf of Mexico,

over a broad range of environmental conditions, with wind speeds ranging from approximately 2 to

13 m s21. Unlike the reflectance-based approach of Cox andMunk, the slope distribution is computed by

counting laser glints produced by specular reflections as the lidar is scanned over the surface of the

ocean. We find good agreement with their measurements for the mean-square slope and with more

recent (2006) results from Bréon and Henriot that were based on satellite remote sensing. Significant

discrepancies for the higher-order statistics are found and discussed. We also demonstrate here that

airborne scanning lidar technology offers a viable means of remotely estimating surface wind speed and

momentum flux.

1. Introduction1

Better understanding and modeling of the sea sur-

face roughness are of critical importance for remote

sensing studies and measurements of air–sea fluxes.

Wind roughens the ocean surface, producing short

gravity–capillary waves, breaking waves, and foam.

When combined with accurate surface slope models,

the scattering of microwave radar signals over these

complex surfaces provides a way to estimate surface

wind speed remotely and globally (e.g., Fung et al. 2010).

Sun glints, caused by the specular reflections of direct

solar radiance from the sea surface, have a significant

impact on remotely sensed ocean color, reflectance, and

surface temperature observations and need to be cor-

rectly accounted for (e.g., Gordon andWang 1992, 1994).

The seminal work of Cox andMunk (1954) was the first

attempt to derive an ocean surface slope distribution

model, based on a limited number of sun-glitter photo-

graphs collected from a U.S. Air Force Boeing B-17G

aircraft off the coast of Maui, Hawaii, to estimate surface

slope probability density functions (pdfs). Their empirical

approach consisted of fitting their optical measurements

of sun-glitter patterns to a Gram–Charlier series and re-

lating their statistics to in situ measurements of wind

speed collected from the 58-ft-long (1 ft 5 30.5 cm)

schoonerReverie, positioned at the experiment site. This

work found renewed interest several decades later with

the development of scatterometers and microwave ra-

dars that were used to estimate the surface wind speed,

where the modeling of the ocean surface slope dis-

tribution is an essential component of the measure-

ment technique.

Surprisingly, in part because of the complexity and

observational challenges characterizing surface slope

distributions, only a few studies attempted to revisit

these results since then. Several authors (Hughes et al.

1977; Haimbach and Wu 1985; Hwang and Shemdin

1988; Shaw and Churnside 1997) used field observa-

tions from a refractive laser slope gauge and a reflective

scanning laser to compute slope statistics and found
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a linear relationship between themean-square slope and

wind speed, as in Cox and Munk (1954). Su et al. (2002)

used a scanning spectral photometer from a coastal

ocean platform and Gatebe et al. (2005) used the Cloud

Absorption Radiometer (CAR) from a research aircraft

to investigate sun glint and its relation to slope distri-

bution. Some of these studies hinted at the role played

by atmospheric stability (e.g., Shaw and Churnside 1997;

Haimbach and Wu 1985) in modeling surface slope

distributions, based on limited datasets, which therefore

restricted their range of applicability.

Bréon and Henriot (2006) used satellite remote

sensing products from the U.S. National Aeronautics

and Space Administration (NASA) Scatterometer

(NSCAT) and the Polarization and Directionality of

the Earth’s Reflectances (POLDER) to compute slope

pdfs using the same approach developed by Cox and

Munk (1954). They found a remarkable agreement with

their results, especially for the mean-square slope, as

highlighted in the Munk (2009) review.

Recently, the development of polarimetric imaging

technology (Zappa et al. 2008, 2012; Laxague et al. 2015;

Kiefhaber et al. 2015) has provided a new method to

characterize slope distributions. The measurement tech-

nique itself is particularly challenging, because the in-

coming light polarization has to be accurately known to

obtain valid slope measurements. All of these studies

show mean-square slopes of lower magnitude than the

Cox and Munk (1954) model, explained at times by

the possible presence of surfactants at the experiment

site where the polarimetric measurements were col-

lected. Surfactant layers are known to have a dra-

matic impact on the surface wave properties. These

layers reduce surface roughness2 and are therefore of

importance for air–sea interaction processes, because

shorter waves support most of the momentum flux

between the ocean and the atmosphere.

It is remarkable that, in the latter part of their in-

credible scientific careers, and more than 50 years

after their original study was published, both Cox and

Munk had returned to the study of the slope statistics

of the sea surface, also referred to as the ‘‘sun-glitter

problem.’’ Cox’s interest was geared toward a better

understanding of the underlying physics of wave–

surfactant interactions. In a 2015 maritime history

research note, he recounted the rescue of the crew of a

sinking ship in the early 1880s (the Grecian) that used

fish oil to suppress breaking waves during a severe

storm and enabled the crew to transfer to the rescue

ship Martha Cobb (Cox 2015). These historical rec-

ords provided the basis for a wave energy model that

incorporates the reduced roughness caused by the oily

surface film (Cox et al. 2017).

