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Surfing surface gravity waves
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A simple criterion for water particles to surf an underlying surface gravity wave is
presented. It is found that particles travelling near the phase speed of the wave, in a
geometrically confined region on the forward face of the crest, increase in speed. The
criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6,
1953, pp. 497–503) for the motion of a zero-stress free surface under the action
of gravity. As an example, a breaking water wave is theoretically and numerically
examined. Implications for upper-ocean processes, for both shallow- and deep-water
waves, are discussed.
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1. Introduction
This study reports on a theoretical criterion for particles to surf water waves. Here,

a particle travelling near the phase velocity of the underlying wave that experiences
an increase in its horizontal velocity due to the wave is said to surf. The theory is
based on an analysis of the John equation (John 1953) for zero-stress free-surface
flows under the action of gravity. Employing this equation, it is shown that particles in
the region of the forward face of the crest of a very steep or breaking wave, travelling
at speeds near the phase velocity of the underlying wave, increase in speed. This is
the main result of this paper.

As any experienced surfer knows, the ideal location to be on a wave is near
the forward face of the crest of an unbroken wave approaching breaking. This is
commonly referred to as the ‘curl’. Staying in the curl maximizes distance travelled,
which is correlated with the ride enjoyment. A similar phenomenon occurs when
white water from a breaking wave rides the underlying wave, which is an important
process in both shallow and deep-water upper-ocean dynamics.

Shallow-water breaking waves transport mass, generate currents and mix the surf
zone (Inman, Tait & Nordstrom 1971; Peregrine 1983; Battjes 1988). Wave breaking
in the surf zone radically alters along-shore currents, versus the traditional model of
gradients in the radiation stress (Longuet-Higgins & Stewart 1964; Feddersen et al.
2016). Mixing is crucial for regulating the thermodynamics (Sinnett & Feddersen
2014) and chemistry (Bresnahan et al. 2016) in the near-shore region, while currents
transport pollutants along the coastline (Feddersen 2007; Clark, Feddersen & Guza
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2010). A better understanding of breaking is important for characterizing near-shore
processes.

The Lagrangian drift, or mass transport, of deep-water surface waves is an important
feature of upper-ocean dynamics (Phillips 1977). Traditionally, the drift is associated
with permanent progressive waves and for linear waves this is known as Stokes
drift. Stokes drift is believed to be essential for generating Langmuir circulations
(Craik & Leibovich 1976; Leibovich 1983; McWilliams, Restrepo & Lane 2004), as
well as transporting mass, which might strongly modulate global ocean circulation
(McWilliams & Restrepo 1999). However, Stokes drift is very difficult to measure in
the ocean and its form for realistic sea states is still an active area of research (Smith
2006).

Alternatively, wave breaking, which is intermittent in space and time, transports
mass and generates ocean currents (Rapp & Melville 1990; Melville, Veron & White
2002). Direct numerical simulations (Sullivan, McWilliams & Melville 2004) and large
eddy simulations (Sullivan, McWilliams & Melville 2007) show that wave breaking,
using a simple body force model for the effects of breaking on the mean flow, is
an important component of the dynamics of the upper ocean. This motivated a closer
examination of the integral properties of the breaking induced flow (Pizzo & Melville
2013; Pizzo, Melville & Deike 2016) in the context of impulsive forces and vortex
dynamics.

Similarly, very recently, numerical work has been undertaken to study the
Lagrangian transport due to breaking induced flow (Deike, Pizzo & Melville 2017).
The authors performed a direct numerical simulation of a breaking deep-water wave
packet by using a dispersive focusing technique (Rapp & Melville 1990). Particles
are tracked during the breaking process and two of these paths are shown in figure 1.
Figure 1(a) shows a particle that does not surf the breaking wave and has a relatively
small horizontal displacement of approximately 0.3 m. Figure 1(b) shows a particle,
which is initially close to the particle in figure 1(a), which surfs the breaking wave
and is transported around 2.2 m, which is more than seven times greater than the
horizontal displacement in figure 1(a). These images motivated this research.

