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Wave modulation: the geometry, kinematics,
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We examine the geometry, kinematics, and dynamics of weakly nonlinear narrow-
banded deep-water wave packets governed by the modified nonlinear Schrödinger
equation (Dysthe, Proc. R. Soc. Lond. A., vol. 369, 1979, pp. 105–114; MNLSE). A
new derivation of the spatial MNLSE, by a direct application of Whitham’s method,
elucidates its variational structure. Using this formalism, we derive a set of conserved
quantities and moment evolution equations. Next, by examining the MNLSE in the
limit of vanishing linear dispersion, analytic solutions can be found. These solutions
then serve as trial functions, which when substituted into the moment evolution
equations form a closed set of equations, allowing for a qualitative and quantitative
examination of the MNLSE without resorting to numerically solving the full equation.
To examine the theory we consider initially symmetric, chirped and unchirped wave
packets, chosen to induce wave focusing and steepening. By employing the ansatz for
the trial function discussed above, we predict, a priori, the evolution of the packet.
It is found that the speed of wave packets governed by the MNLSE depends on
their amplitude, and in particular wave groups speed up as they focus. Next, we
characterize the asymmetric growth of the wave envelope, and explain the steepening
of the forward face of the initially symmetric wave packet. As the packet focuses, its
variance decreases, as does the chirp of the signal. These theoretical results are then
compared with the numerical predictions of the MNLSE, and agreement for small
values of fetch is found. Finally, we discuss the results in the context of existing
theoretical, numerical and laboratory studies.

Key words: surface gravity waves, variational methods, waves/free-surface flows

1. Introduction
This paper reports on a theoretical and numerical study of the properties of weakly

nonlinear narrow-banded deep-water wave packets (i.e. compact wave groups). Weakly
nonlinear Stokes waves are subject to the Benjamin–Feir instability (Lighthill 1965;
Benjamin & Feir 1967), so that the subsequent nonlinear evolution of the wave field
is of considerable interest from both a mathematical (Zakharov 1968; Sulem & Sulem
1999; Tao 2006) and physical point of view (Melville 1982; Su et al. 1982a; Yuen &
Lake 1982).

† Email address for correspondence: npizzo@ucsd.edu
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Wave modulation: the geometry, kinematics, and dynamics of wave packets 293

Our model equation in this study is the spatial modified nonlinear Schrödinger
equation (MNLSE; Dysthe 1979), originally derived by Lo & Mei (1985), and given
by

∂A
∂χ
+ i
∂2A
∂τ 2
+ i|A|2A+ iα0AH(|A|2τ )+ β0|A|2 ∂A

∂τ
= 0, (1.1)

where A is a slowly varying complex-valued function, related to the lowest-order
coefficient of the first mode of the velocity potential expansion, H is the Hilbert
transform, χ = ε2k0x, τ = εω0(2k0/ω0x − t), β0 = 8ε, α0 = 2ε and ε = a0k0 is a
small parameter for (a0, ω0, k0) the characteristic amplitude, angular frequency and
wavenumber, respectively. This equation is a spatial (fetch) version of the MNLSE,
and can be derived by making a coordinate transformation of the MNLSE (Lo &
Mei 1985), or can be found explicitly from a spatial version of Zakharov’s equation
(Kit & Shemer 2002). In § 2, we provide an alternative derivation of this equation
using Whitham’s method. When α0 = β0 = 0, equation (1.1) reduces to the nonlinear
Schrödinger equation (NLSE). Finally, we note that using the lowest-order term in
the first mode of the velocity potential as a dependent variable offers a variety of
theoretical advantages, as has been repeatedly emphasized by Trulsen and colleagues
(Trulsen & Dysthe 1997; Trulsen 1999, 2006).

Equation (1.1) governs weakly nonlinear narrow-banded surface gravity waves and
has been shown (Lo & Mei 1985; Shemer, Kit & Jiao 2002) to predict certain features
of wave train evolution that are not apparent at lower order (i.e. when α0 = β0 = 0),
including asymmetric wave envelope growth, a better prediction of the modulation
instability growth rate (Dysthe 1979), asymmetric spectral growth, and the coupling
of an Eulerian mean flow to the wave amplitude evolution. These asymmetries arise
from the term in (1.1) with coefficient β0, while the induced mean flow is related to
the term with coefficient α0.

The utility of the MNLSE was established by Lo & Mei (1985) and Shemer et al.
(2002), who found good agreement between the MNLSE and laboratory experiments
and higher-order numerical schemes, respectively, including in regions where (1.1)
was not explicitly valid. When the bandwidth of the wave group became very large,
Shemer et al. (2002) found that the MNLSE was a poor predictor of the spectral
evolution compared to higher-order spectral method numerical simulations (see also
Clamond et al. 2006). Finally, we note that in the spatial coordinates, linear dispersion
is exactly represented (Kit & Shemer 2002), allowing for the possibility of describing
broader bandwidth wave packets (Dysthe et al. 2003). This should be compared to
the analogous case in the canonical time evolution reference frame, where an infinite
number of terms in a Taylor expansion must be used in order to represent the full
linear dispersion operator (Trulsen et al. 2000; Kit & Shemer 2002).

The complexity of the MNLSE makes theoretical predictions difficult, so one
must often resort to numerical computations in order to study the properties of
wave fields governed by this equation. Here, we gain further insight by putting (1.1)
into variational form, allowing for the derivation of conservation laws and moment
evolution equations, which offer additional information about the constraints on the
evolution of the wave groups. These techniques have been used extensively in the
optics community (Agrawal 2007), as well as in the mathematics community (Sulem
& Sulem 1999). The moment evolution technique has been applied to the study of
water waves governed by the two-dimensional NLSE (Ablowitz & Segur 1979).