For the last decade Munk was revisiting the topic,

leading to a review paper on sea surface slope statis-

tics (Munk 2009), comparing the mean-square slope

results of Cox and Munk (1954) with the satellite-

derived results of Bréon and Henriot (2006). The lack

of existing theory that would explain the linear wind

dependence of the mean-square slope and its un-

expectedly large crosswind component was of partic-

ular interest to him, and he proposed that such

directional spreading could be produced by localized

sources that could generate obliquely propagating

‘‘ship wake’’–like waves. He concluded his review by

recalling earlier discussions on the topic and provided

some insight:

At the 1955 celebration of the 25th birthday of the
WoodsHole Oceanographic Institution, I was given the
opportunity to review what was then known about our
subject (Munk 1955). After referring to the Cox and
Munk result of a linear wind dependence of the mean-
square slope and its large crosswind component, I spoke
of the need for ‘‘a respectable theory’’ of wind drag,
and, referring to a recent photograph, mentioned ‘‘how
important it is to look at the raw data before deciding on
pertinent statistical parameters.’’ How slow progress
has been in the past fifty years!

But there is hope. I surmise that the key contributing
wave scales range from millimeters to a meter. These
are the very scales that will be the subject during
the next few years of extensive sea-going experi-
ments, which will use powerful new optical tools. If
the time for review is when a subject is under active
development, with new solutions being found and old
solutions being demolished, not when it is to be tidied
and put to rest, then this is indeed the right time
for review.

To this end, no theory has been brought forward that

would explain such surface slope statistics.

In the current study, we characterize and investigate

the properties of ocean surface slopes measured during

a series of experiments off the coast of California and

the Gulf of Mexico from an airborne scanning lidar

installed on a research aircraft. The experiment, in-

strumentation, environmental conditions, and pro-

cessing techniques are presented in section 2. Section

3 describes the results in the context of the work of

Cox and Munk (1954) and discusses the potential

application of this technique for airborne remote

sensing of surface wind speed and momentum flux.

The findings are summarized in section 4.

2 Surface roughness is mostly produced by very short, gravity–

capillary waves.
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2. Experiments

Data presented here were collected during multiple

experiments: the Office of Naval Research (ONR)

Departmental Research Initiative (DRI) Radiance

in a Dynamic Ocean 2008 (RaDyO2008) project

(Dickey et al. 2012); the Gulf of Mexico 2011

(GoMEX2011; Romero et al. 2017) experiment; South-

ern California 2013 (SOCAL2013), one of the High

Resolution (HIRES, or HiRes) ONRDRI field efforts

(Lenain and Melville 2017; Grare et al. 2018); the

recent Langmuir Circulation and Inner Shelf ONR

DRI field efforts (LCDRI2017 and ISDRI2017, re-

spectively); and a NASA–JPL-funded project to col-

lect airborne lidar altimetry data under ‘‘AltiKa’’ (a

Ka-band altimeter) satellite tracks off the coast of

Monterey, California, to validate the NASA–JPL Air

Surface Water and Ocean Topography (AirSWOT)

instrument (April 2015).

Note that the present study is primarily based on the

SOCAL2013 and LCDRI2017 projects in which phase-

resolved measurements of wind and waves over a broad

range of environmental conditions were collected. Both

of these experiments were located between San Cle-

mente and San Nicholas Islands (vicinity of 33813.2020N,

118858.7670W) where the floating ocean research plat-

form R/P Floating Instrument Platform (FLIP) was

moored, from 7 to 22 November 2013 and 16 March to

10 April 2017, for the SOCAL2013 and LCDRI2017

experiments, respectively. The R/P FLIP was in-

strumented with a suite of sensors described below to

characterize the atmospheric, surface, and subsurface

conditions at the experiment site. A combined total of

18 research flights are considered in the analysis, cor-

responding to 51.7 h of on-station flight in the vicinity of

the in situ measurements.

a. The Modular Aerial Sensing System

Spatiotemporal measurements of the sea surface to-

pography and surface kinematics were collected from a

Partenavia P68 aircraft that was instrumented with the

Modular Aerial Sensing System (MASS), an instrument

package developed at Scripps Institution of Oceanog-

raphy (Melville et al. 2016).

At the heart of the system, and of specific interest for

this study, a Riegl Laser Measurement Systems GmbH

model Q680i waveform scanning lidar is used to make

spatiotemporal measurements of the sea surface. The

sensor has a maximum pulse repetition rate of 400 kHz

and a maximum line scan rate of 200Hz, and it has been

used at altitudes up to 1500m with sufficient returns for

surface-wave measurements. Because of a6308 cross-
heading scan-angle envelope, the theoretical swath

width over water is proportional to the altitude of the

aircraft,3 with its effective width being dependent on

the wind speed and sea state. More details are avail-

able in Melville et al. (2016).

The MASS is also equipped with a 14-bit, 640 3
512 pixel-resolution quantum well infrared photode-

tector (QWIP) forward-looking infrared (FLIR) FLIR

Systems, Inc., model SC6000 infrared camera operating

at up to a 126-Hz frame rate in the 8.0–9.2-mm spectral

band range, to measure the ocean surface temperature

field including modulations and gradients due to fronts,

surface signatures of Langmuir circulation and wave

breaking (Sutherland and Melville 2013). A hyper-

spectral camera [Spectral Imaging, Ltd. (SPECIM)

model AISAEagle] operating in the 400–990-nm

spectral band (from visible to near-IR) and a Jai,

Ltd./Pulnix Sensors, Inc., model AM-800CL (3296 3
2472 pixel resolution) monochrome (12 bit) video

camera that operates at a frame rate of up to 17Hz are

used to provide visible imagery of the kinematics of

whitecaps (Melville and Matusov 2002; Kleiss and

Melville 2010, 2011; Sutherland and Melville 2013).