To this end the John equation, which describes the motion of particles on a zero-
stress free surface, is considered. Recently, the structure of these equations has been
closely examined (Fedele, Chandre & Farazmand 2016), following the development
of these equations in three dimensions (Sclavounos 2005). A generalization of this
equation has been used to examine the geometry of the surface of breaking waves by
Longuet-Higgins (1980, 1982).

In this study, an asymptotic analysis of the behaviour of a perturbed particle obeying
the John equation is undertaken. This is found to elucidate a mechanism that is present
for particles travelling near the phase velocity of the underlying wave. The analysis
yields a criterion for a particle to surf an underlying wave based on the geometry of
the free surface and the kinematics of the particle. A generalization of this result is
then provided and both results are examined theoretically and numerically.

The outline of this manuscript is as follows. In § 2, the equation of John and a
criterion for particles to surf an underlying wave are presented. In § 3 a breaking deep-
water wave is considered and the results are discussed. Finally, in § 4 implications of
this work are considered.

2. Criterion for surfing particles
The equation of John (1953) is presented. Instead of following the original

derivation of John, who used the language of complex variables, the work of
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FIGURE 1. (Colour online) Particle displacements for a breaking deep-water wave packet,
generated by a direct numerical simulation from Deike et al. (2017, see Deike, Popinet
& Melville 2015; Pizzo et al. 2016 for further discussion of the numerical methods). The
linear prediction of the maximum slope at breaking (Drazen, Melville & Lenain 2008)
is 0.4, while the central frequency of the packet is 0.88 Hz corresponding to a central
wavelength of approximately 2.02 m. The particle trajectory is drawn by the black line,
while the time evolution of the particle is indicated by the colour. Dispersive focusing is
used to localize energy in space and time (Rapp & Melville 1990) leading to breaking
that occurs around t= 2 s. Two different particles are shown. In (a), the particle does not
catch the wave and its displacement is relatively small, approximately 0.3 m. In (b), the
particle surfs the wave and is displaced a relatively large distance of about 2.2 m, more
than seven times further than the non-breaking case.

Sclavounos (2005, see also Fedele et al. 2016) is reproduced for completeness
(in two spatial dimensions). A criterion for particles to surf an underlying permanent
progressive wave is derived. This criterion is then generalized and discussed.

2.1. The John equation
Recall, for a zero-stress surface the free surface is a line of constant pressure.
Furthermore, curves for which ζ − η takes a constant value, where η represents the
free surface and ζ is the vertical position of a particle, are level curves. Hence,
∇(ζ − η) is normal to this level curve. Next, as the pressure gradients must be
normal to the surface (the pressure is by definition the isotropic component of the
stress), the following relationship holds:

∇(ζ − η)×∇p= 0; ζ = η. (2.1)

The Euler equations in two spatial dimensions are

d2ξ

dt2
=−

1
ρ

∇p+ g, (2.2)

with ξ = (ξ(t), ζ (t)) the horizontal and vertical positions of the particles, respectively,
ρ the density of water, p the pressure and g= (0,−g) the acceleration due to gravity.
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Solving for the pressure and substituting this into (2.1) implies

ξ̈ + ηx(g+ ζ̈ )= 0, (2.3)

with dots representing (total) derivatives with respect to time. Next, recall the
kinematic boundary condition at the free surface is

ζ̇ = ηt + ηxξ̇ . (2.4)

Note, η̇= ηt + ηxξ̇ so that

ζ̈ = ηtt + ηxξ̈ + 2ηxtξ̇ + ηxxξ̇
2. (2.5)

Therefore, equation (2.3) becomes

ξ̈ +

{
2
(
ηxηxt

1+ η2
x

)
ξ̇ +

(
ηxηxx

1+ η2
x

)
ξ̇ 2
+
(ηtt + g)ηx

1+ η2
x

}∣∣∣∣
x=ξ

= 0, (2.6)

which is the equation found by John (1953). This takes the form of a Ricatti-type
equation, with a corresponding variational structure (Sclavounos 2005, see also Fedele
et al. 2016).

2.2. Surfing criterion for permanent progressive waves
A criterion for particles to surf an underlying permanent progressive wave is now
derived. That is, η(x, t) = η(x − ct) for some constant phase velocity c. Note,
permanent progressive waves exist in deep water (e.g. Stokes waves) and shallow
water (e.g. soliton and cnoidal solutions to the Korteweg–de Vries equation). This
assumption is relaxed in § 2.3, and examined numerically in § 3.