The moment evolution equations characterize the behaviour of various important
features of the wave packet, but still depend on the solutions of A, as governed
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294 N. E. Pizzo and W. K. Melville

by (1.1). The solutions to this equation are in general non-trivial, and require
a numerical integration of the governing equations. Alternatively, through some
knowledge of the system one may assume a form for a trial function with varying
parameters, which over some limited regime closely approximates the actual solution
(Anderson 1983).

To gain intuition on what functional form the trial function of A should take, we
examine the MNLSE in the case where linear dispersion vanishes, i.e. Aττ = 0 in (1.1).
It is found that in this case the amplitude evolution equation decouples from the phase,
and is equivalent to the inviscid Burgers’ equation (IBE). This analytic description
then forms the basis of the trial function for the evolution of A, which enables us to
derive a closed set of moment equations, allowing for a qualitative and quantitative
inspection of the properties of these focusing packets without having to solve the full
MNLSE.

The theory developed in this manuscript is valid for weakly nonlinear narrow-
banded wave packets. Conversely, the behaviour of wave packets as they approach
very steep slopes is of considerable interest, as relevant physical quantities in these
regions (e.g. wavenumber, amplitude) characterize wave-breaking-induced flow (Rapp
& Melville 1990; Banner & Peirson 2007; Drazen, Melville & Lenain 2008; Pizzo &
Melville 2013; Pizzo, Deike & Melville 2016).

Although wave breaking is explicitly out of the region of validity of the MNLSE,
several features characterizing these packets are also evident in the theory presented
in this paper. Figure 1 shows a focusing wave packet from archived laboratory data
of Drazen et al. (2008) and Drazen & Melville (2009). Using the conventions found
in Drazen et al. (2008; see also Longuet-Higgins 1974, Rapp & Melville 1990), the
normalized frequency bandwidth is 0.5, while the linear prediction of the maximum
slope at focusing is 0.32. The facilities and laboratory procedures are described in
detail in Drazen et al. (2008).

The free-surface elevation is shown in black in figure 1, while the envelope
(Melville 1983) is shown in blue. The initial frequency chirp, i.e. the modulation
to the wave frequency with time, with longer faster waves occurring after shorter
slower waves, leads to a decrease in the variance, and hence packet focusing. During
focusing, the packet becomes asymmetric, with the largest slopes occurring on the
forward face of the group. A spilling breaking wave is observed on the forward face
of the wave group in the region k0(x− xb)= 0. These features of the breaking packet
partially motivate our theoretical analysis of the MNLSE, and in particular we explain
the forward leaning of the wave packet (where the largest slopes are generated), as
well as the relation between the asymmetry, variance and chirp of the packet.

The outline of this manuscript is as follows: in § 2, the governing equation, (1.1),
is derived by Whitham’s method, which makes its variational structure manifest.
In § 3, we connect symmetries of the action to conservation laws, and subsequently
derive conserved integral quantities. In § 4, we derive moment evolution equations
for the spatial MNLSE. In § 5, we study the MNLSE in the limit of vanishing
linear dispersion. In § 6, we derive a closed set of moment evolution equations,
and formulate theoretical predictions for their evolution. In § 7, we compare these
predictions with numerical integrations of the full MNLSE. Finally, in § 8, we discuss
our findings in the context of existing theoretical, numerical and laboratory studies.

2. Modified nonlinear Schrödinger equation and its variational structure
In this section we derive the modified nonlinear Schrödinger equation by employing

Whitham’s method. This makes the variational structure of the equations manifest.
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FIGURE 1. (Colour online) A dispersive focusing wave packet, from archived laboratory
data of Drazen et al. (2008), Drazen & Melville (2009). The free-surface displacement
measured by the wave gauges is shown in black, while the blue line shows the wave
envelope (Melville 1983). The initial chirp of the packet leads to a decrease in packet
variance, and hence focusing. During focusing, the packet leans forward, with the largest
slopes occurring on the forward face of the group, where wave breaking is observed in the
region k0(x− xb)= 0. The characteristic features of these packets motivates our theoretical
analysis of the MNLSE which, although not explicitly valid for breaking wave packets,
elucidates the mechanisms responsible for some of these features.

Our approach is classical, following the prescription proposed by Whitham (1965),
and has the advantage that the physical origins of the terms, and dependent variables,
may be easily found. This should be compared with the alternative approach using
Zakharov’s equation (Gramstad & Trulsen 2011), which can, due to its complexity,
distract from the underlying physics.

2.1. The variational principle for water waves
The governing equation for irrotational inviscid two-dimensional surface gravity waves
is (see, for example, Phillips 1977)

∇ ′2φ′ = 0, (2.1)
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296 N. E. Pizzo and W. K. Melville

together with boundary conditions

φ′t′ + 1
2(∇

′φ′)2 + gz′ = 0|z′=η′; ηt′ + φ′x′η′x′ = φ′z′ |z′=η′, (2.2a,b)

and the condition at the bottom φ′z′ → 0 as z′ → −∞, where φ′ is the velocity
potential, η′ is the free-surface displacement, ∇

′ = (∂x′, ∂z′), and g is the acceleration
due to gravity. Although the governing equation is linear, the boundary conditions
are nonlinear and, more severely, are evaluated at an (unknown) dependent variable
of the system.