All data collected are carefully georeferenced from

the aircraft to an Earth coordinate frame using a

NovAtel, Inc., model SPAN-LN200, a very accurate

GPS–inertial measurement unit (IMU) system com-

bining GPS technology with an IMU using fiber-optic

gyroscopes and solid-state accelerometers to provide

position and attitude data at up to 200Hz. After dif-

ferential GPS processing, using NovAtel Waypoint

Inertial Explorer software, the stated accuracy for the

instrument position is 0.01m in the horizontal plane

and 0.015m in the vertical direction, with attitude

accuracies of 0.0058, 0.0058, and 0.0088 for roll, pitch,
and heading, respectively. A calibration–validation

flight over stationary targets is conducted prior to and

after each campaign to minimize boresight errors that

are due to the misalignment between the GPS–IMU

system and the lidar (Melville et al. 2016). Once

calibrated, we typically find absolute vertical errors of

2–4 cm (per lidar pulse) for the final topographic

product, estimated at 2.3 and 2.1 cm in this study from

the calibration flight conducted prior to and after each

experiment.

Note that an earlier version of the MASS was used

during the RADYO2009 experiment. The instrument

package was built around a Riegl LMS Q240i air-

borne scanning lidar. This system uses a 905-nm class-

I laser, with a beam divergence of 2.7 mrad and an 808
field of view. The laser has a pulse repetition rate of

3 The swath width is close in value to the aircraft altitude.
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30 kHz and a line scan rate of 30Hz. The instrument

is collocated with a Coda Octopus Products, Ltd.,

F180 dual-antennae GPS–IMU to provide position

and attitude information. Detailed performance and

specification information are presented in Reineman

et al. (2009).

b. Environmental conditions

A suite of atmospheric sensors was installed on R/P

FLIP’s port boom to characterize the marine atmo-

spheric boundary layer variables used in the analysis.

During SOCAL2013, the wind speed and direction were

measured from a sonic anemometer (Gill Instruments,

Ltd., model R3-50) mounted on a vertically oriented

telescopic mast that was deployed from the end of the

horizontally extended 20-m-long port boom of FLIP,

at a height ranging from approximately 5 down to 2.65m

above mean sea level (MSL), and from two Campbell

Scientific, Inc., model CSAT3 anemometers installed at

fixed heights of 8.5 and 14.5m MSL. The height of the

anemometers above mean sea level varied during the

course of the experiment depending on environmental

conditions (Grare et al. 2018) but was typically in the

range of 2.6–4m MSL for the lowest sensor, the Gill

R3-50. During LCDRI2017, two ultrasonic anemome-

ters (Gill R3-50) were installed at fixed heights of

8.3 and 14m MSL.

The friction velocity u* in the air is given by

u*5 (u0w02 1 y0w02)1/4 , (1)

where u, y, and w represent the three components of

the wind vector in the along, cross, and vertical di-

rections, respectively, and the prime denotes that

component quantities have had their mean removed.

The covariances u0w0 and y0w0 are computed over

30-min records from the average cospectra for (u0, w0)
and (y0, w0).
The wind speed U10 at 10-m height above the ocean

surface was interpolated between the data collected at

the measurement heights closest to the ocean surface,

approximately 8.5 and 14.5mMSL, assuming a constant

flux layer with a logarithmic wind profile.

c. Satellite remote sensing

In addition to the in situ atmospheric data collection

from R/P FLIP, remotely sensed wind from two sat-

ellite altimeters are considered here. The first one, the

Satellite with Argos and AltiKa (SARAL/AltiKa), which

is a cooperative mission between the Indian Space Re-

search Organization (ISRO) andCentreNational d’Etudes

FIG. 1. Measured along-wind slope pdf (black circles); shown are

data collected during the SOCAL2013 experiment and the corre-

sponding fit (blue line) using a Gram–Charlier series.

FIG. 2. (a) Lidar-measured along-wind slope color coded for in

situ wind speed data U10 from the SOCAL2013 and LCDRI2017

experiments. (b) The same data, but scaled by the standard de-

viation and mean of the pdfs.
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Spatiales (CNES), is equipped with a Ka-band radar

altimeter operating at 35.75GHz and a two-channel

microwave radiometer operating at 23.8 and 37.0GHz.

The wind speed is computed from the Ka-band re-

flected power, or backscatter coefficient, combined

with an empirical wind model (Lillibridge et al. 2014).

The second satellite considered here is Jason-1, a joint

mission between CNES and NASA. The approach is

the same to derive the wind speed, although this time

Ku- and C-band frequencies are used (see, e.g., Ménard
et al. 2003; Abdalla 2012).

d. Using lidar to measure surface slope statistics

Shaw andChurnside (1997) first introduce the concept

of using the ‘‘laser-glint-meter technique’’ to compute

slope statistics. The basic idea is to count laser glints

from specular reflections as a laser or lidar is scanned

over the surface of the ocean. In the context of using an

airborne lidar to measure sea surface slope statistics,

the issue of interpreting the return signals from the li-

dar pulses arises.