Under the above assumption, the governing equation may be rewritten as

ξ̈ + {F(x− ct)ξ̇ +G(x− ct)ξ̇ 2
+H(x− ct)}|x=ξ = 0, (2.7)

with F,G,H corresponding to the relevant coefficients in (2.6). Up until this point, the
equation still holds exactly for zero-stress free-surface permanent progressive waves
under the action of gravity.

The horizontal velocity is decomposed, so that

ξ̇ =U0 + u, (2.8)

where U0 is the initial velocity of the particle, a constant, and u=u(t) is a perturbation
from this value. The particle location ξ can be found by integrating equation (2.8), i.e.

ξ = x0 +U0t+
∫

u dt. (2.9)

Formally, we take u∼O(ε) for a small parameter ε≡ |u/U0| while u̇∼O(1), the later
assumption being a restriction on the time scale over which this analysis is applicable.

Then, the governing equation to lowest order in ε, namely O(ε0), is

u̇− 2U0cF(x0 + δt)+U2
0G(x0 + δt)+H(x0 + δt)= 0, (2.10)
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320 N. E. Pizzo

where
δ ≡U0 − c, (2.11)

which is a measure of how close the initial velocity of the particle is to the phase
velocity of the underlying wave.

Substituting in the form of G and H from (2.6) gives

u̇+ δ2(log(1+ η′2))′ + g
η′

1+ η′2
= 0, (2.12)

with primes representing differentiation with respect to x0. Integrating equation (2.12)
from 0 to a time t yields

u = −δ{log(1+ η′(x0 + δt)2)− log(1+ η′(x0)
2)}

− g
{

N(x0 + δt)−N(x0)

δ

}
, (2.13)

where N is the anti-derivative of η′/(1+ η′2).
In the limit that the particle speed U0 approaches the phase velocity of the

underlying wave, equation (2.13) becomes (using the fundamental theorem of calculus
and the definition of the derivative)

lim
δ→0

u=−g
η′

1+ η′2
t. (2.14)

Equation (2.14) provides a criterion for particles to surf the underlying wave. Particles
speed up in regions where the right-hand side of (2.14) is positive, so that it is of
interest to define the function

A=−g
η′

1+ η′2
. (2.15)

The term −η′ is positive on the forward face of a focusing wave, where the slope
is negative, while the denominator is positive definite. This horizontal acceleration
(orthogonal to gravity) then acts as a reduced gravity A, which is solely a function
of the free-surface geometry and in particular takes on a maximum value when η′= 1
and hence is bounded by ±g/2.

2.3. Generalized surfing criterion
The criterion presented in the previous section elucidates the nature of the interaction
between the particle and underlying waves. This analysis is valid for small ε.

Professor Francesco Fedele (personal communication) has kindly provided a simple
argument for the maximum acceleration experienced by particles. This result does not
use perturbative analysis nor does it assume the underlying wave is of permanent
progressive form.

Following Fedele (2014), consider the collection of curves along the free surface
with fixed slope α0. That is, from Longuet-Higgins (1957, equation (2.5.18)), let x
and x+ dx be the location of the prescribed slope at times t and t+ dt, then

dηx = 0= ηxt dt+ ηxx dx= 0, (2.16)
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so that the speed of propagation of this fixed slope, defined as c= dx/dt, is given by

c=−
ηxt

ηxx
, (2.17)

where c= c(t; α0) is the speed of propagation of the free surface with fixed slope α0.
For example, taking α0 = 0 restricts us to following the path of crests or troughs of
the wave.