To make analytic progress, asymptotic approximations are employed. The wave
slope ε ≡ a0k0 is a measure of the nonlinearity of the system, and is assumed to
be small. Furthermore, if 1k is a perturbation to the characteristic wavenumber k0,
then we assume |1k|/k0 = O(ε), which corresponds to a narrow-banded (and hence
slowly varying) wave packet. The characteristic angular frequency, ω0, is related to
the wavenumber by the linear dispersion relation, i.e. ω2

0 = gk0.
We non-dimensionalize our system as follows:

φ′ = a2
0ω0φ, η′ = a0η,

x′ = x
k0
, t′ = t

ω0
, z′ = z

k0
.

 (2.3)

Expanding the velocity potential and free-surface displacement as a series, we have
(Chu & Mei 1970)

φ = φ(X, T; ε)+
M∑

m=1

N∑
n>m

εn−1φnm(X, T, z)eimθ + c.c., (2.4)

η= η(X, T; ε)+
M∑

m=1

N∑
n>m

εn−1ηnm(X, T)eimθ + c.c., (2.5)

where X = εx, T = εt, θ = x− t, and c.c. means complex conjugate. φ and η are the
mean (phase-averaged) velocity potential and free-surface displacement, respectively,
with their scale to be determined. Finally, we take the complex-valued coefficient
φ11 ≡ B as our dependent variable.

The expansions of the dependent variables to second order in ε, appropriate for the
MNLSE, are (Trulsen & Dysthe 1997; Trulsen 2006)

φ = εφ + 1
2

([
B− iεzBX − ε

2

2
z2BXX

]
ezeiθ + c.c.

)
, (2.6)

η = ε2η+ 1
2

([
iB+ ε

2
BX + iε2

8
BXX + iε2

8
|B|2B

]
eiθ

+
[
−ε

2
B2e2iθ + iε2BBX

]
e2iθ − 3iε2

8
B3e3iθ + c.c.

)
. (2.7)

Equations (2.1), (2.2) can be reformulated in terms of a variational principle through
the action (Luke 1967; Zakharov 1968; Miles 1977)∫

L dx dt=
∫
ε2ψηt −

(∫ εη

−∞

ε2

2
(∇φ)2 dz+ ε

2

2
η2

)
dx dt, (2.8)

where ψ = φ(x, z= εη, t) is the velocity potential evaluated at the free surface.
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Next, we substitute the form of the velocity potential and free-surface displacement
into (2.8). Furthermore, following Lo & Mei (1985), we map into a spatial reference
frame by introducing the following transformation

(2X − T)= τ ; εX = χ; εz= Z. (2.9a−c)

This reference frame is travelling at the linear group velocity and, for a fixed position
X, τ is proportional to the negative of the elapsed time, while χ is related to the
fetch (or stretched distance). Finally, for clarity of presentation we transform from the
dependent variable B to the dependent variable in the mapped frame A.

Employing the mapping given in (2.9), the averaged Lagrangian (Whitham 1965,
1974) then becomes

L ≡ 1
2π

∫ 2π

0
L dθ = i

2

(
A
∂A∗

∂χ
− A∗

∂A
∂χ

)
−H , (2.10)

where H is defined as (cf. Gramstad & Trulsen 2011, appendix C)

H = |Aτ |2 − 1
2
|A|4 − α0

2
|A|2H(|A|2τ )+ i

β0

4
|A|2(A∗Aτ − AA∗τ ), (2.11)

and * denotes the complex conjugate. The Hilbert transform H is defined as

H(|A|2τ )=
1
π

P.V.
∫ ∞
−∞

∂|A(χ, τ ′)|2
∂τ ′

dτ ′

τ − τ ′ , (2.12)

with P.V. meaning we are to take the principal value of the integral (Titchmarsh 1948).
Following Janssen (1983, see also Akylas 1989) we have rewritten our action in terms
of one variable by recognizing that ϕτ and ϕZ are harmonic conjugates, where ϕ is the
velocity potential in this spatial reference frame. That is, these variables are real and
imaginary parts of an analytic function, and hence we can connect the two variables,
evaluated at Z = 0, via the Hilbert transform H.

Note, as the linear dispersion is exactly represented in this spatial reference frame
(Trulsen et al. 2000; Kit & Shemer 2002), only one term is needed to completely
describe it. This offers numerical advantages (Lo & Mei 1985), and simplifies the
equations algebraically.

The action associated with the Lagrangian density in the spatial reference frame,
i.e. (2.10), is defined as

S (A, A∗)=
∫ χf

χ0

∫
R

L dτ dχ, (2.13)

which is a functional over all admissible functions satisfying the prescribed conditions
at A(τ , χ0) and A(τ , χf ). Hamilton’s principle states that the governing equations of
the system are found by requiring that S be stationary. That is, we seek solutions
(A, A∗) such that

δS =S (A+ δA, A∗ + δA∗)−S (A, A∗)= 0, (2.14)

for infinitesimal (δA, δA∗). Substituting the Lagrangian density into the action, then
applying Hamilton’s principle, and recalling the anti-self-adjoint nature of the Hilbert
transform (Titchmarsh 1948), gives us (Lo & Mei 1985; Kit & Shemer 2002)

∂A
∂χ
+ i
∂2A
∂τ 2
+ i|A|2A+ iα0AH(|A|2τ )+ β0|A|2 ∂A

∂τ
= 0, (2.15)
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where α0 = 2ε and β0 = 8ε. The constants (α0, β0) also make it easy to track the
influence of the induced mean flow (which is related to the term with coefficient α0),
and the asymmetric self-steepening term (which is related to the term with
coefficient β0) in the ensuing calculations.

