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Recent field observations and modelling of breaking surface gravity waves suggest
that air-entraining breaking is not sufficiently dissipative of surface gravity waves
to balance the dynamics of wind-wave growth and nonlinear interactions with
dissipation for the shorter gravity waves of O(10) cm wavelength. Theories of
parasitic capillary waves that form at the crest and forward face of shorter steep
gravity waves have shown that the dissipative effects of these waves may be one to
two orders of magnitude greater than the viscous dissipation of the underlying gravity
waves. Thus the parasitic capillaries may provide the required dissipation of the short
wind-generated gravity waves. This has been the subject of speculation and conjecture
in the literature. Using the nonlinear theory of Fedorov & Melville (J. Fluid Mech.,
vol. 354, 1998, pp. 1–42), we show that the dissipation due to the parasitic capillaries
is sufficient to balance the wind input to the short gravity waves over some range
of wave ages and wave slopes. The range of gravity wave lengths on which these
parasitic capillary waves are dynamically significant approximately corresponds to
the range of short gravity waves that Cox & Munk (J. Mar. Res., vol. 13, 1954,
pp. 198–227) found contributed significantly to the mean square slope of the ocean
surface, which they measured to be proportional to the wind speed. Here we show
that the mean square slope predicted by the theory is proportional to the square of
the friction velocity of the wind, u∗2, for small wave slopes, and approximately u∗
for larger slopes.

Key words: capillary waves, surface gravity waves, wind–wave interactions

1. Introduction
The evolution of surface waves can be represented by an equation for the action

spectral density, N(k, θ),

∂N(k, θ)
∂t

+ (cg +U) · ∇N(k, θ)=−∇kT(k, θ)+ Sw −D, (1.1)

with
N = (g/k)1/2F, (1.2)

† Email address for correspondence: kmelville@ucsd.edu
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where F(k, θ) is the energy density, T(k, θ) is the spectral flux of action through the
wavenumber k= (k, θ) by nonlinear wave–wave interactions, cg is the group velocity,
U is the current, Sw is the input from the wind and D is the dissipation due to
breaking or the formation of parasitic capillaries as recognized by Phillips (1985).
Phillips’ paper considered equilibrium models of the wind-wave spectrum in which the
left-hand side of (1.1) is zero. It also introduced a statistical description of breaking
based on Λ(c)dc, the average length of breaking fronts per unit area of ocean surface
moving with velocity in the range (c, c+ dc). This introduction of Λ(c) has prompted
many attempts to measure it (i.e. breaking kinematics) in the field and also the use
of laboratory measurements to quantify a dimensionless breaking strength parameter,
b, defined by

εl = bρwg−1c5, (1.3)

where εl is the rate of wave energy dissipation per unit length of breaking crest, ρw
is the mass density of water and c≡ |c| is the phase speed.

Based on inertial arguments and the measurements of Melville (1994) and Drazen,
Melville & Lenain (2008), which showed that for moderately strong to very strong
breaking waves the breaking strength b∝S5/2, and with the measurements of Banner &
Peirson (2007), Romero, Melville & Kleiss (2012) have shown that, within the scatter
of the data,

b= A(S− S0)
5/2 (1.4)

applies over all the available laboratory data, where S, an external control parameter,
is a characteristic linear slope of a focusing wave group at breaking, A = 0.4 and
S0= 0.08 is a threshold slope. The more recent laboratory data of Grare et al. (2013)
support (1.4), as does the numerical modelling of Deike, Popinet & Melville (2015).

Using field measurements of N(k, θ) and Λ(c) from whitecap kinematics,
computation of the wave–wave interactions and standard models of Sw, Romero
et al. (2012) used a steady version of (1.1) to estimate D. However, it was found
that the dynamics could not be closed at shorter wavelengths, say around 50 cm
and less, with the whitecap-based measurements of Λ(c). Very recently, using stereo
infrared imaging of the ocean surface, Sutherland & Melville (2013) have shown
that non-air-entraining breaking significantly increases Λ(c)dc at small values of c,
consistent with the modelling of Romero et al. (2012), but does not yet reach into
the shorter gravity–capillary wavelengths of O(10) cm and less considered here.

