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We investigate air entrainment and bubble statistics in three-dimensional breaking
waves through novel direct numerical simulations of the two-phase air—water flow,
resolving the length scales relevant for the bubble formation problem, the capillary
length and the Hinze scale. The dissipation due to breaking is found to be in good

agreement with previous experimental observations and inertial scaling arguments.

The air entrainment properties and bubble size statistics are investigated for various
initial characteristic wave slopes. For radii larger than the Hinze scale, the bubble size
distribution, can be described by N(r, t) = B(Vy/27)(e(t — At)/Wg)r~'%3r /3 during
the active breaking stages, where ¢(f — A7) is the time-dependent turbulent dissipation
rate, with At the collapse time of the initial air pocket entrained by the breaking
wave, W a weighted vertical velocity of the bubble plume, r, the maximum bubble
radius, g gravity, V, the initial volume of air entrained, r the bubble radius and B a
dimensionless constant. The active breaking time-averaged bubble size distribution is
described by N(r) = B(1/2m)(e,L./Wgp)r~—'%3r23, where ¢ is the wave dissipation

rate per unit length of breaking crest, p the water density and L. the length of

breaking crest. Finally, the averaged total volume of entrained air, V, per breaking
event can be simply related to €, by V = B(¢,L./Wgp), which leads to a relationship
for a characteristic slope, S, of V o< S¥2. We propose a phenomenological turbulent
bubble break-up model based on earlier models and the balance between mechanical
dissipation and work done against buoyancy forces. The model is consistent with the
numerical results and existing experimental results.

Key words: air/sea interaction, bubble dynamics, wave breaking

1. Introduction
1.1. The broader context

Surface wave breaking plays an important role in the coupling between the atmosphere
and the ocean from local weather to global climate scales. In the absence of wave
breaking, the direct transport between the atmosphere and the ocean is through slow
molecular diffusion and conduction processes. In contrast, when a wave breaks, the
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surface may experience dramatic changes, with a jet forming and plunging back to
the surface, ejecting spray and entraining air into the ocean. For weaker breaking, the
surface may roll over itself down the front of the wave while still entraining bubbles.

Breaking is a transitional flow process from the laminar fluid dynamics of classical
surface waves to a two-phase turbulent flow. Thus wave breaking limits the height of
surface waves, transfers momentum from waves to currents and significantly enhances
the transfer of heat, water vapour, marine aerosols and gases between the atmosphere
and the ocean (Memery & Merlivat 1985; Farmer, McNeil & Johnson 1993; Melville
1996). Approximately 30% of the CO, released into the atmosphere is taken up
by the ocean (Rhein et al. 2013), much from the entrainment and dissolution of
bubbles by breaking and the associated mixing (Monahan & Dam 2001). Once in
solution, CO, forms carbonic acid, the source of ocean acidification, which has such
an adverse effect on shell-forming marine animals. Breaking impact forms spray and
aerosols, while small bubbles may be dissolved into the water column, larger bubbles
entrained by breaking rise back to the surface and collapse. This generates spray,
which is transported into the atmosphere and ultimately evaporates leaving water
vapour, important for the thermodynamics of the atmosphere, and salt crystals that
affect the radiative balance of the atmosphere and form cloud condensation nuclei
(Andreas et al. 1995; de Leeuw et al. 2011; Veron 2015).

For all these reasons, improvement in our understanding of the ocean, atmosphere
and climate systems require a detailed understanding of the physics of air entrainment
and subsequent bubble generation. Due to the complex nature of the breaking process,
a coupled two-phase turbulent flow, a detailed understanding of the dynamical and
statistical properties of the generated bubbles has been elusive.

1.2. Bubble size distribution, models and observations

The bubble size distribution is the most important characteristic of the bubble
formation process since one can retrieve the bubble cloud properties, volume, energy
and penetration depth from its moments. Garrett, Li & Farmer (2000) introduced
the most widely used model for the bubble size distribution. It relies on a steady
model of a turbulent break-up cascade, assuming the size distribution per unit volume
A (r), with r the bubble radius, to depend only on the local (time-averaged) turbulent
dissipation rate &, the bubble radius r and the source of bubbles, i.e. the constant air
flow rate per unit volume of water Q. The steady assumption requires .4 (r) o Q,
then dimensional analysis leads to

N (r) o Q1108 (1.1)

Note that Garrett et al. (2000) consider the bubble size distribution per unit volume
A (r), which is physically equivalent to N(r), the bubble size distribution (.4 (r) dr
and N(r)dr are respectively the per unit volume, and absolute number of bubbles of
radii between r and r + dr). If one considers N(r), (1.1) is unchanged, except Q is
now the absolute air flow rate.

The related turbulent break-up model assumes an inertial subrange and a direct
cascade process: air is injected at large scales (large bubbles) by the entrainment
process and turbulent fluctuations break them into smaller bubbles. The cascade
process ends at the scale where surface tension prevents further bubble break-up, the
Hinze scale (Hinze 1955):

ru="%(y/p) e, (1.2)
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FIGURE 1. (Colour online) Bubble size distributions N(r), measured during various
breaking-wave laboratory experiments in the existing literature. Dashed line is N(r) ocr~'%/3
and solid line is N(r) oc 7. Size distributions are given in arbitrary units due to various
normalizations in the original papers. (&) BC2010 stands for Blenkinsopp & Chaplin
(2010), (x) L1996 for Loewen, O’Dor & Skafel (1996), (O) RL2007 for Rojas & Loewen
(2007) and (O) DS2002 for Deane & Stokes (2002). (Inset) Experimental bubble size
distributions N(r, f) from Deane & Stokes (2002), during the active breaking stage (4)
and later during the decay (O). Solid line is N(r, f) o< ¥~3. N(r, t) is much steeper once
the active breaking stage is finished.

where y is the surface tension, p the water density and € is a dimensionless constant
which has a value of approximately 0.5 (Martinez-Bazan, Montanes & Lasheras 1999;
Garrett et al. 2000; Deane & Stokes 2002).

Several experimental studies (Loewen et al. 1996; Terrill, Melville & Stramski
2001; Deane & Stokes 2002; Leifer & de Leeuw 2006; Rojas & Loewen 2007;
Blenkinsopp & Chaplin 2010) have identified a bubble size distribution following a
power law of the bubble radius N(r) oc r=™ with m € [2.5: 3.5], roughly compatible
with (1.1) when considering the difficulty of the experiments. Figure 1 shows the
bubble size distribution from various laboratory studies, using different measurement
methods: cameras and bubble interface detection technique (Deane & Stokes 2002),
fiber optical probes (Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010) or acoustic
instruments (Loewen et al. 1996). From figure 1 it is hard to make a clear statement
on the exact value of the power-law exponent m. Data from Loewen et al. (1996) and
Deane & Stokes (2002) are closer to the m=10/3 value while data from more recent
experiments show values closer to m = 3 (Rojas & Loewen 2007; Blenkinsopp &
Chaplin 2010). Moreover, the experiments by Deane & Stokes (2002) and Blenkinsopp
& Chaplin (2010) give very different shapes for N(r) below the Hinze scale.

One of the difficulties in properly identifying the exponent m is the rapid time
variations of the bubble size distribution. As discussed by Deane & Stokes (2002) and
shown in figure 1 (inset), the scaling N(r) o ™™, with m € [2.5:3.5], is only valid
during the active breaking time, which is approximately one wave period. Later on, the
bubble size distribution is found to be much steeper. Therefore, it is possible that the
different values for m found in the literature are related to the time of observation and
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the time of averaging used to calculate N(r). Therefore, a more complete description
of the time evolution of the bubble size distribution during the breaking event and
during the rise of the bubbles is needed.

Indeed, the model from Garrett er al. (2000) (1.1), while undoubtedly correct
for constant Q, does not describe the temporal evolution in which the bubble size
distribution experiences very rapid change (Terrill et al. 2001; Deane & Stokes 2002).
Moreover, measurements of the volume of entrained air have shown that Q is not
a constant parameter in this problem (Lamarre & Melville 1991; Blenkinsopp &
Chaplin 2007). Finally the dependence on & and Q in (1.1) has never been validated
and raises a concern. In breaking waves, even if there were a constant Q for some
time, it would almost certainly depend on &, in which case we might expect that
Q&7 '3 o ", with n > 0. Thus, understanding the link between these two variables is
crucial and will clarify the relationship between the kinematics and dynamics of the
flow (e.g. dissipation, air entrainment rate) and the integral quantities, through the
moments of the size distribution.

Baldy (1993) proposed another model for bubble generation by breaking waves,
also based on a turbulent break-up scenario, which describes s(r, t) the bubble
size distribution per unit time, per unit mass per unit ocean surface area, assuming
adiabatic evolution, i.e. the time scale of bubble fragmentation is much faster than
the other processes at play. Considering that s(r, ) is given by the balance of the
local time-dependent turbulent dissipation rate () and characteristic surface tension
energy of a single bubble e, o yr?/p, Baldy (1993) found by dimensional analysis:

-1
5(r, D) (yg/(;))rz 0 <Z) 2. (1.3)

This model is appealing because it considers only the bubble energy and the turbulent
break-up dissipation rate while Garrett et al. (2000) had to introduce the constant air
flow rate Q to close their dimensional argument. Since this model is adiabatic in time,
the measurable time-averaged bubble size distribution N(r) is going to be N(r) ocr=2.
However, as discussed before, experimental results suggest that N(r) ocr™", with m €
[2.5: 3.5], which is quite different from the above result (1.3). Note also that this
model is based on an inertial subrange hypothesis without indications of the scale of
the smallest bubble, so the role of the Hinze scale in this description is therefore not
clear.

On the other hand, the Garrett et al. (2000) model predicts m =10/3, which, within
the scatter, is in agreement with experimental data. An important difference between
the models from Baldy (1993) and Garrett et al. (2000) concerns the treatment of
surface tension. Baldy (1993) considers surface tension energy as the key parameter
to balance the turbulent break-up of the bubbles within the turbulent inertial subrange,
while Garrett et al. (2000) neglect surface tension for bubbles of radius larger than
the Hinze scale, assuming that surface tension is the process that stops the turbulent
break-up at small scales.