Assuming for the present an idealized 1D case in

which the scattering of the lidar pulse from the surface is

specular, the footprint size of the emitted lidar pulse on

the surface is sufficiently small, and the range of sea

surface slopes is6M, then the probability that the slope

is in the range from 2M to M is unity. In one data

record i (say for a constant wind speed) assume that npi
pulses are transmitted in the angle incrementmi6Dm/2,

resulting in nri received return signals. We define Np

and Nr as the total number of pulses transmitted and

received, respectively, such that

N
p
5�

N

i51

n
pi

and (2)

N
r
5�

N

i51

n
ri
. (3)

Here N is defined such that NDm 5 2M.

The probability that the slope is in mi 6 Dm/2 is

given by

FIG. 3. Mean-square slope s2 computed from the airborne lidar during four distinct exper-

iments (RADYO2009, GOMEX2011, SOCAL2013, and LCDRI2017), color coded for their

heading relative to the mean wind direction, along with the data from Cox and Munk (1954,

1956) (label CM56), and Bréon and Henriot (2006) (label BH2006) as a function of wind speed

U10. Fits are shown with solid and dashed lines.
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p(m
i
)Dm5

n
ri

N
r

5
n
ri

n
pi

n
pi

N
p

N
p

N
r

, (4)

where p(mi) is the discrete pdf. As required for a pdf,

�
N

i51

p(m
i
)Dm5

1

N
r

�
N

i51

n
ri
5 1, (5)

and in the continuous limit we have

ð1M

2M
p(m) dm5 1. (6)

The ratio npi/Np is a tunable constant of the lidar as

well as Dm, and the ratio Np/Nr is a measurable in-

tegral parameter for each data record. Therefore, we

can write Eq. (5) as

p(m
i
)Dm5C(n

ri
/n

pi
) , (7)

where

C5
n
pi

N
p

N
p

N
r

(8)

is a measurable parameter for each environmental

state.

3. Results

a. Slope probability density functions

A representative example of along-wind slope pdf

p(m) computed from the MASS lidar data is shown in

Fig. 1. The data used to estimate the pdf were collected

during the SOCAL2013 experiment; 10-km-long swaths

flown in a cross-wave direction are considered. An

empirical altitude correction is applied to the mea-

surements to account for changes in laser footprint

and associated multipath returns that are not consid-

ered in the specular reflection assumption described

above. This correction is described in the appendix.

Also shown in Fig. 1 is a fit to a Gram–Charlier series,

as suggested by Cox and Munk (1954), and defined as

p
�m2m

s

�
5 �

Ns

n50

c
n

n!
H

n

�m2m

s

�
G
�m2m

s

�
, (9)

where m and s represent the mean and standard de-

viation of the measured pdf, respectively; G() is a

zero-mean unit-variance Gaussian distribution; Hn()

are the nth-orderHermite polynomials (Papoulis and Pillai

2002), and cn are expansion coefficients obtained by fitting

the measured distribution. Here the expansion series to

Ns 5 4 was used because the higher-order terms were

found to be statistically insignificant.

b. Mean-square slope

Figure 2a shows all along-wind slope pdf p collected

during the SOCAL2013 and LCDRI2017 experiments,

color coded for wind speed U10 measured from R/P

FLIP. The maximum value of the pdfs, near nadir

(where m ’ 0), is found to be inversely proportional to

the value of U10, and the distribution widths of the pdfs

get broader for higher wind speeds. The same pdfs

are presented in Fig. 2b, this time as a function of

nondimensionalized slope (m 2 m)/s. These scaled

pdfs generally collapse onto a single pdf curve, with

more variability closer to nadir and with a maxi-

mum magnitude that is inversely proportional to

wind speed. The range of nondimensionalized slope

(m 2 m)/s that we are able to characterize extends

from 25 to 5.

The mean-square slope s2 is shown in Fig. 3, plotted

against wind speed U10 and color coded for the

heading relative to the measured wind direction b.

Dark-red points represent upwind components, and

blue points represent crosswind ones. Also shown are

the airborne measurements from Cox and Munk

(1954, 1956) and parameterizations derived from

satellite remote sensing products (POLDER mis-

sion; Deschamps et al. 1994) analyzed in Bréon and

Henriot (2006). Here b is computed using the wind

direction measured on FLIP and the mean heading of

the lidar swath over the segment considered in the

computation, and not the aircraft heading, since at

FIG. 4. The ratio of crosswind to upwind mean-square slope

g5s2
c /s

2
u as a function of U10, using both linear [Eq. (13)] and

quadratic fits for the crosswind direction. Note that this ratio is only

valid for winds that are larger than approximately 2m s21, repre-

sented by a vertical gray dotted line.
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times—especially during crosswind flights—the air-

craft experienced significant ‘‘crab’’ angles (differ-

ence between aircraft heading and course angles; up

to 358 in this study). The upwind mean-square slope s2
u

is taken as all of the measurements collected within

6308 of the wind direction, and the crosswind coun-

terparts s2
c correspond to all of the measurements

collected within 6308 of the crosswind direction.