Equation (2.6) can be rewritten as

A+
{
(U2
− 2Uc)

(
ηxηxx

1+ η2
x

)
+
(ηtt + g)ηx

1+ η2
x

}∣∣∣∣
x=ξP,ηx=α0

= 0, (2.18)

where ξP is a point on the free surface where the slope is given by α0 and U = ξ̇P
while A= ξ̈P. Next, the extremum of A is found by varying over all possible slopes,
or equivalently over each particle velocity U. That is,

∂A
∂U
= 0 H⇒ U = c, (2.19)

which returns the condition found in § 2.2. The maximum acceleration, A(U= c)≡Am,
is then

Am = c2

(
ηxηxx

1+ η2
x

)
−
(ηtt + g)ηx

1+ η2
x

, (2.20)

which is a generalized version of the acceleration given by A.
Note, under the assumption that η= η(x− ct),

Am = c2

(
η′η′′

1+ η′2

)
−
(c2η′′ + g)η′

1+ η′2
=−g

η′

1+ η′2
≡A, (2.21)

in agreement with (2.15).

3. Numerical example: deep-water perturbed Stokes wave
In order to characterize the behaviour of the acceleration found in the previous

section, a perturbed deep-water Stokes wave is examined. This is facilitated through
numerical integration of the fully nonlinear potential flow equations (see, for instance,
§ 3.1 of Phillips 1977). A perturbed deep-water Stokes wave (Longuet-Higgins 1978a;
Tanaka 1983), with c= 1.0922 and ak= 0.4296, for a the wave amplitude and k the
wavenumber as defined in Longuet-Higgins (1975), is considered. Here, g = 1 and
the wavelength of the unperturbed Stokes wave is taken to be 2π. The normal mode
eigenvalue, and eigenfunction scaling constant, are provided in appendix A.

The evolution of the free surface, in a reference frame moving at the phase velocity
of the unperturbed Stokes wave, is shown in figure 2. The leading face of the wave
steepens, eventually forming a jet on the forward face of the wave, as shown in the
inset of the figure.

Note, I have been representing the free surface as a graph η(x, t). However, there
is no difficulty in extending this analysis to multivalued free surfaces, parameterized
by (X(s), Y(s)) a function of the parameter s ∈ (0, 2π).

The particle kinematics are shown in figure 3 which shows the evolution of the
velocity, ξ̇ , and acceleration ξ̈ at various times approaching breaking. The particle
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t

FIGURE 2. The evolution of the free surface of a perturbed deep-water Stokes wave in a
frame moving at the phase velocity of the unperturbed Stokes wave, c. The forward face
of the wave steepens, leading to a jet forming on the forward face of the crest, which is
shown in more detail in the inset. Here c= 1.0922 and ak = 0.4296 and the eigenvalue
of the normal mode has value 0.0575. Refer to text for full details.

velocities approach c in the region where the wave face becomes vertical, with strong
horizontal velocities in the jet of the breaking wave (Vinje & Brevig 1981). The initial
wave has maximum horizontal fluid velocity that is 0.79c. As the wave focuses the
speed of the particles at the crest increase reaching values exceeding 1.2c, with an
asymmetry forming on the forward face. The accelerations, ξ̈ , are initially weak (with
an initial maximum value around 0.43g) and become large (nearly 4g) in the breaking
region as is shown in more detail in figure 5.

The theoretical predictions of the accelerations, A (red line) and Am (black line),
are shown in figure 4(a,b). Figure 4(a) shows the evolution of the maximum of A
and Am. Both theories predict a maximum acceleration near the crest of the breaking
wave. Figure 4(b) shows the functional dependence of the accelerations in space.
These accelerations become localized as the wave steepens and starts to overturn.
Furthermore, in regions where the wave starts to rapidly change its geometry, large
accelerations are found and A is no longer a good approximation and Am must be
employed.

The acceleration in the breaking region is shown in figure 5. The numerical values
of the accelerations at two times during the overturning event are shown in (a,c).
Particles travelling within 10 % of the phase velocity of the unperturbed Stokes wave
c are highlighted by the gold curves in figures 5(a) and (c), while the corresponding
region along the parameter s are shown in (b) and (d), respectively. These correspond
to the regions of maximum acceleration, in accordance with the theoretical results. The
theoretical prediction Am is shown in red, with the numerical velocities shown again
by the grey arrows. There is excellent agreement between the theoretical predictions
and the numerical results for this example.
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FIGURE 3. Surface particle kinematics for an overturning perturbed deep-water Stokes
wave. The horizontal particle velocities ξ̇ and accelerations ξ̈ are shown along the free
surface at various times as the wave approaches breaking. The maximum velocity of
the particles is on the forward face of the crest, and increases during the focusing and
breaking event. The arrow in the upper right corner of the acceleration plots has magnitude
g. There are large accelerations (nearly 4g at time t = 9.63) just below the crest of the
wave on the forward face.