1.3. Numerical simulations

Besides laboratory and field work, numerical simulations of two-phase breaking wave
flow have recently become available through improvements in numerical schemes
and increases in computational capacity, but they remain very challenging. Two
approaches exist: large eddy simulations (LES), with subgrid-scale turbulent and
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bubbly flow models and direct numerical simulations (DNS). While LES solves the
large scales directly, strong assumptions are needed for the subgrid-scale turbulent
bubbly flow closures, e.g. by assuming a bubble size distribution (Shi, Kirby &
Ma 2010; Liang et al. 2011, 2012; Derakhti & Kirby 2014). In contrast, DNS is
an appealing tool since no parametrizations are used to solve the multiphase flow.
DNS has been limited to two-dimensional evolution of periodic unstable waves with
relatively small wavelengths, and has provided numerical data on wave dissipation
and splashing processes (Chen et al. 1999; Song & Sirviente 2004; lafrati 2011;
Deike, Popinet & Melville 2015). Three-dimensional simulations of breaking waves
have recently become available through both DNS (Fuster et al. 2009) and LES
(Derakhti & Kirby 2014; Lubin & Glockner 2015). They are indeed necessary to
investigate bubble and spray formation, which are fundamentally three-dimensional
processes. We present here a DNS study of air entrainment and the bubble statistics
in three-dimensional breaking waves, for various breaking intensities. The focus is
on air entrainment while predictions of spray formation will be considered in future
work.

1.4. Outline

We present novel DNS of the two-phase air—water flow permitting solutions for fully
three-dimensional breaking waves including air entrainment and subsequent bubble
formation. We investigate both the time evolution of the air entrainment, through
the total volume of entrained air, the void fraction and the evolution of the bubble
size distribution together with the dependence of these quantities on the turbulent
dissipation rate and the initial wave slope. The results are based on ensemble-averaged
simulations, allowing a better resolution of the statistical properties of the bubbly flow.

The paper is organized as follows. Section 2 presents the numerical experiment and
§ 3 the numerical results for both the time-dependent and time-averaged variables of
the problem. Section 4 presents an alternative phenomenological model, based on the
idea that during the breaking and air entrainment processes the mechanical dissipation
scales with the work done against buoyancy forces. Our model is compatible with
existing experimental and DNS results, both for the time-dependent and time-averaged
bubble size distribution. Finally, this model is tested against available laboratory data
and our numerical data and applied to scale the integral quantities of the flow in §5.
Conclusions are presented in § 6.

2. Numerical experiments
2.1. The Gerris flow solver

We solve the three-dimensional two-phase incompressible Navier—Stokes equations
accounting for surface tension and viscous effects using the open source solver Gerris
(Popinet 2003, 2009), based on a quad/octree adaptive spatial discretization, multilevel
Poisson solver. The interface between the high density liquid (water) and the low
density gas (air) is reconstructed by a geometric volume of fluid (VOF) method. The
multifluid interface is traced by a function 7 (x, ), defined as the volume fraction of
a given fluid in each cell of the computational mesh. The density and viscosity can
thus be written as p(7) =T p, + (1 — Dps, W(T) =T, + (1 — T, with p,,
p. and w,,, w, the density and viscosity of the two fluids (water and air), respectively.
The incompressible, variable density, Navier—Stokes equations with surface tension


https://doi.org/10.1017/jfm.2016.372
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 06 Jun 2019 at 22:48:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2016.372

96 L. Deike, W. K. Melville and S. Popinet

(b)

FIGURE 2. (@) Example of the VOF interface after wave breaking, with numerous visible
bubbles in water and droplets in the air. (b)) Zoom and cut through the vertical plane,
orthogonal to the transverse direction, of (@), showing the principle of the bubble (and
droplet) counting method and volume measure. Each closed surface of air in the plane is
shown in red, corresponding to .7 =0 with 4 bubbles and the main ambient gas area on
top of the water. The area in blue corresponds to the water, with .7 =1.

can be written as

pOu+ u-Viu)=—Vp+V.Q2uD)+ ykén
0o+ V- (pu)=0 (2.1)
V.eu=0,

with u = (u, v, w) the fluid velocity, p = p(x, f) the fluid density, u = u(x, t) the
dynamic viscosity and D the deformation tensor defined as D; = (d;u; + dju;) /2. The
Dirac delta, §,, expresses the fact that the surface tension term is concentrated on the
interface, where y is the surface tension coefficient, ¥k and n the curvature and normal
to the interface.

This solver has been successfully used in multiphase problems such as atomization
(Fuster et al. 2009; Agbaglah ef al. 2011; Chen et al. 2013), the growth of
instabilities at the interface (Fuster er al. 2013), wave breaking in two (Deike et al.
2015) and three dimensions (Fuster et al. 2009), capillary wave turbulence (Deike
et al. 2014) and splashing (Thoraval et al. 2012).

2.2. Interface reconstruction and bubble counting

In Gerris, the interface between volumes of water (tracer 7 = 1) and air (tracer
J =0) is reconstructed by a discrete geometric VOF method (Scardovelli & Zaleski
1999). In the geometric VOF formulation, the volume fraction field is the exact
integral of the volume fraction in each discretisation element. It is not ‘smeared’ or
‘diffused’, i.e. the volume fraction is one or zero in cells which do not contain an
interface and between zero and one in cells which contain an interface. The interface
can then be reconstructed unambiguously in each cell with second-order accuracy
(using piecewise-linear elements). These reconstructed piecewise-linear elements are
displayed graphically in figures 2—4. These images are thus directly representative of
the accuracy of the interface representation by the VOF method.

The volume of individual bubbles and droplets can then be determined without
ambiguity by considering connected regions, separated by interfacial cells. This is
done in practice by using an implementation of the classical ‘painter’s algorithm’
which is typically used in bitmap graphics editors to ‘fill’ connected regions of an
image with a given colour. This principle is illustrated in figure 2, showing a full
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three-dimensional (3-D) image of bubbles under a breaking wave together with a 2-D
cut in the transverse y plane.

The volume of air (water) is then defined by the sum over all closed surfaces
corresponding to .7 =0 of volume v{ (7 =1, of volume v!). Denoting the main
volume of air above the water v (initially half of the numerical domain), the volume
of air in the water, i.e. the volume of air entrained by a breaking wave in our case,
is then V =%, vi. Symmetrically, the volume of ejected water is V,, =, v}
This method is exact at the order of the resolution of the Navier—Stokes equations and
the associated VOF method; each closed surface being detected and counted without
ambiguity.

Volume and mass conservation during the breaking process can be investigated by
computing the total amount of air (water) in the simulation, Vi =3 v (Vi =
Z,;o v,,). As shown in appendix A, errors in mass (or volume) conservation are very
small in the present numerical method (Popinet 2003, 2009). We have checked here
that mass is conserved to better than 0.01 % for both air and water for all resolutions
tested and better than 0.001 % in the highest resolution case (equivalent to 1024°, see
appendix A).

2.3. Initial conditions and physical parameters

We study a single breaking wave as was done in a previous 2-D study (Deike et al.
2015), but now extending it to three dimensions.

A third-order Stokes wave solution for the interface n(x,y) and the velocity potential
¢(x,y,z) in the water are used as initial conditions in a square box of size A on a side
(see Deike et al. (2015)). The wave propagates in the x direction. Boundary conditions
are periodic in x and y, and the top and bottom walls are free slip (at z = +H =
A/2). The wave slope S = ak, with a the initial wave amplitude and k = 2m/A the
wavenumber, varies from 0.35 to 0.65, i.e. from incipient wave breaking to strongly
plunging waves (Deike er al. 2015). Note that since we are using only the third-order
Stokes wave solution, slopes higher than the limiting slope for the full Stokes wave
solution can be defined.

The density and viscosity ratios of the two phases are those of air and water.
The Bond number Bo = Apg/(yk?), with Ap the density difference between the
two fluids, g the gravity and y the surface tension, gives the ratio between gravity
and surface tension forces. Due to computer limitations, related to the range of
scales we are able to resolve, we choose Bo=200. That corresponds to 4 =24 cm in
air—water conditions; large enough to generate a plunging breaker while also including
the surface tension effect necessary to correctly resolve bubbles and droplets. The
Reynolds number in the liquid is defined by Re = cA/v, with ¢ = {/g/k the linear
deep-water gravity-wave phase speed and v the kinematic viscosity of the liquid
(water). Again, due to computer limitations, related to spatial resolution constraints,
we use Re =40000, to correctly resolve the viscous boundary layer and still be at a
large Reynolds number. This value is smaller than the one for a real 24 cm wave by
approximately a factor of 3, but should not affect qualitatively the results since we
are at a sufficiently high Reynolds number (Deike et al. 2015).

Adaptive mesh refinement is used to accurately solve for the interface and the
vortical structures, with an equivalent grid resolution of 512° for most of the runs,
leading to a mesh size 1/512~ 0.4 mm on the interface. This configuration allows
accurate solutions for the dissipative scales, as shown by previous two-dimensional
simulations (Deike et al. 2015) and all the relevant length scales of the bubble
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Set S Resolution Ensemble size Figures

A: Various slopes 036 5123 1 5(b); 14

— 0.40 5123 1 5(b); 14

— 0.42 5123 1 5(b); 6; 14

— 0.45 5123 1 5(b); 14

— 0.47 5123 1 5(b); 14

— 0.49 5123 1 5(b); 14

— 0.51 5123 1 5(b); 14

— 053  512° 1 5(b); 14

— 0.55 5123 1 2; 5(a),b; 6; 14

— 0.57 5123 1 5(b); 14

— 0.6 5123 1 5(b); 14

— 0.63 5123 1 5(b); 14

B: Mesh convergence study 0.55 2563 1 15; 16

— 0.55 5123 1 15; 16

— 0.55 10243 1 3; 4; 15; 16

C: Ensemble average 0.42 5123 10 9; 11(d); 12; 1314
— 0.47 5123 6 9; 11(d); 12; 13; 14
— 0.51 5123 6 8(b); 9; 11(d); 12;13; 14
— 0.55 5123 6 7:8;9; 11; 12; 13; 14
— 0.6 5123 6 8(b); 9; 11(d); 12;13; 14; 17

TABLE 1. Parameters of the three sets of DNS of three-dimensional breaking waves, Bo =
200, Re =40000. The last column indicates in which figures of the paper the data are
used.

formation problem: the wave scale, the capillary length (I, = /¥ /(Apg)) and the
Hinze scale.

The energy components of the propagating wave can easily be obtained by
integration over the whole volume, #/, of air and water and are respectively the kinetic
energy, E,=1/2 [, pu>d¥, the gravitational potential energy, E, = [, pgzd¥ + 1/8,
where the constant 1/8 comes from the fact that the bottom of the box, z=—1/2, is
used as a vertical datum (Chen et al. 1999) and the surface tension potential energy,
E,=y (% — A%, where .Z is the surface area of the interfaces including those of the
bubbles. The total energy is then E=E; + E, + E;. In the following, these quantities
will be given per unit length of breaking crest, i.e. divided by the width of the
simulation box A. Note also that the length of the breaking crest L. is the width of
the simulation box, L. = A.