Linear fits are computed for both upwind and crosswind

components, giving

s2
u 5 3:133 1023U

10
1 1:13 1024 and (10)

s2
c 5 1:83 1023U

10
1 4:23 1023 . (11)

Note that for low values of U10 the crosswind

measurements appear to converge toward zero and

are therefore better represented by the following

quadratic fit

s2
c 527:63 1025U2

10 1 2:843 1023U
10
1 1:433 1023 .

(12)

Overall, we find a good agreement with the estimates

of Bréon and Henriot (2006) and measurements of

Cox and Munk (1954) from these lidar-based esti-

mates of mean-square slope.

The ratio g5s2
c /s

2
u, which is a measure of the di-

rectionality of the total surface slope, is shown in Fig. 4

using both linear and quadratic fits described above.

Assuming a linear fit for the crosswind component, we

find, for wind speeds ranging from 2 to 13m s21, that

g5
s2
c

s2
u

5 0:57521
1:32

U
10

2
0:0431

U2
10

. (13)

Above 2–3m s21 wind speeds, the ratio is less than 1,

suggesting anisotropy in the directionality of the mean-

square slope once the wind starts picking up. We find

g 5 0.71 for U10 5 10m s21, consistent with Cox and

Munk (1954) and Bréon andHenriot (2006), who found

g 5 0.8 and g 5 0.66, respectively, for the same wind

speed.

Figure 5 shows the mean-square slope s2 as a function

of friction velocity u* for three experiments in which

FIG. 5. Mean-square slope s2 computed from the airborne lidar during four distinct exper-

iments (RADYO2009, GOMEX2011, SOCAL2013, and LCDRI2017), color coded for their

heading relative to themean wind direction, as a function of friction velocity u*. Fits are shown
with solid and dashed lines.
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detailed characterization of the atmospheric bound-

ary layer was conducted from R/P FLIP, moored

within 10 km of the data considered here. We find

more scatter in the data plotted against u* as com-

pared with U10, shown in Fig. 3. One would have an-

ticipated more scatter withU10 caused by atmospheric

stability variations that are not accounted for in the

computation (Shaw and Churnside, 1997); however, u*
is a noisier measurement thanU10, and therefore perhaps

this is not completely unexpected. Linear fits are com-

puted for both upwind and crosswind components, giving

s2
u 5 7:923 1022u*1 9:023 1024 and (14)

s2
c 5 4:863 1022u*1 3:773 1023 . (15)

From these relationships, the slope distribution

statistic computed from the airborne lidar instru-

ment can be used to estimate U10 and u*. This ap-

plication is described in the appendix, along with a

surface-wave spectrum-based technique to compute

the wind direction.

c. Atmospheric stability

For consistency with past studies, we use here a

reduced Richardson number Ri to characterize the

atmospheric stability, given by

Ri5 g
(T

a
2T

w
)z

T
w
U2

z

, (16)

where g is the gravitational acceleration, Ta is the

atmospheric temperature at the anemometer height z,

Tw is the water temperature at the surface, and Uz is

the horizontal wind speed. Figure 6 shows the mean-

square slope results plotted against wind speed,

similar to Fig. 3, but this time color coded for Ri. The

bulk of the measurements considered here corre-

spond to conditions from neutral to unstable (nega-

tive Ri), with very few instances of stable conditions

(positive Ri).

Following the Shaw and Churnside (1997) ap-

proach, the ratio of the measured mean-square slope

and the Cox and Munk (1954) modeled mean-square

slope, or s2/s2
cm, is shown in Fig. 7 plotted against Ri,

FIG. 6. The same data as in Fig. 3, but this time color coded for the nondimensional reduced

Richardson number Ri.
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for both cross- and upwind cases to highlight any

stability dependence. Here s2
cm is calculated for each

sample based on its heading information and the

appropriate cross- or upwind model from Cox and

Munk (1954). While Shaw and Churnside (1997) had

identified a relationship between mean-square slope

and stability, no clear trend is found in the present

study.

d. Higher-order statistics

The normalized skewness x is computed from the

third moment of the discrete distribution p, defined as

x5 x
s
/s3 , (17)

where

x
s
5�

N

i51

(m
i
2m)2p(m

i
)Dm . (18)

The normalized skewness x is also equivalent to

the expansion coefficients of a Gram–Charlier dis-

tribution c03 and c21 for upwind and crosswind com-

ponents, respectively (Papoulis and Pillai, 2002;

Munk, 2009). Figure 8 shows x plotted against U10,

color coded for heading relative to the mean wind

direction, along with the expansion coefficients c03
and c21 from Cox and Munk (1954) and Bréon and

Henriot (2006). Unlike these prior studies, we do not

find significant skewness of the measured slope pdfs.

The magnitude of x is generally smaller than 0.1, with

no clear relationship with wind speed, as previously

found in other studies.