One interpretation of these results is that wave dissipation due to microscale
breaking with no significant air entrainment (Banner & Phillips 1974) may be
dominant at these scales. Such breaking may result from the instability of parasitic
capillary waves generated on the forward faces of short gravity–capillary waves
(Longuet-Higgins 1992; Duncan et al. 1994, 1999; Fedorov, Melville & Rozenberg
1998 (hereafter FMR98); Perlin et al. 1999; Perlin & Schultz 2000; Tsai &
Hung 2010). Even in the absence of breaking, it has been shown that parasitic
capillaries may lead to significantly enhanced damping of longer gravity–capillary
waves (Ruvinsky, Feldstein & Freidman 1991; Longuet-Higgins 1995; Fedorov &
Melville 1998 (hereafter FM98)). Figure 1 shows an image of the ocean surface and
gravity–capillary waves of these O(1–10) cm scales riding on longer waves.

In a study of steady gravity–capillary waves with pressure forcing at the surface and
viscous dissipation in the surface boundary layer, Fedorov & Melville (1998) found
that under sufficiently strong forcing, and hence dissipation, strongly asymmetric
solutions for the wave profile can be found with steep forward faces modulated by
parasitic capillary waves and long upwind surfaces of smaller slope. The dissipation in
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Equilibrium dynamics and statistics of gravity–capillary waves 451

FIGURE 1. (Colour online) Photograph of the sea surface taken from the bow of the R/V
Revelle on the equator at 140◦W in winds of approximately 7 m s−1, on 18 October 2012,
at approximately 1530 local time. The sun is shining from the right-hand side of the scene.
Note the fine-scale structure of the wave field at the surface, especially surface waves of
length O(10) cm. (Photo: Nicholas Statom, Scripps Institution of Oceanography.)

these solutions is predominantly in the neighbourhood of the parasitic capillaries. In
effect, the regions of high surface curvature and vorticity associated with the capillary
waves may provide the dissipation that at longer wavelengths may be afforded by
air-entraining breaking.

Since FM98 and FMR98 there have been laboratory experiments on the dissipation
due to parasitic capillaries by Zhang (2002), who measured the energy dissipation
rate normalized by the linear value and fitted his data with a polynomial to second
order in the wave slope, ak − S0, where S0 = 0.05 is a small offset. Zhang used
Longuet-Higgins’ (1995) theory and the measurements of FMR98 to estimate the
dissipation, but from those data and his own measurements he concluded that
‘for a conclusive estimation of capillary dissipation, a larger number of measured
surface slope profiles are needed’. However, he also noted that the parasitic capillary
wave slopes are dependent on the long (gravity) wave parameters. Tsai & Hung
(2010) conducted direct numerical simulations (DNS) of gravity–capillary waves
and computed normalized energy dissipation rates, which they too fitted with a
polynomial, but this time using the mean slope of all the capillary waves as the
independent variable. However, the detailed measurements of the parasitic capillaries
are notoriously difficult, and they did not collapse their results onto the parameters
of the underlying gravity waves. Since neither Zhang (2002) nor Tsai & Hung (2010)
directly compared their results with those of FM98, it is difficult to compare their
results with this work, which is based on FM98. Nor did they attempt to place their
results in the context of the wind-wave problem.

As far as we are aware, then, no direct predictions have been made to confirm
that the dissipative effects of the parasitic capillaries are sufficient to balance the
observed and predicted growth of the short O(1–10) cm gravity–capillary waves, given
the uncertainties in both. That is the primary aim of this paper. This is one aspect
of the ‘saturation’ problem in the theory of wind-wave modelling. In other words, is
there a rational dissipative process to balance the wind input at these short gravity–
capillary wave scales? We believe that this question can be addressed without the
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452 W. K. Melville and A. V. Fedorov

need to construct a full wind-wave model that includes all the nonlinear processes
that can transfer wave energy to other scales via slow weakly nonlinear three- and
four-wave resonances (see e.g. Janssen 2004). Parasitic capillaries are generated on a
fast time scale as the result of a direct resonance between the gravity and capillary
waves. This paper does not attempt to construct a new semi-empirical wind-wave
model, but rather seeks to determine whether the dissipation due to parasitic capillaries
is significant in the energy balance of the short, O(10) cm, gravity–capillary waves, by
using comparisons with the measured and modelled wind input and with dissipation
due to breaking.