2.4. Summary of the runs

Three sets of numerical experiments are presented and summarized in table 1. The
A set of experiments consists of 12 runs for waves with various initial slopes (from
S =0.35 to S = 0.65), with no initial perturbation in the transverse y direction.
The B set of experiments is a mesh size dependence study and is described in
appendix A. Three runs are performed with increasing resolutions (and same initial
slope, S = 0.55, corresponding to a plunging breaker) and show that the results are
not changed for resolution finer than a grid equivalent to 512°. Finally, the third set
of experiments consists of ensemble averages for 5 different initial slopes S in the
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same range as before. For each slope S, between 6 and 10 runs are performed with
some initial perturbation in the transverse direction y. An example of the obtained
data set and the ensemble-averaged results is given in appendix B. It shows good
statistical convergence and that small perturbations do not significantly change the
wave dissipation and bubble dynamics; however, the ensemble averaging improves the
statistical convergence of the bubble size distribution. Table 1 also shows in which
figure the various runs are used.

3. Wave breaking dynamics, air entrainment and energy dissipation
3.1. Wave breaking

Figure 3 shows the interface n(x, y, f) evolution with time for a plunging breaker
of initial slope S = 0.55. The dynamics of a plunging breaker has been described
by several authors. A jet forms in front of the wave (a,b), strikes the surface (c)
and falls back to the surface due to gravity. Before the jet reconnects, the wave
dynamics remains mostly two-dimensional. Air entrainment then occurs through
different mechanisms, recently summarized in the review by Kiger & Duncan (2012):
the entrapment of an air pocket when the jet reconnects the water, entraining a large
cavity and large bubbles; entrainment around the jet impact site entraining smaller
bubbles; entrapment by the subsequent splashes events; entrainment by the turbulent
breakdown of the forward face of the wave. Indeed, numerous bubbles and droplets
are visible (c—e) while the flow has become fully three-dimensional. Entrainment of
air also occurs when the jet impacts the surface (c), during the subsequent splashing
(d.,e), and when high velocity droplets fall back into the water (f,g). As discussed
by Deane & Stokes (2002), Kiger & Duncan (2012), there are two main steps in
bubble formation, first, when the jet impacts the water surface, creating relatively
small bubbles and second when the air cavity collapses, creating larger bubbles that
are then fragmented by turbulent fluctuations. Up to a thousand bubbles are counted
in this simulation (f,g). The bubble cloud is very dense just after impact (f-h), and
then bubbles rise to the surface and burst, with the larger bubbles rising faster (i—/).
The waves then continue to propagate leaving the bubble cloud behind.

Figure 4 shows a view from the bottom of the same simulation, revealing insights
on the entrainment and bubble break-up process. After the wave impact, we can
see the large air cavity entrained in the water, together with some satellite bubbles
of small size (a). Just after the initial entrainment of the cavity, it is connected to
the main ambient gas phase by thin filaments of air (b). These filaments of air are
commonly observed under breaking waves in surf movies and were recently discussed
in detail by Lubin & Glockner (2015). Later on, the cavity starts to collapse, creating
both large and small bubbles (c,d). Once the cavity is completely destroyed, we
observe a dense bubble plume, with bubble radii varying over more than one order
of magnitude.

The evolution of the wave is similar for the various plunging breakers S 2 0.42,
with increasing slopes leading to an increase of the entrained air. For smaller slopes, a
spilling process is observed (0.35 < S <0.42), with dynamics similar to that described
experimentally by Rojas & Loewen (2010).

3.2. Energy dissipation

The first step is to verify that we correctly capture the wave dissipation properties
in the present 3-D work. Wave energy dissipation due to breaking can be written
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FIGURE 3. Snapshots of 3-D Gerris DNS solutions for the interface at different times for
a plunging breaker, S =0.55 and a 1024° equivalent resolution. (a,b) Formation of the
jet; (c¢) impact and entrainment of the initial air pocket; (d,e) splashing and fragmentation
of the air pocket; (f,g) splashing and bursting of large bubbles; (h—j) large dense bubble
plume with numerous bubbles of various sizes in the water, together with droplets
in the air.

as Ey g, = f €,A(c) de, with ¢, the dissipation per unit length of breaking crest and
A(c)de the mean length of breaking wave fronts moving at phase velocities in the
range (c, ¢ + dc) (Phillips 1985). The breaking distribution A(c) can be measured in
the field (Melville & Matusov 2002; Gemmrich, Banner & Garrett 2008; Thomson,


https://doi.org/10.1017/jfm.2016.372
https://www.cambridge.org/core
https://www.cambridge.org/core/terms

Downloaded from https://www.cambridge.org/core. Access paid by the UC San Diego Library, on 06 Jun 2019 at 22:48:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2016.372

Air entrainment and bubble statistics in three-dimensional breaking waves 101

(a) (b)

(d)

()

FIGURE 4. Bottom view of the simulation, showing the entrainment and collapse of the
air cavity during the breaking event. (a) Just after impact, the tube of air is already formed
inside the water, with some small satellite bubbles nearby. (b) The air cavity has started to
collapse and is connected to the main surface by thin filaments of air. Bubbles of various
sizes start to be visible. In (c,d) the cavity continues to collapse, with numerous bubbles
of various sizes. In (e,f) the cavity has completely collapsed and a dense bubble plume
is visible, with bubbles with radii varying over one order of magnitude.

Gemmrich & Jessup 2009; Kleiss & Melville 2010; Sutherland & Melville 2013),
while the dissipation ¢, is related to the fluid properties and the breaking kinematics
(Duncan 1981; Phillips 1985),

e =bpc’/g, (3.1

where g is gravity, p the water density, ¢ the characteristic phase speed of the breaking
front and b the non-dimensional breaking parameter.

The local time-averaged dissipation rate € is related to the dissipation rate per unit
breaking crest length, €,, by (Drazen, Melville & Lenain 2008)

€, = pAg, (3.2)
with A = 7h?/4 representing the cross-sectional area of the entrained cylinder of air.

This assumes that the turbulence is homogenous in the cylinder of cross-sectional
area A created by the breaking event (Drazen et al. 2008). The relationship between
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FIGURE 5. (a) Wave energy as a function of time: (O) total energy; (O) kinetic energy;
(V) gravitational potential energy; (<>) surface tension potential energy. The solid line is
an exponential fit E = Ege*' for 1 <t/T < 2, and the dashed line is the linear viscous
decay E = Ege 2% (b) Breaking parameter b as a function of the initial wave slope S.
(¥) DNS data. Solid line: semi-empirical formulation based on a scaling argument, (3.4),
b=0.4(S —0.08)*? from Romero et al. (2012). Black and grey symbols are experimental
data; black and grey triangles and grey diamonds are from Drazen et al. (2008), crosses
and circles are from Banner & Peirson (2007) and squares are from Grare et al. (2013).
The differences between experiments and DNS at lower values of S come from differences
in initiating wave breaking.

& and the wave height at breaking 4 is given by the inertial scaling for breaking waves
(Drazen et al. 2008): & = Eh'/?(2g)*?, with & an O(1) constant. This leads to ¢, =
E pg**h3*1 /+/2 which combined with (3.1) gives

V2

where hk is a measure of the wave slope at breaking. Drazen et al. (2008) have shown
that the slope at breaking, hk, is approximatively proportional to the linearly predicted
maximum slope, S, of a focusing packet. Romero, Melville & Kleiss (2012) derived
the following semi-empirical relation for the breaking parameter initially based on
laboratory data,

b—’:«'
=X

(hk)3?, (3.3)

b=0.4(S — 0.08)*2, (3.4)

where Sy = 0.08 is a measure of the threshold for breaking and 0.4 an evaluation
of the constant = /2. This inertial model, based on a simple physical argument for
strong plunging waves, has been confirmed through extensive experimental studies
and modelling well beyond the region of validity of the initial hypothesis (Romero
et al. 2012; Grare et al. 2013; Pizzo & Melville 2013; Melville & Fedorov 2015;
Deike et al. 2015). Note that proportionality between the initial slope and the slope at
breaking is also true in our DNS of steep Stokes waves, and following the definition
of Drazen et al. (2008) where & is the vertical distance the breaking wave toe travels
before impact, hk = —0.05 + S for both the 3-D DNS presented here and the 2-D
results presented in Deike et al. (2015). In the following we now consider S as our
initial wave slope.

Figure 5(a) shows the evolution with time of the total wave energy E per unit
length of breaking crest, together with the kinetic and potential components. An abrupt
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decrease of the total wave energy is observed when the wave breaks, with most of the
wave energy lost during the first wave period. The energy decay can be fitted by an
exponential during this time period, E = Eyexp (—¢t), with ¢ the observed decay rate
and E, the initial wave energy per unit length of crest. The dissipation rate per unit
breaking crest is then simply given by ¢, = Ey¢ (or by taking €, = —AE/t,, where 1,
is the active breaking time and AE the energy difference before and after breaking,
both estimations being equivalent). The breaking parameter is then b= ¢,g/(pc’), with
c the linear phase speed of the wave.

Figure 5(b) shows b as a function of the initial wave slope S in the DNS, and we
observe a very good agreement for strong plunging waves with the semi-empirical
result given by (3.4) initially derived from laboratory data (Drazen et al. 2008;
Romero et al. 2012), see also data from Grare ef al. (2013) and 2-D numerical
simulations from Deike er al. (2015). This confirms that the present 3-D DNS
captures the dissipative scales of the breaking wave process. The total dissipation due
to breaking in the 3-D DNS is very similar to the one obtained in 2-D DNS reported
by Deike et al. (2015). The difference in the dissipation between experiments and
DNS for § between 0.35 and 0.4 is most likely related to the route to breaking, i.e.
how the initial data are set up. Indeed, as discussed in Deike et al. (2015), the critical
slope for wave breaking changes when a steep Stokes wave is used instead of wave
focusing packet or modulational instability in the laboratory. In the present case, a
slope of 0.35 corresponds to an incipient breaking wave, which has total dissipation
less than a spilling breaker of the same slope obtained by a wave focusing technique
in the laboratory.

3.3. Air entrainment and void fraction

Experimentally, the local void fraction «(x, z, ) (volume of air per unit volume of
air-water mixture) is measured using conductivity (Lamarre & Melville 1991) or
optical probes (Blenkinsopp & Chaplin 2007; Rojas & Loewen 2007). A spatial
map of the void fraction is then obtained by repeating this measure at various
locations. In order to compare our simulations with the experimental description of
the two-phase air—water flow during the breaking event, we compute an equivalent
of this experimentally measured void fraction, by averaging the tracer .7 over the
transverse direction y:

L./2

1
alx,z,t) = — T(x,y,z,1)dy, (3.5)
Lc —L./2

where L. = A is the size of the domain in the transverse y direction (and corresponds
to the length of breaking crest). This measure of the void fraction can then be
integrated in space in order to obtain another estimate the amount of air entrained
by the breaking wave. The main interface during the breaking process can then be
defined by the a(x, z, ) =50 % value, as proposed experimentally by several authors
(Lamarre & Melville 1991; Blenkinsopp & Chaplin 2007).