This equation is usually written as a set of coupled PDEs in two dependent
variables, (A, ϕ|Z=0). To second order in ε, the two variables are connected by the
relation

∂ϕ

∂Z

∣∣∣∣
Z=0

= ∂|A|
2

∂τ
, (2.16)

which implies that gradients in the radiation stress lead to the generation of a mean
flow (Dysthe 1979; McIntyre 1981).

3. Conserved quantities of the MNLSE
In this section we derive conserved quantities for the spatial modified nonlinear

Schrödinger equation based on symmetries of the action derived in the previous
section.

Noether’s theorem connects continuous symmetries of the action (2.13) with
conserved quantities. In particular, consider a mapping of independent and dependent
variables

τ→ τ̃ ; χ→ χ̃; A→ Ã, (3.1a−c)

and its associated action S̃ (Ã(χ̃ , τ̃ ), Ã∗(χ̃ , τ̃ )). We look for transformations that leave
1S = S̃ −S invariant, i.e. 1S = 0.

We begin by considering phase translation invariance, which is shown by letting
Ã = eisA, for s a real constant, and noting that the action remains invariant. This
transformation, to first order, implies A→ Ã= A+ δA= A+ isA, and τ̃ = τ , χ̃ = χ ,
whence we find

1S=
∫

D

(
∂|A|2
∂χ
+ ∂J

∂τ

)
dχ dτ = 0, (3.2)

where the flux J is

J = i(A∗Aτ − AA∗τ )+
β0

2
|A|4, (3.3)

and D is the domain of integration. This is true for an arbitrary integration domain D,
so that we have a local conservation law corresponding to phase translation invariance,
namely

∂|A|2
∂χ
+ ∂

∂τ

(
i(A∗Aτ − AA∗τ )+

β0

2
|A|4
)
= 0. (3.4)

Note, if (A∗Aτ −AA∗τ ) is constant in τ , i.e. there is no dispersion, then (3.4) takes the
form of the IBE. This is discussed in detail in §§ 5 and 6.

Next, as we are exclusively considering compact wave groups in this paper, we can
integrate (3.4) to find

dE
dχ
≡ d

dχ

∫
|A|2 dτ = 0. (3.5)

Secondly, we look at the quantity associated with action invariance to τ translations.
That is, we consider the transformation A→ Ã, χ→ χ̃ and τ → τ̃ = τ + δτ to first
order in δτ . In this case, invariance of the action implies∫

D

(
∂P

∂χ
+ ∂G
∂τ
+ 2α0|A|2τH(|A|2τ )

)
dχ dτ = 0, (3.6)
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where
P = i(A∗Aτ − AA∗τ ), (3.7)

and G is given by

G = 2|Aτ |2 − (AA∗ττ + A∗Aττ )− |A|4 + iβ0|A|2(A∗Aτ − AA∗τ )− 2α0|A|2H(|A|2τ ). (3.8)

Now, for arbitrary D, we notice that we do not have a conservation law, as the last
term in parentheses in (3.6) cannot be written as a perfect derivative in τ . However,
when D is chosen such that τ ∈ (−∞,∞), we exploit the anti-symmetric nature of
the Hilbert transform so that this term disappears, which implies

dP
dχ
= d

dχ

∫ ∞
−∞

P dτ = 0. (3.9)

Note, the conservation of P is equivalent to the statement that the spectrally weighted
frequency of the system does not change (Trulsen & Dysthe 1997, appendix A).

Next, by using the governing equation, i.e. (2.15), we confirm that

∂P

∂χ
+ ∂G
∂τ
+ 2α0|A|2τH(|A|2τ )= 0, (3.10)

which does not take the form of a conservation law, due to the (non-local) Hilbert
transform operator, which we recall arises because of the induced mean flow.

Finally, we look at the conservation law associated with χ -shift invariance. To this
end, consider the transformation A→ Ã, τ → τ̃ = τ , and χ → χ̃ = χ + δχ to first
order in δχ . Following the same methodology outlined above, this invariance tells us
that the conserved integral is

dH
dχ
= d

dχ

∫ ∞
−∞

H dτ = 0, (3.11)

which is the integral of the density given in (2.11). For clarity of presentation, the
local equation corresponding to the evolution of the density H is not presented, as
it does not contribute to the analysis given below.

4. Evolution of the moments of the spatial MNLSE

In this section we derive moment evolution equations for the evolution of the action
density, the spectrally weighted frequency chirp, and the variance of the wave packet.
These quantities characterize wave packets as they focus. Furthermore, under certain
assumptions they form a closed set of equations that offer qualitative and quantitative
information about the MNLSE, without having to numerically solve the equations of
motion.

4.1. Evolution of the centroid of the linear energy density
We begin by considering the motion of the centroid of the action density of the wave
packet, M, defined as

M = 1
E

∫
τ |A|2 dτ , (4.1)
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so that, from (3.4), we have

dM
dχ
= − 1

E

∫
τ
∂J

∂τ
dτ = 1

E

∫ (
i(A∗Aτ − AA∗τ )+

β0

2
|A|4
)

dτ

= P
E
+ 1

E

∫
β0

2
|A|4 dτ . (4.2)

Unlike the lower-order NLSE, this quantity is in general not a constant, and depends
on the behaviour of

∫ |A|4 dτ . Whereas P/E arises due to linear dispersion, the second
term is exclusively due to amplitude dependent nonlinear effects.

We define the integral

K = 1
E

∫
|A|4 dτ , (4.3)

which serves as another measure of the distribution of the action density of the wave
packet.