These shorter gravity wave lengths also arise in measurements of the slope statistics
of the sea surface. The classical paper is that of Cox & Munk (1954, hereafter CM54),
who conducted airborne measurements of sun glitter. The location of the glitter relative
to the specular reflection of the sun from a horizontal plane surface is a measure of
the slope of the surface at that point. Hence the slope statistics can be calculated
from images of the sun glitter. CM54 showed that, in wind speeds up to 14 m s−1

(measured 12 m above the surface), the mean square slope (MSS) of the sea surface
is proportional to U, the wind speed at 12 m, and that when covered with an oil slick
the waves shorter than approximately 30 cm are suppressed and the MSS is reduced
by approximately 60 % at a wind speed of 10 m s−1. The MSS results of CM54
in the absence of anthropogenic oil slicks have been confirmed by recent satellite
observations comprising a much larger data set (Bréon & Henriot 2006). In fact, the
MSS results of CM54 are used to tune many wind-wave models and remote-sensing
algorithms of ocean winds and surface processes.

In this paper we use the theory of FM98 to predict the dissipation due to viscosity
in steady surface-pressure-forced equilibrium solutions of gravity–capillary waves that
include parasitic capillaries at stronger forcing and larger underlying wave slopes.
In § 2 the FM98 theory and its numerical solutions are briefly reviewed. In § 3 we
compare the predicted dissipation as a function of wave age and wave slope with the
wind input data collated by Plant (1982), and the modelling of Miles (1959, 1993)
and Yang, Meneveau & Shen (2013). We also consider the dependence of the MSS
of the short gravity–capillary waves on u∗. In § 4 we review and discuss the results,
including the MSS in the predictions of the FM98 model and the measurements of
MSS in CM54.

2. The theoretical model and basic results
2.1. The Fedorov & Melville (1998) theoretical model

The FM98 theory addresses nonlinear steady periodic gravity–capillary waves of
permanent form in a frame of reference travelling with the phase speed c to the
right (c > 0). The approach is classical, with an outer irrotational flow except in a
thin viscous boundary layer at the surface of the fluid. It is also assumed that, to
the leading order, all Fourier components of the wave are damped independently,
a linear damping assumption that neglects higher-order nonlinear dissipative terms.
This is the only linear assumption in the theory – otherwise it is fully nonlinear. An
independent source of energy is required to balance the dissipation and give a steady
solution. This is done with an external sinusoidal pressure force at the surface of the
same wavelength as the basic wave, so higher harmonics of the wave, including any
parasitic ripples, are not directly affected by the forcing.

With these assumptions and approximations, a closed set of equations yields a
parametric description of the two-dimensional surface

X = X(ζ ), Y = Y(ζ ), (2.1a,b)
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Equilibrium dynamics and statistics of gravity–capillary waves 453

or
Z = X + iY, (2.2)

where X and Y are the horizontal and vertical coordinates of the surface, and ζ is the
independent parameter. The full details of the derivation of the theoretical model are
given in FM98 and yield this final formulation.