Figure 6 shows the evolution of the void fraction (volume of air per unit volume
of air—water mixture), o(x, z, t), during the breaking process, for a plunging breaker
(§=0.55) and a spilling breaker (S =0.42).

In the plunging case, the impact of the jet reveals again the various air entrainment
processes, the entrapment of a large air pocket (a,b), as well as the rebound (b,c)
and entrainment by the turbulent breakdown of the forward face. Spray generation is
observed during the splashing process (c,d). Bubble plumes are formed during these
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FIGURE 6. Transversally integrated void fraction «(x, z, 1) = 1/L, f_LLi 32 T(x,y, z, ) dy,

(in %), from the 3-D data, at different times. (a—h) Plunging breaker (S = 0.55). (i-p)
Spilling breaker (S=0.42). Colour scale is nonlinear in order to reveal variations towards
the extremes of the range.
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entrainment processes and high void fraction areas are visible (c—f). The bubble plume
appears very dense and consists predominantly of large air cavities that collapse into
smaller bubbles and are driven down into the water, reaching a maximum penetration
depth (d—f). Then the bubble clouds spread horizontally and large bubbles and air
cavities rise back to the surface to burst, corresponding to the fast degassing stage
(e—g). These events correspond to the active breaking stage. Smaller void fraction
features remain for longer times (g,), corresponding to the small bubbles with low
rise velocities. Eventually, even the smaller bubbles rise back to the surface. This
stage corresponds to the decay of the breaking event. The bubble cloud dynamics as
well as the void fraction observed during the breaking are consistent with previous
experimental observations (Lamarre & Melville 1991, 1994; Blenkinsopp & Chaplin
2007): the air cavity is first entrained with o = 100 %, collapses and gives birth to a
bubble cloud with « up to 30 % during the active breaking stages.

In the spilling case, the breaking process is started by the appearance of a rough
surface or of a small jet at the wave crest (i), then a small region of turbulence forms
at the crest of the wave, and this region grows as water spills down the face of the
wave (j,k). As the wave spills, air is entrained and spray is ejected at the leading
edge of the breaker (k,[) and relatively shallow bubble clouds are formed beneath the
surface (/-0). This general scenario is in agreement with experimental observations
from Rojas & Loewen (2010). As for the plunging case, larger bubbles rise back to
the surface and burst while smaller ones remain longer in the water column (m—p).

3.4. Time evolution of the bubble size distribution and integral quantities

Here we describe the time evolution of the bubble plume properties (volume and size
distribution) for the strong plunging wave, S =0.55 shown in figures 3, 4, 5(a) and 6.
The data are obtained from ensemble averaging 6 runs with small initial perturbations
in the transverse wave direction y. As shown in appendix B, the ensemble averaging
improves the bubble statistics.

Figure 7(a) shows the time evolution of the bubble size distribution N(r, f). When
the jet reconnects to the water surface (¢/T ~ 1), a large pocket of air is entrained
in the water. This pocket of air collapses and bubbles of various sizes are formed.
Bubbles between 2 mm and the mesh size are first created at the impact (¢/T ~ 1),
then a rapid growth of the bubble size distribution is observed (1 <¢/T < 1.6), with
bubbles as large as 10 mm, corresponding to the collapse of the air cavity. Therefore,
bubbles of various sizes are created during the initial impact and entrapment of the
air cavity (visible in figure 4), due to entrainment by the jet, and at the edges of
the air cavity, as discussed by Deane & Stokes (2002) and Kiger & Duncan (2012).
The maximum number of bubbles in the system is reached at the end of this growing
stage. A fast decay is then observed (1.6 < ¢/T < 2.4). Large bubbles are the first
to disappear, collapsing or rising back to the surface and bursting. These two stages
define the active breaking time. Finally, a slower decay of the size distribution is
observed (¢/T > 2.4, decay stage) where small bubbles slowly rise to the surface.

Figure 7(b) shows the evolution with time of the entrained volume of air V(f)/Vj,
where Vy = AL. = 1h’L./4 is the reference maximum volume of air that can be
entrained during the active breaking process. The volume of air is defined by the
sum over all closed surfaces (bubbles of volume vf), V=3 vf, as described in
§2. The first peak observed at t/T ~ 1 corresponds to the impact of the jet and
the entrapment of a large pocket of air, with a cross-sectional area that is almost
(V=0.9V,) the reference tube of air of surface A, visible in figures 2, 4 and 5. The
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FIGURE 7. Ensemble-averaged data for a plunging breaker (S =0.55) (a) time evolution
of the bubble size distribution N(r, ¢). Colour is in log-scale. (b) Time evolution of
the volume of entrained air V(¢)/V,, with V, =AL., calculated from the closed surfaces
(¥) and from the void fraction (blue line). (¢) Time evolution of the energy dissipation
pAe(t) /€, (red symbols). A delay between the time £(f) and V(f) maxima is clearly visible.
(d) Bubble size distribution N(r, t) at different times ¢. Time is colour coded. Dashed
lines are N(r, 1) o rel=Kc/m®™1 with K =2 and r,(f) decreasing with time. (e) Active
breaking time-averaged bubble size distribution N(r): the dashed line is N(r) ocr~ '3 and
the solid line is N(r) ocr73. (f) Rescaled bubble size distribution N(r, f)/e(t — At) during
the active breaking stage, from ¢/T = 1.2 to t/T = 2.4. At is the delay time between
the maximum entrained air and the maximum dissipation, corresponding to the turbulent
break-up time. Time is colour coded as in (d).
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measured volume of air then decreases because of the collapse of the initial tube and
its topological reconnection to the water surface during this highly turbulent event
(as shown in figure 4(b)).

Then, bubbles are formed and a second maximum of the volume of air, which
corresponds to the moment where the largest number of bubbles is present in the
system. This second maximum is one order of magnitude smaller than the volume
of the initial tube. The fraction of air that remains trapped in the water corresponds
to the rapid and continuous increase of V(¢) for 1 <¢/T < 1.6. Then V(¢) decreases,

quickly over approximately one wave period 1.6 <t#/T <2.4. As described by Lamarre
& Melville (1991), the fast decay is exponential, with V =V, exp (—«t/T), with k a
numerical factor varying from approximately 2.5 to 4 in our DNS, depending on the
initial wave slope. These values appear in reasonable agreement with the experimental
values, considering the difficulty of the experiments of Lamarre & Melville (1991)
and Blenkinsopp & Chaplin (2007), who found « =3.9 and « =5, respectively. This
rapid decay corresponds to the fast degassing of the plume caused by large bubbles
rising back to the surface. The growing stage and the fast decay correspond to the
active breaking stages, lasting slightly longer than one wave period. It is followed by
a slower decay, that was also observed experimentally by Lamarre & Melville (1994).

Note that the abrupt decrease of air is related to the fact that the tube of air
collapses and is partially reconnected to the air above the wave (as in figure 4(b)). If
we follow the definitions used in laboratory experiments and compute the volume of
entrained air based on the void fraction (Lamarre & Melville 1991; Blenkinsopp &
Chaplin 2007):

L a=50%
Vo(t) =L, / dx/ a(x, z, 1) dz, (3.6)
—L —H

with a(x, z, 1) =50 % considered as the main wavy interface (and L = A the size of
the numerical domain in the x direction), then we observe a monotonic decay after
the initial entrainment of the air cylinder at ¢/T =1 (as in the experiments). The two
measures of the volume give the same result for the maximum volume of entrained
air and for the time evolution after /T = 1.6.

Figure 7(c) shows the spatially averaged turbulent dissipation rate &(f) (normalized
by €,/(pA)) as a function of time ¢ (normalized by the wave period T). Its evolution
follows closely the volume of entrained air V(¢), with a clear time delay At between
the maxima of &(f) and V(¢). The dissipation rate first increases during the air
entrainment and splashing processes and then decreases during the degassing process.
Note that during the active breaking stages, the instantaneous turbulent dissipation
rate pAe(t) is of the same order of magnitude as the dissipation rate per unit length
of breaking crest ¢, obtained from the decay of the wave energy (see figure 5). When
averaging in time, we obtain indeed pA¢ = ¢;. The time lag between the maximum
in the volume of entrained air and the peak in the dissipation can be assigned to the
fragmentation time of the initial air pocket.

Figure 7(d) shows N(r, t) at given times ¢ during the active breaking period and
the decay stage. The time is colour coded. During this active breaking time (1.2 <
t/T < 2.4), the dependence on the radius is adiabatic in time, i.e the size distribution
follows N(r,t) ocr ™, with 3 <m < 3.5 constant with time, within the error bars.

The amplitude of the bubble size distribution first grows (from dark blue to light
blue), reaches a maximum (t/7T = 1.9, light blue) and then decays (from light green
to red), following, with a time delay, the time evolution of both £(f) and V(¢). During
this stage, the bubble cascade inertial subrange, i.e. the range of scales for which the
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power law is observed, starts close to the smallest scale resolved in the simulation
and ends at approximately 4 mm. The time evolution of N(r, t) is in agreement with
the experimental results from Blenkinsopp & Chaplin (2010), where the bubble size
distribution is found to follow a power law with m & 3 roughly constant during the
active breaking stage.

After the active breaking stage (¢/T > 2.4, from yellow to red), the bubble size
distribution rapidly decays, starting with the large bubbles, and a much steeper
bubble size distribution is observed, in agreement with experimental results (Terrill
et al. 2001; Deane & Stokes 2002). While Deane & Stokes (2002) describe a steep
power law (finding m..., = 6), the bubble size distribution can also be described by
an empirical decay function; combining the turbulent break-up law N(r, f) ocr~" and
an exponential decay, due to the scale-dependent rise of the bubbles that governs the
decay of N(r, ). We propose the following empirical function:

r 37
K <rm<t>> ' G7)

Here r,,(¢) is the time-dependent variable, K =2 a constant empirical parameter and
m = 10/3. Here r,(t) corresponds physically to a cutoff radius that decreases with
time, and quantifies the fact that, due to the rise of the bubbles, the inertial subrange
of the bubble cascade is reduced once the active breaking stage is over. The exponent
2 inside the exponential functional form has been chosen to match the one giving
the rise velocity of the bubbles (see below). For the times displayed in figure 7(e),
rn(t) decreases linearly from 4 mm (¢/7 =2.5, light blue) to 1 mm (¢/T = 3.5, red).
Thus the cutoff radius decreases until it reaches a value close to the Hinze scale.
At this time, the turbulent motion is too weak and no more bubble cascade process
is observed. Note that the semi-empirical formulation (3.7) can be applied to the
experimental data of Deane & Stokes (2002) shown in the inset of figure 1.