Next, we define the characteristic frequency ω0 so that the integral P is 0, which
means that the evolution of M can be written as

dM
dχ
= β0

2
K. (4.4)

As K is positive definite, this shows that the centroid velocity is always positive,
and is greater than the predictions of the lower-order theory (i.e. when β0 = 0). This
is consistent with the numerical results of Lo & Mei (1985, see also Trulsen 1998,
Chereskin & Mollo-Christensen 1985).

In appendix A, we map (4.4) back into the laboratory reference frame, for ease of
use in laboratory studies.

4.2. Evolution of the centroid of the spectrally weighted frequency
We next derive an evolution equation for the centroid of the spectrally weighted
frequency P (Trulsen & Dysthe 1997, see also § 3), related to the chirp of the signal
(Gordon 1986) which we define as C. That is,

C= i
E

∫
τ(AA∗τ − A∗Aτ ) dτ , (4.5)

so that from (3.10) its evolution is given by

dC
dχ
=− 1

E

∫
G − 2τα0|A|2τH(|A|2τ ) dτ , (4.6)

with G given by (3.8).
Note, we can relate C and M:

β0
dC
dχ
=−4β0H

E
− dM

dχ
+O(ε2). (4.7)

The quantity H is constant, so that to first-order deviations to the speed of the centroid
are a result of the evolution of the chirp of C, with focusing packets leading to larger
velocities than defocusing packets.
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4.3. Evolution of the variance of the spatial MNLSE
Finally, we derive an evolution equation for the variance of the MNLSE. Following
the literature in plasma physics (Goldman & Nicholson 1978; Sulem & Sulem 1999),
the variance of the wave packet is defined as

I ≡ 1
E

∫
(τ −M)2|A|2 dτ , (4.8)

with the nomenclature based on similar results from the N-body problem (Robinson
1997). The variance is sensitive to the point about which it is computed, so that the
centroid M serves as a natural choice.

Differentiating I with respect to χ , making use of (3.3), and integrating by parts,
we have

dI
dχ
= 2

E

∫
τJ dτ − β0MK =−2C− β0MK + β0

E

∫
τ |A|4 dτ , (4.9)

which connects the previous two moments, C and M with the variance of the packet.
The second term in (4.9) is negative definite, and hence always enhances packet
focusing, while the last term is positive definite, which serves to retard focusing.

This relationship leads to a simple criterion for packet focusing or defocusing,
which is defined as Iχ < 0, Iχ > 0, respectively. In particular, when

C>
β0

2E

∫
τ |A|4 dτ − β0

2
MK, (4.10)

Iχ < 0 and we expect packet focusing. To first order in ε, this corresponds to C> 0,
which simply states linear dispersion leads to focusing when shorter slower waves
precede longer faster waves. Note, this dispersive focusing technique is commonly
employed in laboratory studies of wave breaking (Longuet-Higgins 1974; Rapp &
Melville 1990). Furthermore, the minimum of I, corresponding to the maximum
focusing, occurs when

C= β0

2E

∫
τ |A|4 dτ − β0

2
MK. (4.11)

We have found that the evolution of the moments depends on the behaviour of A,
which we do not know a priori. To better constrain the behaviour of A, we derive
exact solutions for the MNLSE in the limit of vanishing linear dispersion.

5. Analysis of the MNLSE in the case of no linear dispersion
To further understand the properties of (2.15), we analyse the equation in the

absence of linear dispersion – that is, when Aττ = 0. This follows similar work done
in optics by Anderson & Lisak (1983). Furthermore, this provides guidance for our
ansatz on the functional form of solutions to A, to be used in our examination of the
predictions of the moment evolution equations derived in the previous section.

Letting A = ΛeiΘ , for Λ and Θ real functions, we find that the MNLSE with no
linear dispersion can be written as the set of equations:

Λχ + β0Λ
2Λτ = 0, (5.1)

Θχ + β0Λ
2Θτ +Λ2 + α0H(Λ2

τ )= 0, (5.2)
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where (5.1) is equivalent to (3.4) with no linear dispersion. We immediately notice
that the amplitude equation has decoupled from the phase equation, allowing us to
easily solve these equations.

As was mentioned after the derivation in § 3, equation (5.1) is equivalent to the IBE,
which has solution

Λ= f (τ − β0Λ
2χ), (5.3)

where f is given by the initial conditions for Λ. The evolution of this function is
characterized by an asymmetric leaning of the forward face, eventually leading to the
formation of a shock (see for instance Whitham 1974). We note that the tendency for
wave groups to lean forward as focusing occurs is commonly observed in laboratory
experiments (see, for instance Melville 1983, figure 1, and figure 1 in this article).
The characterization of the asymmetric wave envelope evolution for nonlinear wave
groups is one of the results of this paper.

Next, the behaviour of the phase can also be found by using the method of
characteristics. Defining y=Λ2, we have

y dχ = dτ
β0
=− dΘ

1+ α0

y
H(yτ )

. (5.4)

The first two equalities imply
dτ
dχ
= β0y. (5.5)

In general, this is non-trivial to integrate. However, we recall that y is constant along
these trajectories, as it satisfies (5.1), so that the solution to (5.5) is trivially

τ = β0yχ + ξ, (5.6)

where ξ is initial condition at χ = 0.
Next, the other equalities imply

Θ =− τ
β0
−
∫
α0H(yτ ) dξ, (5.7)

so that the solution to (5.2) is

Θ = h(τ − β0yχ)−
∫
α0H(yτ ) dξ − τ

β
, (5.8)

where h is a function chosen to satisfy the initial conditions of the phase. Note, in
general, that the integral term in Θ must be computed numerically, as y is an implicit
function and hence its derivative with respect to τ is non-trivial.