One must find Zi, such that

Zi = 1
k

(
ζ + i

∞∑
m=1

ame−imζ

)
, ζ ⊂ [0, 2π] (2.3)

and
Ui2

2
+ gY + Γ

R
+ P0

ρw
+ νk

c
∂

∂ζ
Ui2 = E, (2.4)

where

Ui =−c
k
(Zi

ζZ
i∗
ζ )
−1/2, (2.5)

Z = Zi − 2iν
c2k

∫ ζ

0

(
Ui

Ri
−
〈

Ui

Ri

〉)
dζ ′, (2.6)

1
R
=−Im{Zζ ζZ−3/2

ζ Z∗−1/2
ζ }, (2.7)

P0 = P̃0 cos kX, (2.8)

with

X =Re Z −Re Z|ζ=0 and Y = Im Z, (2.9a,b)
1
Ri
=−Im{Zi

ζ ζZ
i−3/2
ζ Zi∗−1/2

ζ } (2.10)

and 〈
Ui

Ri

〉
= 1

2π

∫ 2π

0

Ui

Ri
dζ ′. (2.11)

Here Γ is the surface tension; P0 is the external pressure forcing at the surface
required to balance the wave dissipation; Ui, Zi and Ri are the irrotational component
of the flow velocity on the surface, the complex coordinate of the surface and the
local radius of curvature, respectively; and R is the full radius of curvature of the
surface. Equation (2.3) is the Stokes expansion with the am to be determined; (2.4) is
Bernoulli’s equation with the unknown constant E. When am, c and E are solved for,
Zi is determined from (2.3), Z is calculated and the surface profile is given by (2.1).

The non-dimensional wave amplitude (or ‘characteristic slope’) of the wave of
length λ= 2π/k is given by

ak= [max Y −min Y]k/2, (2.12)

and the non-dimensional amplitude of the pressure forcing is defined by

p= P̃0

ρwc2
0
, (2.13)

where

c0 =
√

g
k
+ Γ k=

√
g
k

√
1+ Bo−1 =

√
g′

k
, (2.14)
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FIGURE 2. Profiles of steady gravity–capillary wave solutions obtained from the model
for: (a) λ= 20 cm, ak= 0.40; (b) λ= 10 cm, ak= 0.375; (c) λ= 7 cm, ak= 0.375; and
(d) λ= 5 cm, ak= 0.375.

is the phase speed of linear gravity–capillary waves, Bo=g/(Γ k2) is the Bond number
and g′ = g(1+ Bo−1) is a modified gravity.

With ρw = 1000 kg m−3, Γ = 73× 10−6 m3 s−2 and ν = 10−6 m2 s−1 all fixed, the
solutions have a parametric dependence on λ, p and ak. The system is discretized with
O(100–1000) points on the interval of ζ from 0 to 2π and solved using Newton’s
method. Examples of solutions for λ= 5, 7, 10 and 20 cm with ak= 0.375 or 0.4 are
shown in figure 2. Note the high curvature in the troughs of the parasitic capillaries,
which is associated with the regions of high vorticity and dissipation. At stronger
forcing, a separate class of solutions was obtained with members not topologically
connected to these solutions, and consisted of small capillary ‘bumps’ separating
longer waves. Details are given in FM98.

2.2. Wave energy, surface pressure work and wave dissipation
The energy density of the surface wave is

EW = EK + EG + ET, (2.15)

where EK , EG and ET are the mean densities of kinetic energy, potential energy due
to gravity and potential energy due to surface tension, respectively. Formulas for
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Equilibrium dynamics and statistics of gravity–capillary waves 455

these variables are given correct to leading order in γ = kδ in FM98, where δ is the
characteristic thickness of the viscous boundary layer in the water, EK is calculated
in the fixed frame, and the average surface elevation Y = λ−1

∫ λ
0 YdX = 0.

The rate of working ĖW per unit area due to the surface pressure is given by

ĖW = c
λ

∫ λ
0

P0 dY = c
λ

∫ λ
0

P̃0 cos(kX)dY, (2.16)

which is balanced by the viscous dissipation of energy in the boundary layer and
includes the effects of the parasitic capillaries when they are generated. Given
this balance, these energy fluxes can be represented by a dimensionless growth or
dissipation rate of energy per wave period of

β = 2π

σ

ĖW

EW
, (2.17)

where σ = kc is the radian frequency.
The momentum flux due to the pressure forcing can also be expressed as a wave-

coherent surface stress defining a friction velocity u∗w:

τw ≡ ρau2
∗w =

1
λ

∫ λ
0

(
P0

dY
dX

)
dX =

〈
P0

dY
dX

〉
, (2.18)

where ρa is the density of the air and 〈· · ·〉 denotes the spatial average. Consequently,

ĖW = cτw = cρau2
∗w. (2.19)

For linear gravity–capillary waves with no parasitic capillaries (Phillips 1977),

ĖW = 2νk3a2ρwc2
0, (2.20)

and equating (2.19) and (2.20) gives

u∗w = ak
√

2
ρw

ρa
c0νk. (2.21)

For weakly nonlinear gravity–capillary waves (Hogan 1980)

EW = 1
2ρwa2g′(1+O(ak)2)= 1

2ρwa2kc2(1+O(ak)2). (2.22)

From (2.20) and (2.22) for linear gravity–capillary waves,

ĖW

EW
= 4νk2 and β = 8πkν

c0
. (2.23a,b)

More generally, from (2.19) and (2.22),

β = 4π
ρa

ρw

(u∗w
c

)2
(

1
ak

)2

(1+O(ak)2) (2.24)

= 4πχ
ρa

ρw

(u∗
c

)2
(

1
ak

)2

(1+O(ak)2), (2.25)

where

χ ≡
(

u∗w
u∗

)2

(2.26)
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456 W. K. Melville and A. V. Fedorov

is the ratio of the wave-coherent momentum flux to the total momentum flux across
the surface. For the numerical results presented here, χ = 1, since the wave-coherent
pressure forcing, which is a part of the solution, is the only momentum flux across
the surface.

Finally, for Y = a cos kX, the mean square slope for linear waves (limited here to
the x component) is given by

s2
x ≡

1
λ

∫ λ
0

(
dY
dX

)2

dX = (ak)2

2
= ρa

4ρw

u2
∗w

c0νk
. (2.27)

2.3. Momentum flux
In (2.18) we introduced the wave-coherent momentum flux, which in this problem is
the total momentum flux across the surface. However, in the laboratory or field
environment, the total momentum flux comprises viscous, wave and turbulent
fluxes, to give a total flux of τ ≡ ρau2

∗, which defines the (total) friction velocity
u∗. To maintain a clear separation between u∗ and u∗w, we defined the ratio of
wave-coherent momentum flux to total momentum flux, χ , with χ 6 1 in general,
while χ = 1 in FM98.

Equation (2.25) for β shows that if the wave age c/u∗ and slope ak are given then
the crux of the wave growth problem resides in predicting χ . Furthermore, if β is to
remain finite, then χ ∝ (ak)2 as ak ↓ 0 in the linear limit. In FM98, u∗ = u∗w is not
given but is a part of the solution to balance the viscous dissipation.

There is another aspect of the momentum flux that needs discussion and that is
the conservation of momentum in FM98. The theory neglects the continuing diffusion
of momentum and vorticity into the interior of the fluid over long times, which is an
O(ε2) effect, where ε is a measure of the wave slope. Thus the theory applies only for
relatively short times. Over much longer times, sufficient for diffusive effects to reach
the full depth, the momentum flux can be balanced by the static pressure differences
in the water associated with the mean slope of the surface over many wavelengths.
This slope tends to zero as the water depth tends to infinity (Donelan et al. 2004).

3. Results
3.1. Balancing wave growth data with dissipation due to parasitic capillaries

The primary aim of this work is to determine whether the dissipation due to parasitic
capillary waves predicted by the FM98 model is sufficient to balance the wind input
to the shorter gravity wave lengths.