The accelerations become large in this region, reaching values of nearly 4g.
Furthermore, these accelerations become increasing localized to this region underneath
the lip of the breaking wave.

4. Conclusion

A criterion to surf an underlying wave is derived. This was found by employing
the equation of John for a zero-stress free surface under the action of gravity.
The optimal location for surfing to occur, for a deep-water perturbed Stokes wave
approaching breaking, was established for particles travelling near the phase velocity
of the underlying wave and occurs below the crest on the forward face of the
wave. Although a deep-water perturbed Stokes wave was considered, this behaviour
(sometimes referred to as a crest instability (Longuet-Higgins & Dommermuth 1997)),
is characteristic of breaking induced by a variety of methods in both shallow and
deep water.

Two approaches were taken. In the first an asymptotic analysis was performed for
permanent progressive waves. A generalized criterion was then presented. Both predict
that maximum accelerations occur near the crest of the forward face of the wave in a
localized region. The asymptotic model breaks down when the free-surface geometry
is rapidly varying, and the full description, Am, is needed. This predicts a localized
‘sweet spot’ to optimally surf a wave.

The phenomenon described in this paper is analogous to Landau damping in
plasmas (Landau 1946; Dawson 1961; Mouhot & Villani 2010). Landau damping
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FIGURE 4. (Colour online) (a) The locations of the maximum values of the acceleration
predicted by the theoretical arguments in § 2 along the free surface displacement η, shown
in grey. Both predictions show that the maximum acceleration, that is the surfing sweet
spot for the wave, occurs near the crest of the wave on the forward face. (b) A comparison
of A (shown in red) and Am (shown in black) as the wave focuses. Note the scales of
the free surface and the accelerations are not the same. The circles show the maximum
values of the accelerations. As the packet focuses, both predictions become localized at
the crest of the breaking wave. However, A cannot describe the large accelerations that
occur during the formation of the overturning jet. In this region Am must be employed.

occurs when charged particles encounter an electric field. Particles travelling near the
phase velocity of the electric field lose or gain energy based on the initial phase of
the electric field and the charged particle. In a qualitative sense then, some charged
particles surf the electric field, removing energy from it. This description partially
motivated the present study.

The analysis performed in this paper is important for understanding the transfer
of energy from the wave field to the water column by wave breaking (Drazen et al.
2008; Romero, Melville & Kleiss 2012; Pizzo et al. 2016). Here it was found that the
perturbed particles increase in speed due to the work done on them by the underlying
wave. To adequately quantify the bulk scale behaviour of a collection of particles in
a breaking wave, a statistical description of these effects would be necessary. This
study might also be of use in better understanding optimal ways for a surfer to surf a
wave (Dally 2001). Furthermore, it would be of interest to consider the implications
of this study for the capillary rollers found in Longuet-Higgins (1992), with potential
implications for a better understanding of the onset of wave breaking (Perlin, Choi &
Tian 2013).

Finally, detailed knowledge of the kinematics of particles on the free surface during
breaking is currently an active area of research (Deike et al. 2017). Laboratory and
field analysis of the kinematics and geometry of shallow and deep-water breaking
waves is warranted to further corroborate the ideas presented in this paper.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

31
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 A

cc
es

s 
pa

id
 b

y 
th

e 
U

C 
Sa

n 
D

ie
go

 L
ib

ra
ry

, o
n 

06
 Ju

n 
20

19
 a

t 2
2:

40
:4

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.314
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Surfing surface gravity waves 325

0.57

 0.58

0.59

 0.60

Y

0.57

 0.58

0.59

 0.60

Y

3.26 3.283.243.22

3.26 3.283.243.22

0

1

2

3

5.0 5.1 5.2

5.30 5.35 5.40 5.45
0

2

4

(a) (b)

(c) (d )