The excess kurtosis c is computed from the fourth

moment of the discrete distribution p, defined as

c5 (c
s
/s4)2 3, (19)

where

c
s
5�

N

i51

(m
i
2m)3p(m

i
)Dm . (20)

For comparison purposes, the excess kurtosis is

equivalent to the expansion coefficients of a Gram–

Charlier series c40 and c04 for upwind and crosswind

components, respectively. Figure 9 shows c plotted

against wind speed U10, color coded for heading rel-

ative to the mean wind direction, along with the ex-

pansion coefficients c40 and c04 from Cox and Munk

(1954) and Bréon and Henriot (2006). Although the

magnitude of c is not consistent with these studies, we

find c to decrease with wind speed, at different slopes

for crosswind (blue points) and upwind (red points)

directions.

It is intriguing to find such discrepancies among

these three studies for the higher-order statistics

presented here while the agreement for the mean-

square slope is very good. Looking closely at the data

from Figs. 8 and 9, we find some agreement, in mag-

nitude and sign, among Cox and Munk (1954), Bréon
and Henriot (2006), and the current study for wind

speeds lower than approximately 4–5ms21. Interestingly,

this is also thewind speed at which aeratedwave breaking

is often considered to begin. An important assumption

in the derivation of the slope statistics from reflectance

measurements is the need to filter out all foam and

breakingwaves from the collected data. Thiswas a known

challenge in Cox and Munk’s (1954) seminal work

(C. Cox 2014, personal communication), in which

whitecaps were removed manually, where possible. The

Bréon andHenriot (2006) approach consisted of removing

data for which contributions from foam and aerosols

were found to be larger than an empirical threshold,

based on the off-glint measurements (reflectance greater

than 1022). Removing the whitecaps and foam contri-

bution to the reflectance is particularly challenging with

the POLDER dataset, because the ground size of a

measured pixel is large—for example, 6 3 7 km2 at

nadir (Deschamps et al. 1994).

The obvious question that arises then is whether the

relationship between wind speed and skewness, and to

FIG. 7. Measuredmean-square slope normalized by the model of

Cox and Munk (1954) against Ri, which is a measure of atmo-

spheric stability. No clear effects from the atmospheric stability

are found.
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some extent kurtosis, found in the reflectance-based

retrieval technique is a measurement artifact, resulting

from inhomogeneities in the properties of the whitecap

and foam spatial coverage, such as variation in whitecap

fraction on the forward and rear face of breaking sur-

face waves or modulation of shorter breaking waves by

longer waves. This is a research topic we are actively

pursuing but is not within the scope of the work

presented here.

4. Discussion and summary

In this study, surface slope statistics were computed

from airborne scanning topographic lidar data that were

collected during a series of field experiments off the

coast of California and in the Gulf of Mexico over a

broad range of environmental conditions, with wind

speeds ranging from approximately 1–2 up to 13ms21.

The technique used here differs from the reflectance-

based approach of Cox and Munk (1954) and instead

derives the slope distribution by counting laser glints

produced by specular reflections as the lidar is scanned

over the surface of the ocean. Overall, we find good

agreement with the results of Cox and Munk (1954) and

themore recent results of Bréon andHenriot (2006) that

are based on satellite remote sensing products for the

mean-square slope. Unlike Shaw and Churnside (1997)

or Hwang and Shemdin (1988), we do not find any ob-

vious correlations between the mean-square slope and

the atmospheric stability, at least for the neutral and

unstable conditions experienced during the experiments

considered here.

Significant discrepancies with past studies (Cox and

Munk, 1954; Bréon and Henriot, 2006) are found for

the higher-order statistics and remain to be explained.

These are particularly difficult measurements to ob-

tain through remote sensing techniques; in particular,

the reflectance-based approach used by Cox and

Munk (1954) and Bréon and Henriot (2006) requires

filtering out the portion of the data that is contami-

nated by whitecap coverage, which is a challeng-

ing operation, especially for high wind cases. If not

FIG. 8. Normalized skewness x computed from the airborne lidar during four distinct ex-

periments (RADYO2009, GOMEX2011, SOCAL2013, and LCDRI2017), color coded for

their heading relative to the mean wind direction, along with the data from Cox and Munk

(1954) and Bréon and Henriot (2006), as a function of U10.
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filtered out correctly (or completely), any skewness

or excess kurtosis in the spatial properties of the

whitecap coverage could lead to an erroneous slope

distribution computation. This is not within the

scope of this work but is a topic that we are actively

pursuing.

As first identified more than 60 years ago by Cox and

Munk in their seminal work, we find a linear wind de-

pendence of the mean-square slope, with a large cross-

wind component of the slope observed for winds greater

than 3–4ms21 that corresponds to approximately 70%–

90% of the upwind component, depending on the wind

speed. To this end, no theory has been brought forward

that would explain such surface slope statistics, and in

particular such a large crosswind component. Munk

proposed that localized sources, such as pressure points,

could generate obliquely propagating waves (cf. Kelvin

ship waves).