Plant’s (1982) collation of both laboratory and field measurements of the
dimensionless rate of wave growth as a function of reciprocal wave age β = β(u∗/c0)
remains the primary collection of laboratory and field data and has been used to
compare with the available theory. However, recently, Yang et al. (2013) have also
predicted β using coupled numerical solutions to the wind-driven boundary layer
in the air and irrotational waves in the water, and their results are also shown in
figures 3 and 4. Figure 3 shows a version of Plant’s collation drawn from Janssen
(2004) and includes the prediction of Miles’ (1959) quasi-laminar model including
viscous stresses for a given Charnock parameter, αCH ≡ gz0/u2

∗ = 0.0144, where z0
is the roughness length in the atmospheric logarithmic boundary layer above the
waves. Miles’ (1993) model results, also shown with the same Charnock parameter,
include the modulation of turbulent Reynolds stresses by the waves. The scatter in
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FIGURE 3. Dimensionless growth rate of wave energy versus the reciprocal wave age,
u∗/c0. Collation of field data (open black symbols) and laboratory data (solid black
symbols and crosses) by Plant (1982) plotted with Miles’ (1959; 1993) theory for a
Charnock constant αCH = 0.0144. See Komen et al. (1994) and Janssen (2004). Also
shown as grey symbols (YMS2013) are the numerical solutions of Yang et al. (2013).

the laboratory data is relatively small, while that in the field data is up to an order
of magnitude, but these are very difficult measurements to make, and Miles’ theories,
which do not account for wave slope effects, appear, within the limits of the scatter,
to span both sets of data.

In figure 4, the results of the FM98 equilibrium theory for the wave growth (2.25),
which is balanced by the viscous dissipation, is plotted as a function of the wavelength
and the reciprocal wave age and slope and overlaid on figure 3 along with the results
of Miles’ (1959, 1993) theories, the latter for two values of αCH . See also the
numerical results of Yang et al. (2013). Miles’ 1993 theory differs from that of
1959 by the addition of the modulation of the turbulent Reynolds stresses by the
wave field, an effect that Miles expected to apply to the longer waves. The FM98
results, which include the computed nonlinear phase speed c, show that as the wave
slope tends to zero the dimensionless growth/dissipation rate approaches the linear
result given by (2.23). As the forcing and slope increase, for the shortest 3 cm
waves the effects of capillary waves quickly become significant, with the dissipation
rate increasing quickly. For the 5 cm waves, there is initially little change in the
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YMS2013

FIGURE 4. Dimensionless growth rate of wave energy versus the reciprocal wave age,
u∗/c0, of figure 3, but now including the predictions of the FM98 theory in colour
according to the slope scale to the right, and Miles’ (1993) model that extends Miles’
(1959) model by including the effects of modulation of turbulent Reynolds stresses by the
waves. Note that c rather than c0 is used for the FM98 results; see text. The values on the
vertical axis, marked in grey rather than colour, correspond to the growth rates for linear
gravity waves without the effects of parasitic capillaries. The grey symbols (YMS2013)
in the main body of the plot are the numerical predictions of Yang et al. (2013) as in
figure 3. Note that for 0.07 < u∗/c < 1 and 0.2 < ak < 0.4 the β predicted by FM98 is
largely within the scatter of the measurements and a factor of approximately 2 of Miles’
(1993) results over this range of wave ages (0.5 < βM93/βFM98 < 2), whereas the results
of Yang et al. (2013) show 0.7<βM93 < 5.5 over the same range of u∗/c; see Discussion
in § 4.

dissipation rate at smaller slopes, again increasing when the effects of the parasitic
capillaries become apparent. Moving to longer gravity waves, there is an initial
decrease in the dissipation rate, reaching a minimum before yet again the increased
dissipation due to the capillary waves takes effect. In general, at the larger slopes
the effects of parasitic capillaries become active, the growth (decay) rate increases
and within the approximate range of slopes, 0.2 < ak < 0.4, the FM98 results are
largely within the range of the measurements. Over that range of slopes and for
0.07 < u∗/c < 2, our model results are on average less than those of Miles (1993)
by a factor of 0.78, and larger than the Yang et al. (2013) results over the available
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range 0.07 < u∗/c < 0.5 by a factor of 1.25. At larger slopes, our results diverge
from the laboratory measurements and Miles’ (1959) predictions but intersect Miles’
(1993) model results.