6. Theoretical predictions

In this section we examine the theoretical predictions of the moment evolution
equations, derived in § 4. To form a closed set of equations, we consider wave
packets that have a form based on the solutions given in § 5.
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 0.5

 0
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FIGURE 2. (Colour online) The initial conditions for the class of examples considered
in § 6 of this paper. (a) The symmetric envelope |A|, as given by (6.1). (b) The initial
normalized frequency modulation, which increases for increasing τ , implies that shorter
waves occur before longer waves leading to packet convergence.

We consider a class of initial conditions based on the sech envelope amplitude,
together with a (possibly non-zero) frequency chirp to induce packet focusing. That
is, we consider wave packets that initially have the form

As(χ = 0, τ )=√2 sech(τ )eiC0τ
2/2, (6.1)

for C0 a real constant which is a measure of the modulation to the frequency of the
packet.

Initial conditions are chosen that induce large values of the local slope of the wave
packet. There are two primary mechanisms that lead to these locally large slopes in
the wave packets. First, packet nonlinearity controls the asymmetric self-steepening,
which leads to large gradients on the forward face of the wave group. Secondly, the
frequency modulation can lead to packet focusing through linear dispersion, which
leads to a localization of the wave packet in space, and hence large slopes might
occur. These mechanisms may both be present at the same time, and we examine two
scenarios that characterize these phenomena below.

Next, for the full MNLSE we define A= aeiϑ , with a= |A| and (Lo & Mei 1985)

1ω

ω0
= ε ∂ϑ

∂τ
. (6.2)

An example of these initial conditions is shown in figure 2. When C0 = α0 = β0 = 0
in (2.15), equation (6.1) is an exact solution to the NLSE. Note, this packet is chosen
to clearly illustrate the properties of the theoretical tools, but these equations may be
applied to study a wide variety of initial conditions.

Equation (6.1) sets the function f in (5.3) so that

Λ=√2 sech(τ − β0Λ
2χ). (6.3)

As Λ forms shocks (Whitham 1974), we note that the critical value when the slope
goes to minus infinity is χ∗ = 3

√
3/8β−1

0 , with larger values of β0, i.e. stronger
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nonlinearity, leading to earlier shock formation. It should be noted explicitly that we
are not proposing that shocks form in the full MNLSE. A full discussion of this
topic is outside the scope of the current manuscript.

For χ small, equation (6.3) can we approximated as

Λ≈√2(1+ β0χ sech2 τ tanh τ) sech τ . (6.4)

That is, for small χ there is an asymmetry that grows linearly in χ .
This explicit solution of |A| in the limit of vanishing linear dispersion leads us

to make the ansatz that, for small values of χ , the form of the solution to the full
MNLSE, i.e. (2.15), is

A=A (χ)

(
1+ β0S(χ) sech2

(
τ

w(χ)

)
tanh

(
τ

w(χ)

))
× sech

(
τ

w(χ)

)
eiεF (χ)τ+iC (χ)τ 2/2−iχ . (6.5)

That is, dispersion will lead to a change in the amplitude (A ), amplitude of the
asymmetry (S), width (w), frequency (F ), and chirp (C ) of the wave packet.

From the conservation of wave action we can relate the amplitude A of the packet
to the energy E, i.e. from (3.4) we have

E= 2A (χ)2w(χ)+O(ε2), (6.6)

a constant of motion, which from (6.1) has the value 4. The moments C and I can
be found in terms of w and C , yielding I =π2w2/12 and C=π2w2C /6.

Now, from (6.5) one finds

dM
dχ
= β0E

6w(χ)
+O(ε2), (6.7)

which tells us that as the packet focuses and w decreases (and hence A increases)
the packet will speed up. Furthermore, this provides a relationship between S and w,
namely, (2wS)χ = E/w, which has the solution

S= 1
2w

(∫
E

w(χ ′)
dχ ′ + S0

)
. (6.8)

To conserve the mean frequency (i.e. satisfy (3.9) and have P= 0), we must have

F =− 8
3 w(χ)C(χ)S(χ). (6.9)

Substituting (6.5) into the evolution equation for dC/dχ , i.e. (4.6), we find

dC
dχ
= −4+ Eγ0 +wE−π2w4C 2

3w2
+O(ε2), (6.10)

where γ0≈ 0.35α0 is due to the induced mean flow, and its value is found numerically.
Eliminating C in favour of C , we find

π2

6

(
w2 dC

dχ
+ 2C w

dw
dχ

)
=−4− Eγ0

3w2
+ E

3w
− π2w2C 2

3
. (6.11)
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Next, we look at the evolution of the variance of the packet,

dI
dχ
=−2C+O(ε2), (6.12)

or in terms of the variables w,C ,

dw
dχ
=−2wC , (6.13)

whence (6.11) implies

d2w
dχ 2
= 16− 4Eγ0

π2

1
w3
− 4

π2

E
w2
. (6.14)

Multiplying both sides by wχ and integrating once, we have

1
2

(
dw
dχ

)2

+Π(w)= 0, (6.15)

where
Π(w)= 8− 2Eγ0

π2

1
w2
− 4

π2

E
w
+Π0, (6.16)

and Π0 is a constant of integration that is set by the initial conditions for w and
dw/dχ . Therefore, we have reduced the moment problem, at this order, to an ordinary
differential equation in the packet width w. Once we have solved for w, we can find
C via (6.13), which can be rewritten as

C =−1
2

d log w
dχ

. (6.17)

Furthermore, dM/dχ can be found via (6.7).
Equation (6.15) takes the form of a particle trapped in a potential well (Anderson

1983). The only contribution due to the higher-order terms in (2.15) is due to γ0,
related to the induced mean flow. The particular behaviour of w will depend on
the initial conditions of the system, so to gain further insight we now study several
examples.