Recent progress in our understanding of the di-

rectionality of the surface wave spectrum, highlighting

the transition from unimodal to bimodal spectral dis-

tribution in wind-generated surface waves (Banner and

Young 1994; Leckler et al. 2015; Lenain and Melville

2017; Peureux et al. 2018), is now bringing us a step

closer to solving this problem. Themechanisms that lead

to a wide bimodal surface wave spectrum remain un-

clear; standard gravity wave modeling using four-

wave resonance is just an asymptotic model, and for

larger times and larger slopes five-and-higher-wave

resonances are possible. Su et al. (1982) and Melville

(1982) showed direct evidence of the growth of crescent-

shaped waves in laboratory experiments, for larger wave

slopes, as the result of five-wave interactions that lead to

three-dimensional instabilities that are stronger than

the two-dimensional Benjamin–Feir instabilities (McLean

et al. 1981).Wave breaking also needs to be considered

as a source of wave components traveling in almost

transverse or even upstream directions (Rapp and

Melville 1990). As far as we are aware, there has not

been any modeling of the effects of the directional

distribution of wave breaking on surface slope sta-

tistics. The source of the large crosswind component

of the mean-square slope therefore remains elusive,

but the evidences presented here calls for more spa-

tiotemporal measurements of surface waves and wave

breaking, at very small scales, fromO(1mm) toO(10m)

in particular, and modeling of higher-order wave–wave

interactions.

FIG. 9. As in Fig. 8, but for excess kurtosis c.
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Wealso demonstrate here that airborne scanning lidar

technology is a viable tool to measure mean-square

slope and to estimate surface wind speed and momen-

tum flux remotely. This is of importance, because the

availability of surface wind measurements is often lim-

ited to buoys or vessel-mounted instrumentation that

usually provides poor spatial coverage and satellite re-

mote sensing products do not have the flexibility or the

spatial and temporal resolution needed for studies on

submesoscales and smaller. This approach, along with

the development of new technology (Rodríguez et al.

2018a,b) that is capable of significantly better spatial

resolution, can further enhance our understanding of the

underlying physical processes driving the spatiotemporal

variability of surface winds from submesoscale to ki-

lometer scale. This is particularly relevant for wave

forecasting, because it is now well accepted that the

largest errors in wave predictions are often caused

by a lack of accurate momentum flux estimates

(Janssen 2004). The measurement approach proposed

here provides a means of improving local measure-

ments of wind variability and, in turn, wave prediction

capabilities, in areas ranging from coastal to open

ocean waters.
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APPENDIX

Altitude Correction, Wind Speed Validation, and
Wind Direction Retrieval

a. Altitude correction

All lidar measurements presented here are initially

range corrected to take into account any changes in the

received laser signal amplitude Ar that are associated

with variations in the distance between the instrument

and the measurement target within a single scan, and

between flights that are conducted at different altitudes.

TheMASS lidar, a Riegl Q680i instrument, was range-

calibrated during a series of flights on 31 July 2015, in

Oxnard, California. The MASS was installed on a Bell

206-L III Long Ranger helicopter operated by Aspen

Helicopter. Stationary flights were conducted at alti-

tudes ranging from 30 to 1000m over a variety of

targets (e.g., runway markings and grassy areas) to

cover a broad range of backscatter amplitudes, cor-

responding to the known range of amplitude Ar that

has been measured over the ocean surface in this

study. Figure A1 shows the received laser amplitude

Ar as a function of altitude r, at nadir, for these tar-

gets. We find a clear r22 power law for r . 100m, the

lowest altitude from which we typically collect data,

such that

A
rc
5 (r

ref
/r)2A

r
, (A1)

FIG. A1. (a) Backscattered laser amplitude Ar as a function of

altitude r, at nadir, for a range of targets. (b) The same data, but

now scaled by the mean amplitude hAri computed for r . 100m.
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where the reference altitude rref is arbitrarily set to

300m. In addition, the received amplitude is also cor-

rected for changes in the ellipsoidal area S of the laser

footprint as a function of scanning angle, for a given

scan, as illustrated in Fig. A2:

A
rc2

5
r2(u)

r2(0)
cosuA

rc
. (A2)

Last, to account for a remaining altitude dependence

in our measurements that is likely associated with mul-

tipath returns within the footprint of the lidar for which

we cannot formally account, a final correction is applied

by only considering in the analysis backscattered lidar

returns of amplitude

A
rc2

.a
0

�
A

rc2

�
, (A3)

where a0 is a threshold coefficient that is estimated it-

eratively by minimizing the scatter obtained in the slope

variancemeasurements. FigureA3 shows the residual of

the minimization process as a function of the threshold

coefficient. Herea0 is set to the value at the 95 percentile

of the residual.

b. Lidar-derived wind speed validation

We can use the slope distribution statistics computed

from the airborne lidar instrument to derive the wind

speedU10 and friction velocity u*. This is of significance

because in situ surface wind measurements are usually

very sparse, being collected from a limited number of

meteorological buoys, and satellite remote sensing

products do not have the spatial resolution needed for

studies on scales that are submesoscale and smaller.

This technique was tested during a series of experi-

ments: the ONR funded Innershelf DRI program

(2017), off Point Sal, California, the GoMEX experi-

ment in the Gulf of Mexico (2011) and a SARAL/AltiKa

overflight off the coast of central California (2015).

None of the data from these experiments were included

in the fitting of the mean-square slope and atmospheric

forcing presented earlier, but they are used here.