FIGURE 5. (Colour online) Accelerations during the breaking event according to
numerically computed values (grey arrows) and theoretical predictions, shown on the right
in red. The gold line represents particles travelling at speeds within 10% of the phase
velocity c, the maximum acceleration is indicated by the black circle and the black arrow
in the upper right corner has magnitude g. Plots (b) and (d) show the acceleration along
a parameter s, with the gold line in (b) and (d) highlighting the domain of interest
corresponding to the gold line in (a) and (c), respectively. There is good agreement
between the theory presented in § 2.3 and the numerical values. The large accelerations
become spatially localized during the overturning event.
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Appendix A. The Lagrangian of Balk (1996) and the numerical integration of the
governing equations

The Lagrangian formulation of the potential flow deep-water surface wave equations,
due to Balk (1996) is employed in § 3 to find the eigenvalues and eigenvectors of
steep Stokes waves (as well as the Stokes coefficients themselves). This formulation
has been developed in Pizzo (2015), and a manuscript further analysing these
equations is in preparation (Pizzo & Melville 2017). The full details of the model
are outside of the scope of the present discussion; however, the basic formulation is
presented for completeness.

The dependent variables of the system are {Y±1, Y±2, . . . , Y±M} where M is the
resolution of the system, and each variable Yj is a function of time. These variables
are related to the parametric description of the surface (X, Y). In particular, X+ iY =
x+
∑M

k=−M(Xk+ iYk)e−iks, where Xk= iσkYk with σk= (−1, 0, 1) for k< 0, k= 0, k> 0
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respectively and s ∈ (0, 2π). The Lagrangian of the system (where recall g = 1 and
the wavelength is taken to be 2π) may be written as (Balk 1996)

L=
1
2

M∑
k=−M

|k|BkB−k −
1
2

M∑
k=−M

Y−kYk −
1
2

∑
k+j+l=0

|l|YkYjYl, (A 1)

where

Bk =
i
k

(
−Ẏk +

∑
j+l=k

ẎjYll(σj − σl)

)
, (A 2)

and mass conservation is ensured by setting Y0 =−
∑M

k=−M |k|YkY−k.
The equations of motion are found by varying L with respect to Yk and take

the form of a large set of coupled nonlinear ordinary differential equations that are
low-order polynomials in the dependent variables. Note, Balk (1996) pointed out that
the algebraic set of equations describing Stokes waves takes the natural (quadratic)
form (found in a different way by Longuet-Higgins 1978b) when Yk = αkeikct for αk
the (constant) Stokes coefficients. The initial conditions were generated by solving
this quadratic set of equations for αk by employing a Newton–Raphson method
(Longuet-Higgins 1985). The linear stability analysis was performed by letting
Yk = (αk + 1Ak(t))eikct and finding the Lagrangian to O(∆2). This will be discussed
in detail in Pizzo & Melville (2017).

The time integration of these equations is efficient unless there are regions of high
curvature (Meiron, Orszag & Israeli 1981; Baker & Xie 2011), at which point the
spectral coefficients converge slowly and M becomes unreasonably large. Therefore,
the time evolution of the system is solved by employing the model of Dold (1992),
which has the advantage that points cluster in regions of high curvature, making it
extremely efficient. A total of 2048 points were used, with the arc length between
points chosen based on the initial particle speed, following Tanaka et al. (1987). The
scheme of Dold has been verified repeatedly in the literature (see, for example, Dold
& Peregrine 1986; Tanaka et al. 1987; Dold 1992) and here its accuracy was tested
in several ways. First, the Stokes wave considered in this study was propagated,
unperturbed, and its stability over two wave periods was observed. Furthermore,
the energy was conserved to one part in O(105). Next, the equations of Balk were
integrated numerically and compared with the results from the scheme of Dold,
and accuracy was corroborated leading up to the breaking event. Finally, multiple
resolutions were chosen to ensure the scheme converged.

For the example considered in § 3, λ≈0.0575 and as the eigenfunction is not unique
(it is scale invariant) we take ∆ = 0.1. These values are found through the scheme
outlined above, and are in agreement with existing studies (Tanaka 1983; Longuet-
Higgins & Dommermuth 1997).
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