Figure 7(e) shows the time-averaged bubble size distribution N(r) over the active
breaking time t,. N(r) is found to follow a power law, N(r) oc 7", with 3 <m <3.5
compatible with various experimental results (Terrill et al. 2001; Deane & Stokes
2002; Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010). The bubble inertial
subrange, i.e. the range of bubble radii for which the power law is observed, starts
close to the smallest resolved scale (approximately 0.8 mm) and ends at the radius
of the largest bubbles observed in the simulations (between 4 and 6 mm). The scale
of the beginning of the bubble cascade corresponds to the Hinze scale (ry ~ 0.8 mm
using (1.2)). However, the mesh resolution is also close to this scale (0.4 mm) so the
Hinze scale might not be fully resolved.

Note that, experimentally, various shapes for r < ry have been observed by Deane
& Stokes (2002), Leifer & de Leeuw (2006) and Blenkinsopp & Chaplin (2010). We
should also remark that it is clear from figure 7(d) that the exact value of the exponent
m depends on the time chosen to average the bubble size distribution. Indeed, if one
averaged over the active breaking and decay stage, one would obtain a steeper size
distribution and a higher value for m. We believe that this sensitivity in the time of
observation is at least partially responsible for the relatively wide range of values
observed for m in the literature, due to the difficulty in properly identifying the active
breaking time.

Finally, we discuss the scaling of N(r, t) with £(¢) during the active breaking stages.
Figure 7f shows the size distribution is indeed well described by N(r, t) x e(t —
At)r", with 3 <m < 3.5 independent of time and At the time lag related to the

N(r,t) = Nor " exp
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FIGURE 8. (Colour online) (a) Time evolution of N(r, ) for §=0.55 and various radii
r. Dashed lines are exponential fits, N(r, t)/Ny(r) = e~/%") . (b) Decay velocity wy(r) =
h/t,(r) compared to the rise velocity of bubbles w, (solid line) given by (3.8). Velocities
are rescaled by w;,(rp =1 mm).

fragmentation of the initial air pocket. The time is colour coded as in figure 7(d).
This description is valid, within the scatter of the data, for the active breaking stages
that last more than one wave period (1.2 <t/T <2.4).

The time evolution of the entrained air phase can be used to define the active
breaking stage; similarly to what was done experimentally using measurement of
the noise generated by the bubbles (Drazen et al. 2008). The active breaking stage
starts when the jet impacts the water surface and ends when the adiabatic bubble size
distribution is no longer observed, so that its total duration here is 7, ~ 1.27.

The overall patterns of evolution of the volume of air, the dissipation rate and the
bubble size distribution are similar for all plunging and spilling breakers we have
investigated.

3.5. Decay time and rise velocities

The time evolution of the number of bubbles at a given scale, r, is shown in figure 8
normalized by its maximum N(r, )/Ny(r). Large bubbles are created first but the time
delay between the maximum number of bubbles for various radii is small, indicating
fast bubble break-up processes. Large bubbles are seen to disappear first and much
faster than the smaller bubbles. The decay rate 7,(r) of bubbles of radius r can be
measured by fitting the decay of the bubble size distribution by N(r, 1) = Ny(r)e /%",
This decay rate includes both the rise of the bubbles, and the collapse of the large
bubbles into smaller ones. However, since we consider the decay starting at the end
of the active breaking stage, the dominant process should be the rise of the bubble.
From this decay rate, we can estimate an average bubble velocity by assuming that
the path of the bubbles is given by the distance the bubble has to rise to reach the
surface, which corresponds to the average penetration depth of the bubble cloud, say
h. Thus we define the scale-dependent decay velocity of the bubble size distribution
by wy(r) =h/7,(r), with w,(r) shown in figure 8(b) for three plunging breakers.

The rise velocity of a bubble of radius » in clean water (for radius larger than
100 pm) is given by Woolf & Thorpe (1991) (see also Thorpe (1982) for a review
of bubble rise velocities),

_ gr? 1 r

. g
_8” . with x =52 3.8
e 18I — 2/(1+0.091 )12 AT (3-8)
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FIGURE 9. (Colour online) Ensemble-averaged data for 5 breaking waves with initial
slopes from S =0.42 to S = 0.6. Time-averaged bubble size distribution N(r) over the
active breaking time 7,. (a) N(r), S (colour scaled) increasing from bottom to top. The
number of bubbles increases with S. (b) Rescaled bubble size distribution N(r)/€,. The
data collapse significantly between (a) and (b); except for the smaller slopes where the
inertial break-up subrange is of limited extent. In both plots, the dashed line is N(r) o
r~193 and the solid line is N(r) o 3.

Figure 8 shows that the decay velocity of the bubbles w,(r) = h/t,(r) is close to the
rise velocity of bubbles in clean water w;, (3.8). Thus the decay of the bubble plume
(for ¢t/T > 2) is consistent with the bubbles rising back to the surface.

3.6. Time-averaged bubble size distribution

We now discuss the time-averaged (over the active breaking time t,) bubble size
distribution N(r) for various wave slopes, S, and the relationship with the wave
dissipation rate per unit length of breaking crest, €. B

Figure 9(a) shows the time-averaged bubble size distribution, N(r), for increasing

initial wave slope. The bubble size distribution follows a power law, N(r) ocr™™ with
3 <m < 3.5, from the Hinze scale to a cutoff radius, r,, that increases with S. The
amplitude of N(r) as well as the range of bubble radii for which the power law is
observed increase with the wave slope, S. Both are related to the increase of total
volume of air entrained, the size of the initial air pocket trapped during the overturning
and impact of the breaking wave and the increase of turbulence fluctuations with
the slope, S. For a large amplitude plunging breaker, the bubble break-up cascade
subrange goes from approximately 0.8 to 5 mm while for smaller amplitude spilling
breakers, the range of validity of the N(r) oc ™™ relationship is smaller, the cutoff
radius being approximately 3 mm, closer to the Hinze scale, due to a smaller amount
of entrained air and weaker turbulent fluctuations.

Figure 9(b) shows the bubble size distribution rescaled by the dissipation rate per
unit length of breaking crest €;,, N(r)/€,. A significant collapse of the data is observed
within the bubble cascade subrange.

To summarize, we find that the dependence of the bubble size distribution on the
bubble radius is the same for both the time-averaged data and the time-dependent
data during the active breaking stage; both being proportional to o r™™, 3 < m <
3.5 for a wide range of initial slopes and for approximately one decade in radii.
Moreover, the bubble size distribution scales with the turbulent dissipation rate, both
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(a) (®)

FIGURE 10. Sketch of the cross-sectional area of the air entrainment by a breaking wave:
a tube of air of section A ocA? is entrained (a) and creates a turbulent bubble cloud over
a similar area (b).

when considering the time-dependent bubble size distribution N(r, ) oce and the time-
averaged data N(r) €, where €, = pA&. While the constant-Q model of Garrett ef al.
(2000) describes the r~" scaling, it does not quantify Q in terms of the other variables
and is independent of time. In the next § 4, we discuss a new model that is consistent
with the results of the DNS data.

4. A model for bubble size distribution

Here, we propose a new model to describe both the time-dependent bubble size
distribution during the active breaking stage and the time-averaged results, combining
ideas from the two models described in the Introduction and the results of the DNS.

4.1. Global balance between turbulent dissipation and work done against
buoyancy forces

When a wave breaks, it entrains a tube of air of cross-sectional area A ~ nh2/4,
displayed in figure 10, creating a turbulent bubble cloud over a similar area for
short times after the breaking onset. Here & is the vertical distance between the
crest of the breaker and its point of impact on the surface below and we assume
geometrical similarity for the area A across the range of wave slopes. We aim to
describe the number of bubbles and their size distribution within this area. The bubble
size distribution per unit volume .4(r, r) is then related to the absolute bubble size
distribution N(r, 1) by

N(r,t) = VoV (r, ) = AL N (1, 1), 4.1)

with Vy =AL. = mh’L./4 the maximum volume of entrained air during breaking and
L. the length of the breaking crest.

The core of the model is to use the simple assumption based on empirical data
(Lamarre & Melville 1991; Blenkinsopp & Chaplin 2007; Lim et al. 2015) that
globally (integrating over space and time of the event) the work done against buoyancy
forces in entraining the bubbles is proportional to the mechanical energy dissipated.
This statement can be represented by the following equation:

///ngV(r,x,1)4;r3w(x,t)drdxdt=B//p(l—a(x, H)e(x, )dxds, (4.2)

where ¢(x, 7) is the local dissipation rate in the water, w(x, ) the local vertical velocity
of the bubble cloud and «(x, ¢) the void fraction (volume of air per unit volume), all
functions of space x and time ¢, and B is a dimensionless constant.
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Recall that e(x, #) is the local viscous dissipation rate, e(x, t) =2vD;D;;, with D; =
(9;u; + dju;)/2 (Pope 2000). Therefore the total mechanical energy dissipated in the
water is the integral over the volume of water and time f f p(l —a(x, )e(x, r)dx dr,
where the inclusion of the void fraction in the equation ensures the integration in the
water only.

We first assume, for simplicity, that ¢ <« 1, and that the density of water p is
constant, so that (4.2) becomes

///gJV(r,x, t)43nr3w(x,t)drdxdt:B//s(x,t)dxdt. (4.3)

Now let us assume that locally, the bubble size distribution is proportional to the
turbulent dissipation rate, i.e. .4 ocg, which is supported by the DNS data (figure 7).
The time lag between air entrainment and dissipation observed in the DNS results can
be incorporated at this stage by setting, .4 o e(t — At); cf. figure 7.

With A oce(t — At), we now assume separation of variables to give

N(r,x,)=R(r, r,)elx, t — AT), 4.4)

where r,, is the maximum bubble size, then (4.3) becomes

/rm gR(r, ;’,,,)4?3-[1’3 dr//s(x, t—AT)w(x, t)dxdt:B//s(x, Hdxdr. (4.5)

Therefore,

[ [wx, De(x, t — At) dx dr
[ [e@x, t)dxds ’

I 4n . )
gR(r, Vm)?r dr=BW™', with W= (4.6)

where W is the dissipation-weighted vertical mean velocity of the bubble plume over
the active breaking period. For any breaking event, W and r,, are constants and play
parametric roles in further development of the model.