7. Comparison of theoretical results with numerical results for the MNLSE
In this section we compare the theoretical results of the previous sections with

numerical solutions to the full MNLSE. We consider two examples, both of which
lead to large surface slopes. First, we study an initially symmetric wave packet with
large nonlinearity (i.e. large ε). The dominant mechanism for generating large slopes
in this instance is the asymmetric self-steepening, as described by (5.1). Secondly,
we study an initially symmetric wave packet with a relatively low initial value of
nonlinearity, but a large initial frequency chirp chosen to induce packet focusing
through linear dispersion. These examples elucidate the theoretical results derived in
the previous sections.

7.1. Numerical scheme
The numerical scheme used to integrate the spatial MNLSE is that of Lo (1985,
appendix D) and Lo & Mei (1985, § 3). This is a split-step spectral method, based
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on Fornberg & Whitham (1978). That is, the linear part of (2.15) is mapped into
spectral space, where differentiation becomes multiplication and the subsequent
ordinary differential equation is solved, and then transformed back into physical space.
The nonlinear terms are more conveniently computed via point-wise multiplication
(as opposed to double convolution sums in spectral space) at half time steps, where a
midpoint finite-difference approximation is then used to solve for A. The integration
scheme is accurate to second order in integration step size, 1χ , and we have found
that no numerical instability occurs if 1χ is kept sufficiently small. Note, to have
the motion be 2π periodic in τ , for ease of computation, we must introduce a
scaling constant into the numerics, which we take to be 0.1 for all of these numerical
experiments (Lo & Mei 1985, see also Lo 1985, Trulsen & Dysthe 1997).

The numerical model was validated by Lo and Mei in several ways, which we have
reproduced. For the examples given below, we use N = 211 modes, with a time step
of the order of 10−4, and take τ ∈ (0, 2π), which we ensure at the very least satisfies
the Courant–Friedrichs–Lewy (CFL) condition for waves governed by linear theory,
that is N1χ/26 1. The resolution in τ and χ were both doubled for the simulations
presented below, and suitable convergence of the model was corroborated. Finally, we
numerically confirmed the first integral of the spatial MNLSE, E, is conserved to one
part in O(108) while the second integral P is conserved to one part in O(105) for the
examples considered in this work.

7.2. Forward leaning of wave packet; ε = 0.4, C0 = 0
Our first example takes ε= 0.4 and C0= 0. That is, this packet has large nonlinearity,
while the initial frequency chirp is taken to be zero. The value of ε, although
potentially outside of the strict region of validity of the MNLSE, is chosen to
illustrate the effects that nonlinearity has on the evolution of the wave packet.

Figure 3 shows the evolution of |A| as predicted by the MNLSE (shown in blue),
as well as the prediction of the lower-order NLSE (shown by the grey dashed
curve), while the black line shows the solution of the IBE. We see that this packet
is characterized by an asymmetric leaning on the forward face. At χ = 0.15, the
slope of |A| increases by 45 %, corresponding to local slopes on the free surface that
are greater than 0.5. This exceeds the values at which highly nonlinear dissipative
processes occur, such as the formation of parasitic capillary waves (Longuet-Higgins
1995; Fedorov & Melville 1998; Melville & Fedorov 2015) and wave breaking
(Melville 1982; Su et al. 1982b; Melville 1983).

Note, the initial condition is a soliton for the NLSE, and hence does not evolve
with increasing fetch. Furthermore, we see that the solution to the IBE (which is
known a priori) agrees well with the evolution of |A| for small values of χ . For larger
values, the forward leaning is arrested by dispersion; hence, the difference between the
predictions of the MNLSE and the IBE become manifest. Finally, this self-steepening
on the forward face of the group has been repeatedly observed in laboratory studies of
wave groups (see, for example, Su et al. 1982a; Melville 1983; Chereskin & Mollo-
Christensen 1985; Pierson, Donelan & Hui 1992).

7.3. Focusing chirped packet; ε = 0.1, C0 = 1
Next, we consider a second example with ε = 0.1 and C0 = 1 to induce packet
focusing. In this example, from the moment evolution equations derived in § 6,
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FIGURE 3. (Colour online) The evolution of the wave envelope with initial conditions
given in (6.1) with ε= 0.4, C0= 0, as predicted by the MNLSE (blue curve), the inviscid
Burgers’ equation (IBE) (black curve) and the NLSE (dashed grey curve). The packet
evolution is characterized by a forward leaning due to nonlinearity. We see that the
solutions to the MNLSE and the IBE agree well for small values of χ .

we expect the packet to focus, and hence the amplitude will increase in order to
conserve action (cf. (6.6)). This implies the IBE will do a poor job of predicting the
evolution of this packet, as the amplitude of solutions to this equation stay nearly
constant (see figure 3).

Therefore, in this section we analyse the closed set of moment evolution equations
derived in § 6 to both predict the early evolution of the packet, as well as to interpret
the mechanisms responsible for modulating the moment equations.

The evolution of |A| as predicted by the MNLSE, and the theory presented in § 6,
is shown in figure 4. The packet focuses and steepens on the forward face. For
small values of χ the agreement between (6.5) and the MNLSE is good. It must
be emphasized that (6.5) does not rely on full solutions to the MNLSE, rather we
just solve the simple ODE given in (6.14). For larger values of χ , the two solutions
deviate, as the asymptotic assumptions used in § 6 break down. This manifests itself
in an over prediction of the packet amplitude.