Figure A4 shows the lidar estimates of wind speedU10

against coincident (within 10min), collocated (within

2.5 km), independent measurements, either from in situ

or satellite remote sensing products. Here the mean-

square slope s2 that is computed from a 2.5-km airborne

lidar transect is used to derive U10. We find an RMS

error ranging from 0.96 to 1.45m s21 for the upwind and

crosswind directions, respectively, for each individual

measurement. The black circles represent lidar-derived

wind estimates plotted against in situ wind records col-

lected during the Innershelf DRI program. Here the

in situ data are based on a combination of three research

vessels, each instrumented with a meteorological mast

(R/V Sally Ride, R/V Oceanus, and R/V Sproul) and a

nearshore surface buoy located southeast of Point Sal.

The colored circles correspond to lidar-derived wind

estimates plotted against surface wind data collected

from two satellites, Jason-1 and SARAL/AltiKa. The

agreement is good with the satellite products, but we

find some deviations between our estimate of U10 and

the in situ measurements collected during the Innershelf

DRI experiment described above. These might have

been caused by errors in the in situ wind measurements

FIG. A3. Residuals r from the scatter minimization process plotted

against the amplitude threshold value a.

FIG. A2. Fraction of the surface area of the laser footprint

S normalized by the surface area of the footprint at nadir S0 as a

function of viewing angle m, in radians. We find an increase in

the area of the footprint of up to 30% at the edges of the lidar

swath, which ranges here over 6308 from nadir (m 5 0) in the

cross-track direction.
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that can be associated with the flow distortion around the

vessel, exacerbated by the low vessel speed (from sta-

tionary to 1–2ms21) imposed by the in-water component

of ship operations for data collection, and repeated ship

heading changes. This also highlights the challenges of

collecting science-grade wind measurements from

research vessels, despite various attempts to account

for the flow distortion (e.g., Miller et al. 2008; Landwehr

et al. 2015), and the scientific need for other means of

obtaining surface wind measurements. Overall we find a

small bias of 10.3m s21 for a 1:1 slope and a coeffi-

cient of determination R2 5 0.82. This value goes up

to 0.95 when only the satellite remote sensing products

are considered, with a similar bias (10.35ms21).

Figure A5 shows the lidar estimates of u* against the

same coincident (within 10min), collocated (within

2.5 km), independent measurements that were pre-

sented in Fig. A4. Here the friction velocity is computed

iteratively using the Tropical Ocean and Global Atmo-

sphere Coupled Ocean–Atmosphere Response Experi-

ment 3.0 (TOGA COARE 3.0) algorithm assuming a

constant flux layer with a logarithmic wind profile

(Fairall et al. 2003). We find a small bias between the

two estimates, 10.035m s21, showing a slightly larger

value of u* with the lidar-based measurements, and a

coefficient of determination R2 5 0.8.

c. Wind direction retrieval

Because the wind direction cannot be retrieved from

the lidar return statistics without conducting dedicated

flights, for example, a star pattern over a short period of

time to quantify the variability of mean-square slope s2

as a function of heading to relate it to the mean wind

direction, here we utilize the directional spectral prop-

erties of the measured wind-generated surface waves.

Note that this approach is only valid for wind speeds of

greater than 2–3ms21 to ensure sufficient density of li-

dar returns required to compute the directional wave

spectra.

Ten-kilometer-long swaths of georeferenced ocean

surface topography data centered on R/P FLIP were in-

terpolated on a regular grid, with the horizontal spatial

resolution being a function of the flight altitude (Lenain

and Melville 2017). Two-dimensional fast Fourier trans-

forms were computed over 5-km segments with 50%

overlap. All segments were first detrended, tapered

with a two-dimensional Hanning window, and padded

with zeros (25%). The obtained 2D spectra were cor-

rected for Doppler shift induced by the relative mo-

tion between the phase speed of the waves and the

aircraft velocity, using the method developed by

Walsh et al. (1985).

Lenain and Melville (2017) highlighted the transition

from unimodal to bimodal directional distribution found

inwind-generated surface wave spectra [see Figs. 3 and 4

of Lenain andMelville (2017) and the related discussion

therein]. The wind direction is taken here as the di-

rection of highest spectral density in the directional

spectrum at the measured wavenumber correspond-

ing to this transition. Figure A6 shows the comparison

FIG. A5. As in Fig. A4, but for friction velocity u* and based

on wind speed measurements and bulk formulation (TOGA

COARE 3.0).

FIG. A4. Wind speed U10 as estimated from the airborne lidar

measurements compared with collocated in situ (ISDRI2017) and

satellite remote sensing products (Jason-1 and AltiKa).
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between independent wind direction measurements and

estimates derived from directional surface wavenumber

spectra collected during the LCDRI2017 experiment,

along with results from an AltiKa overflight in April

2015 off the coast of Monterey. In that latter case we

used the standard wind direction product provided in

the L2 level of the AltiKa dataset (AVISO; note that

acronyms that are not defined in this papermay be found

at https://PubsAcronymList). We find good agreement

between in situ and lidar-based wind direction values,

with an rms error of approximately 108.
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