Here W is the weighted vertical velocity of the bubble cloud and corresponds to
an average rise velocity of the bubble plume, so that together with gravity, it can
be interpreted as the variable corresponding to the bubble buoyancy forces. Taking
into account r,, in the dimensional analysis corresponds to considering the role of the
maximum bubble size in the fragmentation process.

Now, equation (4.6) dimensionally constrains the scaling with respect to W and g,

so that A
, I —
Nty o BEELTAD 4.7
Wg
where R(r, r,,) &« Bf(r, r,,)/(Wg). Seeking power-law solutions, with f(r, r,) having
the dimensions of .#", [L™*], we have

34—m)e(x,t— A1) _,
;

N (r,x,)=B
47 Wg

e, 4.8)

with m < 4 to avoid divergence of (4.6). The (4 — m) constant is introduced to be
consistent with the initial equation, (4.2) and cancels the numerical constant when
integrating over all bubble radii. Note also that available experimental data and our
numerical data suggest 3 <m <4. At this point, we have a constraint on the prefactor
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of the bubble size distribution, i.e. on the total volume of air, but we need information
on the statistics to determine m.

Equation 4.8 can be justified by a dimensional analysis. Say .4~ depends on the
bubble scales, i.e. the radius r and the radius of the initial largest bubble r,; the
buoyancy forces, i.e. gravity g and the weighted bubble rise velocity W; and the
turbulent dissipation rate & that is responsible for the break-up. At this point we
neglect the surface tension, since we consider only bubbles that can be fragmented
by turbulence and therefore are larger than the Hinze scale (following Garrett et al.
(2000) and Deane & Stokes (2002)).

Thus we have six variables and two dimensions, so a relationship can be written
between four dimensionless variables:

WZ
Nt =G (r, £ ) 4.9)
rm gW gr’n

Within the turbulent inertial subrange of the bubble cascade, experimental and
numerical data show that 0.1 < r/r,, < 1 (see §5). The ratio between turbulence
and buoyancy forces can be estimated using the numerical data and is typically
0.1<e/gW <1 (see §5). The last dimensionless number can be estimated as follows.
As discussed in §5, W is O(10) cm s~!, and available experimental data suggest
Fn is O(1-10) cm, so that W?/(gr,) is O(1072-107"). Therefore W?/(gr,) < 1,
reaching the smallest values of the dimensionless variables. Following the common
assumption of asymptotic independence, we neglect this variable in the subsequent
analysis and ultimately test its neglect in the comparison with the available data
and our numerical results (see §5). Note that other dimensionless numbers could
have been proposed, but they all are combinations of those in (4.9). For example,
W3/ (er,) = (¢/gW)~! x W?/(gr,) and we also find W3/(er,,) is O(1072 —107"), and
can be neglected in the same way.
Seeking power-law solutions, this leads to

. ,
N o (r> (8> . 4.10)
T gW

Now p =1 is determined experimentally, equivalent to .4 oce. It leads to

N x iW (r> o, @.11)
g

which is equivalent to (4.8).
Note that we can relax our assumption that o < 1, so that W becomes

[ Je, t— Ar)w(x, ) dx dt

[ —a@, nex, ndxdr’ (4.12)

which is a slightly more complicated dissipation-weighted vertical velocity characteri-
zing the active breaking event. This does not change the dimensional analysis and the
bubble size distribution per unit volume is still given by (4.8).
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4.2. Adapting the dimensional analysis from Garrett et al. (2000)

To determine the value of m, we recall the dimensional analysis from Garrett et al.
(2000). As discussed in the Introduction, it considers that air is initially injected into
large bubbles, and these are then broken up into smaller ones by turbulent velocity
fluctuations. Then, it assumes that the inflow of air has no influence on the turbulence,
so that the bubble size distribution is proportional to the average air flow rate Q (per
unit time and per unit volume of water), and only depends on the bubble radius r and
the turbulence dissipation rate £. Dimensional analysis leads to

N (r) o Qe 13103, (4.13)

Note that the r~'%* scaling can also be justified by a mechanistic sequential break-
up argument (Garrett et al. 2000).

We now need to connect the average air flow rate Q to the other variables of the
problem. The time of air injection can be estimated by the time to create the bubble
cascade, i.e. the time to fragment bubbles from the largest bubbles in the system r,
to bubbles close to the Hinze scale. The fragmentation time, or lifetime of a bubble
of radius r, 7(r), is given by the ratio of the size of the bubble r and the turbulent
velocity fluctuations at this scale Av ~ (er)'/? (Martinez-Bazan et al. 1999; Garrett
et al. 2000)

T(r) ~r(er)™'3 ~ p¥Pg=13, (4.14)

Say g successive fragmentations are needed, each bubble giving n bubbles (as in
the sequential mechanistic break-up argument used in Garrett et al. (2000)), then the
total time to create the cascade is

q
To=T+n+ =1+ Y )

i=2
q

_ .2/3.-1/3 2/3 —1/3

=r,¢ —i—Zri &

= <1+Z 1/3 > where j=i—1,

2/3,—1/3 . n=@bP -1
= i’m & Cq,n, with Cq’n = (1 + n—1/3_1) . (415)
which scales as r2/3¢7!/3, so that different values of ¢ and n only change the numerical

constant in (4. 15) Cgn- Typically, for binary break-up (n = 2), starting with r, ~ 10
mm, g ~ 12 successive break-ups are needed to reach the Hinze scale of ~1 mm,
leading to a numerical prefactor of ¢, , ~ 6, whereas for a cubic cleavage of bubbles,
q = 8 the prefactor would be ¢, , ~ 4. Note that 7. gives a reasonable estimation of
the time lag At observed between the time of the maximum air entrainment and the
time of the maximum observed dissipation rate.

This defines Q as

V, 1 V.,
Q= —=Cony, r 3l (4.16)

where V, is the volume of air and V,, the volume of water, it leads to

N (1) o o r 23108, 4.17)
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This above argument provides information on the bubble statistics but it does not
constrain the volume of air injected by the breaking wave.
Now, we insert the m = 10/3 solution from (4.8), and we obtain

N (r,x, 1) = Biwflo/zmz/sl
27 Wg

(4.18)
Once integrated in space and time over the breaking event, equations (4.18) and

(4.17) should be equivalent, and an encouraging point is that the scaling for 7, is

indeed the same in both formulations, so finally we arrive at the following balance

V., e

£ 4.19
v, > We (“4.19)

which can be written as V,Wg oV, &, meaning that the spatially averaged mechanical
turbulent dissipation scales with the averaged buoyancy force, which was our initial
assumption.

4.3. Volume integrated bubble size distribution

Starting from (4.18), we can now consider the absolute bubble size distribution,
N(r, t), over the control volume of breaking, V, =AL., which leads to

AL.e(t — A1)
r

N(r,t)=AL AN (r,x,1)) =B oy We

103213, (4.20)

where (-) denotes spatial averaging and €(f) = ((x, t)) the time dependent but spatially
averaged dissipation rate. B
The time (and space) averaged bubble size distribution N(r) is then

N(r)= BLLLAE prI0B 203 BL Leer prI0B3 203 (4.21)
2nt Wg 2t pWg

with &€ = £(¢) the space- and time-averaged dissipation rate over the active breaking
event, and we recall that €, = pA¢ is the dissipation rate per unit length of breaking
crest.

The time- and space-averaged bubble size distribution N(r) is equivalent to
the bubble size distribution considered by Garrett et al. (2000) and measured
experimentally by various authors (Loewen et al. 1996; Deane & Stokes 2002; Rojas
& Loewen 2007; Blenkinsopp & Chaplin 2010) if one assumes the bubble plume to
be homogeneous over the volume Vj. Note that the adiabatic size distribution (4.20)
is valid during the active breaking stage, and interestingly is a way to experimentally
quantify the active time of breaking 7.

Note that, following Garrett et al. (2000), we have assumed that the bubble
break-up process is independent of surface tension. Therefore, the model is valid
until surface tension prevents further bubble break-up, i.e. up to the Hinze scale
(1.2), and is valid only during the active breaking stages. At later stages, once the
turbulence becomes weaker, we expect the bubble distribution to decay due to bubbles
rising back to the surface and bursting, and through bubble dissolution.

The model uses the dimensionally constrained power law N(r) o< r~'%3 which
is consistent with experimental observations, together with N(r, 1) ox e(t — At) and
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N(r) < €; which is consistent with our previous conjecture: when the breaking strength
increases, £ increases and so does the number of bubbles.

This formulation gives information on the time evolution of the bubble plume
(growth and decay) in the sense that it says that it follows the time evolution of the
turbulent dissipation rate. We believe that this should be of significant interest for
field measurements since it could be tested if the bubble size distribution and & could
be measured in dense bubble clouds.

As shown in § 3, DNS results are in good agreement with this model (based in part
on the DNS) for both the time-dependent and time-averaged formulations and justify
the assumption that the bubble size distribution is linearly proportional to the turbulent
dissipation rate ¢.

4.4. Derivation of the volume

We will now use the model to scale the total volume of entrained air during the
breaking process as a function of the external parameters of the waves, the initial
wave slope S and the related dissipation. Indeed, the model can be used to predict
such scaling, since the volume of air entrained is related to the bubble size distribution
by

"4,
V() = ?r N(r, 1) dr, 4.22)
0
for the time-dependent volume of entrained air and
_ Ym 4n 3=
V= ?r* N(r)dr, (4.23)
0

for the time-averaged volume of air.
Using (4.20) and (4.22), the time-dependent volume of air entrained is then given
by

fn 4 AL, e(t — A WL.e(t— A
V() = / I spALe BT AT) oo g T L EUZAT) oy
o 3 21 Wg 4 Wg

The complete equations from our model for the time-averaged volume of entrained
air as a function of the slope or the dissipation rate per unit length of breaking crest
is then obtained from (4.23), and (4.21), so that

- G[LC
V=B ) (4.25)
pWg

then using the inertial scaling from Drazen et al. (2008), €, = & pg**h’*1/+/2, with
Z an order one constant, and the linear phase speed for gravity waves, ¢ =+/g/k, we
obtain

& L.g'*h°"?

N

The latter equation can also be written using the relationship for ¢, = bpc’/g, and
leads to

V=8B (4.26)

L.c

V=Bb=<
Wg?

(4.27)
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and the breaking strength b is then given by the semi-empirical formulation from
Romero et al. (2012) ((3.4): b=0.4(S — 0.08)/?)

v 5/2 Lc
V=0.4(S—-0.08)""B—. (4.28)
Wg?

We will now test our model against our numerical data and existing laboratory
experiments.

