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With the growing interest in understanding air-sea interaction, upper ocean i S 3 DeSoto Canyon P
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submesoscale ocean processes. As we move to higher spatial resolution, for | ——
example, the 2-km requirement and 500-m goal of the Surface Water and
Ocean Topography (SWOT) mission, the surface wave field will become of
more significance for the dynamics since the wave field correlates with the
submesoscale dynamics through wave-current interaction. Here we present
some scientific examples of the use of airborne lidar for the measurement of
ocean topography from mesoscales of O(100) km to surface gravity waves of
wavelengths O(1) m. In the context of the SWOT program our expected
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surface topography data recorded using the MASS on 4 Aug 2011 in the Santa Barbara Channel. These data give spectra
down to wavelengths of 0.8 — 0.9 m, with directional resolution there of 0.2°, and 3.6° at the peak of the spectrum, A = 64 m.
Note -5/2 and -3 spectral slopes. (right) Directional spectrum from the sea surface topography recorded at 200 m AMSL.

turbulence). The correlation of sub-mesoscale current gradients (e.g. fronts) with ocean surface wave fields will prove important for
the interpretation of SWOT data, not just for EM bias corrections.
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