At χ = 0.12 the slope is more than three times its initial value, and exceeds 0.4.
Like the example considered in § 7.2, this exceeds the slope at which highly
dissipative processes are observed. Furthermore, this example makes it clear
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FIGURE 4. (Colour online) The evolution of |A|, based on integrating the full MNLSE
with initial conditions given in (6.1) with ε = 0.1, C0 = 1. The packet evolution is
characterized by a large reduction in the packet variance, i.e. a focusing, which together
with the self-steepening mechanism leads to large slopes on the forward face of the wave
group. The dashed line shows the initial condition.

that chirped signals are effective for generating large slopes in the free-surface
displacement, even for waves that are initially only weakly nonlinear. This has been
exploited in laboratory studies on wave breaking (Longuet-Higgins 1974; Rapp &
Melville 1990).

The theoretical predictions of w, S, C and dM/dχ are shown in figure 5. The initial
conditions imply S0= 0, while w0= 1. In general for small values of χ there is good
agreement between the theoretical predictions and the full MNLSE.

Figure 5(a) shows the packet variance, which decreases during the focusing event
due to the initial positive chirp of the signal (cf. (6.13)). We see good agreement
between the theoretical predictions and the full numerical solutions for small χ ,
and larger discrepancies between the two for larger χ . Next, the chirp is shown in
figure 5(b). It is seen that the initially positive chirp decreases monotonically with
χ , corresponding to the longer faster waves catching the shorter slower waves due to
linear dispersion.

Next, the evolution of S(χ) is shown in figure 5(c). This corresponds to the growth
of the asymmetric wave in (6.5). Finally, figure 5(d) shows the speed of the centroid,
which accelerates as the packet focuses. Again, there is good agreement between the
theoretical prediction and the full MNLSE over the range of χ shown here.
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FIGURE 5. (Colour online) A comparison between the predictions of the moments based
on the theory developed in § 6 (shown in red) and the full solutions to the MNLSE (shown
in blue). (a) Evolution of the packet width w. The packet focuses, corresponding to a
decrease in its variance. (b) Evolution of the chirp, which decreases monotonically as the
packet focuses. (c) Evolution of the asymmetric contribution to A. (d) Evolution of the
centroid, which speeds up as the packet focuses. For small values of χ , there is good
agreement between the theory developed in § 6 and the full solutions to the MNLSE.

8. Conclusion

In this study we have examined the geometry, kinematics and dynamics of focusing
wave packets. Mapping the MNLSE into a spatial reference frame, with the dependent
variable being the first-order coefficient of the first mode of the velocity potential,
has elucidated the variational structure of these equations, and allowed us to find
conserved quantities and integrals of the spatial MNLSE. This then yields evolution
equations for the first and second moments of the energy density of the wave group,
as well as the evolution of the frequency chirp. To constrain the functional form of
the wave packet during focusing, we studied the MNLSE in the absence of linear
dispersion. We found explicit solutions to these equations for the amplitude and
phase equations, and used these to formulate an ansatz on the form of the solution
to the more general MNLSE. These forms of A are known a priori, and provide
a qualitative way to understand the behaviour of the evolution of the moments.
Furthermore, theoretical predictions of the early evolution of the packet are in
qualitative agreement with the solutions for the full MNLSE. Finally, the results
are in qualitative agreement with existing laboratory and numerical studies. In the
future, a quantitative comparison between the theory presented here, and numerical
and laboratory studies is warranted.
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Appendix A. Evolution of the centroid of the linear energy density in the
laboratory reference frame

We would like to connect the packet evolution in the (χ, τ ) fetch reference frame
to that in the (x, t) laboratory reference frame. We define B′ to be the complex-valued
dependent variable in the laboratory frame, so that a2

0ω0A→B′. We define the centroid
of the action density in the laboratory frame as M , where

M =

∫
t|B′|2 dt∫
|B′|2 dt

, (A 1)

and the integration is over the duration of the wave packet. Denoting the velocity of
M0 as U, we have

U =
(

dM

dx

)−1

. (A 2)

This quantity can be computed in terms of M by noting that

M = ε2k0x− εω0M , (A 3)

so that
dM

dx
= 2k0

ω0
− εk0

ω0

dM
dχ
. (A 4)

Therefore, the velocity of the centroid is given by

U = ω0

2k0

(
1− ε

2
dM
dχ

)−1

= ω0

2k0

(
1− ε

2

[
P
E
+ β0

2
K
])−1

. (A 5)

Recall, we can always choose ω0 so that P = 0, and we make this choice in the
remainder of this subsection. Next, we map K back into the laboratory frame, so that
at a fixed position x, we have (recall, B′ is related to the coefficient of the first mode
of the velocity potential series expansion)

K =

∫
|B′|4 dt∫
|B′|2 dt

= a4
0ω

2
0K. (A 6)

Therefore, we find

U = ω0

2k0

(
1− ε

2
dM
dχ

)−1

= ω0

2k0

(
1− 2

k0

a2
0g

K

)−1

. (A 7)
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In the limit of very narrow-banded waves (ε→ 0), our theory reproduces the linear
prediction that U = cgo = ∂ω/∂k.

Note, equation (A 5) is a prescription one could apply to, for example, wave gauge
measurements of the free surface elevation for waves generated in a laboratory wave
channel (with the appropriate choice of ω0).
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