5. Discussion on the scaling of the volume and estimation of the bubble cloud
constant B

In this section we test our model against our DNS results and available laboratory
data. We have to take into account the other variables in (4.25), i.e. mainly the
weighted velocity since the gravity and the liquid density will remain constant in the
breaking water wave problem.

5.1. Weighted velocity of the bubble plume

Now, we estimate the last unknown in our model, the weighted velocity W: the
weighted velocity of the bubble plume that can be calculated explicitly in our DNS
from (4.12).

Figure 11 shows an example at a given time of 2-D maps (data have been averaged
over y (i.e. for a field ¥ (x, y, z, ), we obtain the transversally integrated field

Yx,z,t)=1/L, ffL/ 52 ¥(x,y, z, t)dy), of the variables necessary to calculate W.

Figure 11(a) shows [1 — a(x, z, ?)], figure 11(b) shows &(x, z, t) and figure 11(c)
shows w(x, z, t)e(x, z, t). It is clear that regions of high local dissipation ¢ correspond
to regions with high void fraction, which qualitatively corroborates our assumption
of local proportionality between the dissipation and the bubble population. Note that
similar features are described in a recent laboratory study, that measured both the void
fraction and the velocity fields under a breaking wave (Lim er al. 2015).

Figure 11(d) shows the weighted velocity, calculated from (4.12)

fw(x, z, e, z,t — At)(1 —a(x, z, 1)) drdxdz

W= [ e(x, z, t)dtdxdz SR

as a function of the wave slope. Small variations in the value of W are observed for
our range of parameters.

Now, we want to compare W with the rise velocity of a bubble of typical size in
the bubble plume during the active breaking stage. The typical bubble radius 7 in the
bubble plume is estimated by

f rN(r) dr

[ N@r)dr’ 5-2)

=

within the bubble inertial subrange.

The typical rise velocity is then obtained from (3.8), w, =w,(¥) and is approximati-
vely the weighted velocity W obtained from (4.12), as shown by figure 11(d). Note
that we also find a linear relation between W and the typical velocity //7, built from
the height of the breaker 4 and the active breaking time t,.

To summarize, the weighted velocity corresponds to a spatially integrated rise
velocity of the bubble plume that can be successfully estimated from the rise velocity
of a bubble of mean size in the plume.
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FIGURE 11. Example of transversally averaged maps (in the water) of (a) [1 —
alx, z, D], (b) e, z, 1) and (¢) w(x, z, Nelx, z, ) at t/T = 1.76 as a function
of x and z, for § = 0.55. These are used to calculate the weighted velocity W =
Jwx, z, e(x, z, ) drdxdz/([ e(x, 2)(1 — a(x, z, 1)) dtdxdz) (4.12). (d) Weighted velocity
as a function of the initial wave slope, normalized by w,(r; =1 mm) the rise velocity in
clean water of a bubble of radius ro=1 mm: (<) direct calculation of W from (4.12); (O)
wy, =wy,(7), the rise velocity in clean water from (3.8) of a bubble with a radius given by
r=[rN(r)ydr/ [ N(r)dr.

5.2. Time-dependent volume of entrained air and the dissipation rate

We have seen in figure 7f that N(r, t) « e(t — At) and used that result to build
our model in §4. Now, figure 12 shows the rescaled volume of air entrained by the
breaking wave, V(¢)/V,, as a function of the rescaled time-dependent dissipation, (¢ —
At)/Wg, as suggested by (4.24), during the active breaking time. Within the scatter
of the data, we observe the expected linear relation between the volume of air and
the turbulent dissipation rate, V/V, = Be(t — At)/Wg. It leads to a first estimate of
the constant, B ~ 0.05.

5.3. Normalized bubble size distribution and bubble cloud constant

We can now test our model for the bubble size distribution, given by (4.21). Figure 13
shows the DNS data rescaled according to (4.21). The maximum bubble size r,, for
each bubble size distribution is estimated by applying the semi-empirical formulation
N(r) = Nor 93 exp(—2(r/r,,)?) already used for the time-dependent bubble size
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FIGURE 12. (Colour online) V(#)/V, as a function of &(t — At)/Wg. Colour symbols are
for the various initial slopes, as in figure 9. Solid line shows the linear relation V/V, =
Be(t — At)/Wg, with B=0.05.
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FIGURE 13. (Colour online) Rescaled bubble size distribution, according to

4.21): N(r/rm)rjlng/e,, as a function of the rescaled bubble radius r/r,. Solid
line shows B(r/r,)~'%3, with B = 0.1 and dashed line is B(r/r,)~'3, with B = 0.05;
Colour symbols are the ensemble-averaged DNS data for various slopes, as in figure 9,
with the initial slope S colour coded as in figure 9. Black diamonds are laboratory
experiments from Deane & Stokes (2002).

distribution (figure 7 and (3.7)). We find that r,, increases with the strength of the
breaking wave, S. We obtain a good collapse of the data, as already shown in
figure 9, which was expected since the weighted velocity varies little for the range
of parameters tested here (as shown in figure 11).
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We now want to compare our model with the available data from Deane & Stokes
(2002). To rescale the data from Deane & Stokes (2002), we need to estimate the
maximum bubble radius r,,, the vertical weighted velocity W and the dissipation rate
€. 1, =10 mm is estimated directly from the data as the end of the bubble cascade. ¢,
can be estimated from the wave packet parameters used by Deane & Stokes (2002),
the wave slope S, the central wavenumber and frequency and then using the semi-
empirical relationship from Romero et al. (2012), (3.4).

The remaining unknown variable is the weighted bubble plume velocity W. As
shown by figure 11(d), W can be estimated by the rise velocity of the mean bubble
size of the plume using the bubble size distribution of Deane & Stokes (2002) within
the bubble cascade and the definition of the typical bubble size defined by (5.2). We
obtain a typical bubble size rps ~ 1.5 mm. Note that while we have compared W to
the rise velocity in clean water, we have here to consider the rise velocity in dirty
water. The rise velocity is then given by the formula from Thorpe (1982) and Woolf
& Thorpe (1991) for a bubble rising in dirty water

irty 2r2g
Wy () = 5= (W +20) — ), (5.3)

w
with

v=10.82/y and x=2% (5.4a,b)

which leads to wi ™ (rps) ~ 13 cm s~'. The uncertainty in the velocity W in the

laboratory data is then estimated by considering the variation of rpg within the
bubble cascade, i.e. radii between 1 and 5 mm, leading to values of wi"” (r) between
10 and 20 cm s~

The rescaled experimental data are then shown on figure 13 together with the DNS
data. A reasonable collapse of all data is observed within the bubble inertial subrange
0.1 <r/r, <1. The solid and dashed lines are B(r/r,)'%3, with respectively B=0.1
and B =0.05, providing an estimation of the bubble cloud constant B.

5.4. Volume scaling of the DNS and available experimental data

Now we can test our model prediction for the entrained volume of air.

Figure 14 shows the DNS data for the total volume entrained during the breaking
event, where all the variables are measured, together with the available laboratory data.
As discussed in the review by Kiger & Duncan (2012), only a few measurements
of the entrained air exist: Lamarre & Melville (1991) and Blenkinsopp & Chaplin
(2007). The measurements from Blenkinsopp & Chaplin (2007) cannot be used here
since wave breaking is obtained when the wave propagates over a shoal. Together
with the data from Lamarre & Melville (1991) and Deane & Stokes (2002), we also
consider the data from Duncan (1981), who studied breaking waves produced by a
towed hydrofoil and measured the breaking volume, i.e. the volume of the bubble
plume, which is not directly the volume of air.

However, while all the variables are measured in the present numerical study, this
is not the case in the experiments from Duncan (1981), Lamarre & Melville (1991)
and Deane & Stokes (2002), and some assumptions are needed for the missing
variables. First, for all sets of laboratory data, we use the weighted velocity estimated
using the bubble size distribution from Deane & Stokes (2002) and discussed above.
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FIGURE 14. (Colour online) (¢) Volume of entrained air V as a function of €,L.(pWg)~'.
(b) Normalized volume of air VWg?/(L.c®) as a function of the initial wave slope S. In (a)
and (b): (V) are V= [ V(1)dt/7;, the total volume of air during the active breaking process
for the 12 single runs and (O) for the 5 ensemble average runs; (M) are the experimental
data from Lamarre & Melville (1991); () are data from Duncan (1981); and () are the
data from Deane & Stokes (2002). In (a), solid line is V=Be;p~'L.(Wg)~!, with B=0.1,
while dashed lines indicate the range of confidence of the constant B, ranging from 0.04
to 0.2. In (b) solid line describes the DNS data only and VWg?/(L.c®) =0.12(S — 0.36)/2.
The dashed line is (4.28):VWg?/(L.c®) =0.06 x 0.4(S — 0.08)°/2.

The volume of air entrained in the case of Deane & Stokes (2002) is obtained by
integration of the bubble size distribution.

Lamarre & Melville (1991) measured the volume of entrained air together with the
properties of the wave packet. While the values of ¢, are not given in the original
paper, it can be retrieved from the given initial parameters of the waves (slope S,
central frequency and wavelength) and the semi-empirical formula from Romero et al.
(2012) (3.4).

In the case of Duncan (1981), ¢ is measured, together with the volume of
active breaking, i.e. the volume of the air—water bubble plume observed during
the spilling breaking events. To obtain the volume of air entrained, we have to
multiply this measured volume by the typical average void fraction in a spilling
breaker, @ = 0.23 £ 0.06, according to recent laboratory measurements from Rojas
& Loewen (2010). Note that, in our DNS, we find a similar average void fraction
within the breaking area and during the active breaking stage of a spilling breaker.
The uncertainty in the mean void fraction is used as error bar in the volume of
air entrained. However, while the slope at breaking could be evaluated (from the
measured wave height at breaking and the wave phase speed), it would be difficult to
compare with the initial slope of our DNS or the slope of the packet from Lamarre
& Melville (1991) due to the differences in the route to breaking.

When comparing the DNS, the laboratory experiments and the model, we have to
keep in mind the various assumptions made to estimate the missing variables in the
experiments and the related (large) error bars associated with these estimations. In the
DNS, the error bars on the volume are estimated from the ensemble-average data (see
appendix B) and from the two ways to estimate the total volume (direct measure V
and estimation through the void fraction V).

Figure 14(a) shows the total volume of air V= f V(¢) dt/t, entrained during the
breaking process as a function of €L.(oWg)~!, as suggested by (4.25). As already
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discussed, the volume of entrained air increases with the strength of the breaking
wave, i.e. €;. Reasonable agreement is found between the DNS data and the theoretical
scaling derived above (4.25) and also with the available laboratory data from Duncan
(1981), Lamarre & Melville (1991) and Deane & Stokes (2002). The reasonable
agreement with the linear relationship predicted by our model spans several orders of
magnitude, which is very encouraging, especially regarding the remaining uncertainties
in the estimation of W in the laboratory data. We obtain an evaluation of the bubble
cloud constant, B~ 0.1 £ 0.05.

Figure 14(b) shows the total volume of air normalized according (4.27), as
a function of the wave slope S. A reasonable agreement is found between our
model and the DNS data, if one includes a different breaking threshold in (4.28),
VWg?/(L.c’) = B'(S — Sp)°/?, with B’ = 0.5 a constant related to B, the constant
E (related to b) and the breaking threshold S;, where S; = 0.36 in our breaking
configuration. On the other hand, using the semi-empirical relation for the breaking
strength b = 0.4(S — 0.08)%2, where 0.08 is the experimental breaking threshold, leads
to VWg?/(L.c’) = 0.4B(S — 0.08)*/2, with B = 0.1 describing reasonably well the
laboratory data and the DNS data for high plunging breakers only.

The differences in the entrained volume of air between the DNS data and the
laboratory data are related to two effects. First, the critical slope to trigger breaking
depends on the initial conditions and the route to breaking (e.g. wave focusing,
modulation instability), and the Stokes waves used here have a breaking threshold
higher than the one observed in laboratory experiments using focusing wave packets.
Second, the low values of the entrained air in the DNS for small slopes can also be
related to the relatively short wavelength of our breaking wave, A4 = 0.24, and the
influence of surface tension in the shape of the breaking wave, which reduces the
amount of entrained air, as discussed in Song & Sirviente (2004), Liu & Duncan
(2003, 2006) and Kiger & Duncan (2012).

We obtain a value for B between 0.05 and 0.15, which corresponds to an estimation
of the ratio between the totally dissipated energy by breaking and the potential energy
in the bubbles being between 5% and 15%. This covers the latest estimation from
the laboratory by Blenkinsopp & Chaplin (2007) who obtain values between 5 % and
10 %, and close to Lim et al. (2015) who reports a value of 18 % for a strong plunging
breaker; while earlier measurements by Lamarre & Melville (1991) discussed values
between 30 % and 50 %.

6. Conclusions

We have performed novel DNS of the two-phase air—water flow in 3-D breaking
waves to investigate the time evolution of the entrained air. The DNS results regarding
the energy budget of the breaking wave, the void fraction values during the active
breaking stages, the time-averaged bubble size distribution and the time evolution of
the total volume of air, when compared with the available data, support the use of the
DNS to reproduce accurately the physics of air entrainment by breaking waves.

Based on the DNS results, we propose a phenomenological model for the bubble
size distribution based on the assumption that the dissipated energy during breaking
scales with the work done against buoyancy forces to entrain air, as well as turbulent
break-up model from Garrett et al. (2000). This extended model describes the time
evolution of the bubble cloud during the active breaking stage in that it relates the
bubble size distribution to the instantaneous turbulent dissipation rate. In the same
spirit, it describes the time-averaged bubble size distribution for one breaking event.
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From the bubble size distribution, the total volume of air entrained can be physically
scaled to the energy dissipated due to breaking and to the characteristic wave slope
at breaking. Within the scatter of the data, the model is consistent with the DNS and
the available experimental data.

This numerical modelling study of entrainment by breaking waves has shown that
the prospects are strong for being able to follow the example of Romero et al. (2012)
who modelled the dynamics of breaking using the inertial scaling of dissipation due
to breaking (Drazen et al. 2008) along with field measurements of the kinematics
to improve ocean wave modelling. In this case, we foresee the possibility of using
the results of this paper, along with field measurements of breaking, to improve the
models of air entrainment, and ultimately air—sea gas transfer (cf. Liang er al. (2011,
2012)).

Extensive experimental investigations of the bubble size distribution for various
initial wave slopes, and therefore a broad range of turbulent dissipation rates, are now
required to further test the model presented here and the semi-empirical formulation
for the volume of entrained air.
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Appendix A. Convergence of the numerical results with the mesh size

In this section, we discuss the convergence of the numerical results with mesh size.
Three simulations are considered, with effective resolution equivalent to 2563, 5123
and 1024° on a regular grid. The physical parameters of the simulations are Re =
40000 and Bo =200, as in the rest of the paper and we consider a plunging breaker
with an initial slope of §=0.55.

Figure 15(a) shows the evolution of the normalized energy E/E, for the three grid
sizes. While significant differences are seen between the coarse grid 256° and the
two finer grids, the 512% and 1024° resolutions are almost identical except for the
initial decrease during breaking although the final values are almost identical. As a
consequence, the dissipation rate ¢; does not depend on the resolution for grid size
larger than 5123. This shows, together with the comparison of the breaking parameter
in the simulations with the available laboratory data on figure 2, that we are correctly
resolving the dissipative scales involved in the breaking process and that results such
as the dissipation rate per unit length of breaking crest are not changed when the grid
resolution is increased and finer scales are resolved.

Figure 15(b) shows the time-averaged bubble size distribution N(r) for the three
grid sizes and shows that for bubbles larger than the mesh size, all three bubble size
distributions are very close, with only small differences in the large bubble statistics.
Thus for r > 1 mm, the observation that N(r) o<~ with m € [3:3.5] is independent
of the mesh resolution. This turbulent break-up cascade goes to »~5 mm. Moreover,
working with a finer grid gives access to smaller bubbles created by further break-
up. This fact is expected since experimentally, bubbles smaller than 0.1 mm can be
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FIGURE 15. (Colour online) Convergence study for three mesh sizes, 1024° (0), 512% (<)
and 256° (V), for a plunging breaker (S =0.55, Bo =200, Re =40000). (a) Normalized
energy as a function of time. The energy evolution converges with the resolution between
the grid size 512° and 1024%. (b) Time-averaged bubble size distribution N(r). Vertical
dashed lines indicate the minimum grid size for each case. For bubbles larger than the
grid scale, N(r) is unchanged.
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FIGURE 16. (Colour online) Mass (volume) conservation. (a) Time evolution of the
relative error in volume of air and water in the numerical domain, for S =0.55 and the
5123 resolution. The error always remain below 0.01 %. (b) Maximum error for the three
tested resolutions. Error is below 0.001 % in the 10243 case.

observed (Deane & Stokes 2002). The change of the shape of N(r) reported by Deane
& Stokes (2002) and Blenkinsopp & Chaplin (2010) is not clearly observed in our
simulations since the Hinze scale, given by (1.2), ry ~ 0.8 mm is too close to the
size of the mesh for the two higher resolution cases (and is not reached in the low
resolution case). We also have to keep in mind that the expected shape below the
Hinze scale is not completely known since experimental results give different shapes
(see Figure 1) and no theoretical framework exists.

In summary, while the shape around and below the Hinze scale is difficult to
confirm in our simulations due to the resolution, the =™ power law for r > ry is
not affected by the grid resolution we used. Moreover, variations of the total volume
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are within the statistical errors found when investigating various runs with small
perturbations, that are discussed in appendix B.

In conclusion, the observation of N(r) ~r~" with m € [3:3.5] for r > 0.8 mm and
within a bubble cascade inertial subrange is independent of the simulation mesh for
a resolution of 512 or better. Moreover, in the present DNS, using a 512° mesh
equivalent, we are resolving the dissipation in this two-phase turbulent flow. This
validates our choice to work with a 512% equivalent grid.

Finally, we have checked that the errors in mass (and therefore volume) conservation
in both the air and water are not significant. Mass conservation is usually very good in
Gerris simulations as discussed by Popinet (2009). In our simulations, errors in mass
conservation are below 0.01 %, as shown in figure 16. Figure 16(a) shows the relative
error of the volume of air and water as a function of time for a simulation (S =0.55)
with the 512° resolution. The error remains below 0.01% for mass conservation of
both the air and the water. Finally, figure 16(b) shows the maximum error for the
three resolutions tested (256°, 512°, 1024%). As expected, the error decreases when
the resolution is increased, and is always smaller than 0.01 %, becoming as small as
0.001 % in the 1024° cases.

Appendix B. Statistical noise and ensemble average

In this section we present the details of an ensemble average of 6 plunging breakers.
The physical parameters of the simulations are Re =40000 and Bo = 200, as in the
rest of the paper, and the initial slope is S =0.6. As discussed in §2, we introduce
transverse perturbations in the initial conditions to obtain this ensemble of realisations
of the breaking wave. The perturbation of the interface is 1, =a, cos(k,y), with a, < a
and k, € [2: 8]k with the corresponding perturbation in the velocity potential of the
initial third-order Stokes waves.

Figure 17(a) shows the evolution of the total wave energy as a function of time for
the 7 realisations. There are no visible differences between the runs, showing that a
small transverse perturbation has no effect on the global energy budget. Figure 17(b)
shows the time evolution of the instantaneous dissipation rate (averaged over space)
for the different runs. Differences of up to 20 % are observed in the amplitude of the
maximum dissipation, together with small time lags between the runs.

Figure 17(c) shows the time-averaged bubble size distribution for each run
and the ensemble-averaged one. As expected, the scatter around the ensemble
average increases with increasing bubble size and decreasing bubble number density.
Figure 17(d) shows the time evolution of the entrained air. Again, differences appear
between the runs, showing that the transverse perturbations of the breaking wave
influence the air entrainment process. Typical variations of the maximum amount
of air entrained and the total averaged volume of entrained air during the breaking
process can be up to 50%. Note that the runs with higher values of the volume
also correspond to the one with higher values of the dissipation rate. Note that such
variations between multiple runs in laboratory experiments are also to be expected.

Thus, multiple realisations of the same breaking wave numerical experiment show
that the mean dynamical properties of the breaking wave are not too sensitive to
the transverse perturbations and display the accuracy of our simulations. However, as
expected, the use of ensemble-averaged data significantly reduces the statistical noise
in the estimation of the bubble size distribution.
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FIGURE 17. (Colour online) Ensemble-average study of seven runs for a plunging breaker
(§=0.6, Bo=200, Re =40000). (a) Normalized energy as a function of time. There are
no visible differences is the global energy decay for the various perturbations investigated
here. Black dashed lines indicate the ensemble averages in (a,b). (b) Normalized spatially
averaged dissipation rate £(f)/(pAg;) as a of function time. (¢) Time-averaged bubble size
distribution N(r). Black symbols correspond to the ensemble average. Solid line is N(r) x
r~3 and dashed line is N(r) o« r~'%3. (d) Time evolution of the entrained volume of air.

Black symbols correspond to the ensemble average.
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