The implication of the comparison of FM98 with the data is that, for wavelengths
in the range 3 < λ < 20 cm and slopes in the range 0.2 < ak < 0.4, the dissipation
due to the parasitic capillary waves in the FM98 equilibrium model would, to within
a factor of order unity, be sufficient to balance the wind input measurements at these
wavelengths, in agreement with recent numerical model results of wave growth and
dissipation reported in the literature (Yang et al. 2013; Deike et al. 2015). This is
the primary result of this paper.

3.2. Scaling of wave growth and dissipation with wave age and wave slope
Plant’s (1982) figure was constructed in the context of comparison with linear theory,
and therefore any dependence of the data on wave slope is embedded in the scatter
of the data. However, with (2.25), we have a dependence of β on both wave age
and wave slope for weakly nonlinear gravity waves. In figure 5, we plot β versus
4π(ρa/ρw)(u∗/c)2(ak)−2 for the nonlinear FM98 predictions, where c is the phase
speed computed from the theory, not the linear phase speed, c0. From the log–log
plot of figure 5, we see that this relationship gives leading-order scaling across the
whole range of wavelengths, wave ages and wave slopes. However, a linear plot
(figure 6) shows that the normalized differences are of O(ak) over the range of
slopes considered. Again, in figure 6, as in figure 4, we see that the effects of
surface tension become evident at the smaller slopes in the shorter waves, initially
leading to a significant increase in the dissipation and then decreasing as the slope
increases. Figure 6 shows local maxima of the dimensionless dissipation at slopes
of approximately 0.08, 0.22 and 0.28, for λ = 3, 5 and 7 cm, respectively. This is
qualitatively consistent with the local maxima seen in the ratio ET/EW in FM98 (α
in their figures 8 and 11). The significant departure of the results for λ= 3 cm may
be associated with the fact that, for this short wavelength, Bo = 3.06, very close to
the Wilton’s ripple phenomenon, which is expected at Bo= 2, 3, . . . (Hogan 1981).

3.3. The mean square slope

The x component of the mean square slope, s2
x , is shown as a function of u∗ in figure 7.

For values of u∗ 6 0.04 m s−1, s2
x ∝ u2

∗, consistent with the linear theory of (2.27);
however, at larger friction velocities the theory gives results closer to s2

x ∝ u∗. If we
use the drag coefficient measurements of Large & Pond (1981), a friction velocity of
0.04 m s−1 corresponds to U10≈ 1.2 m s−1. Thus according to the results in figure 7,
for wind speeds above about one metre per second, s2

x ∝ u∗.

4. Discussion
The primary aim of this work has been to determine whether the viscous dissipation,

mainly due to parasitic capillary waves, in a steady solution of pressure-forced gravity–
capillary waves of O(1–10) cm wavelength would be sufficient to balance the wind
input at these high wavenumbers in the wind-wave spectrum.

On the basis of the FM98 theory and the wave growth rate data collated by Plant
(1982), and the recent numerical modelling by Yang et al. (2013), the answer is
positive within the scatter of the wave growth data, with the dissipation that balances
the wave growth showing a clear dependence on wave slope as well as the wave age.
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FIGURE 5. Log–log plot of the dimensionless growth rate of wave energy versus the
function of wave age and slope of (2.25), using the computed phase speed c. Over this
range of variables, this function represents the growth rate to leading order.
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FIGURE 6. Linear plot of the data of figure 5 showing that the differences are represented
by a factor of O(ak) over the range of variables considered as the capillary waves and
other nonlinearities, which are not considered in (2.25), take effect.

The agreement also occurs within a factor of O(1) of Miles’ (1959, 1993) theories
for 0.07< u∗/c< 2 and 0.2< ak < 0.4, when using accepted levels of the Charnock
parameter, and within a comparable factor of the results of Yang et al. (2013) over
the available range, 0.07 < u∗/c < 0.5. Given the considerable scatter in the wave
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FIGURE 7. The mean square slope, s2
x , versus u∗ predicted by our model. Note the

agreement with the quadratic dependence of (2.27) for small u∗ and the change of slope
for u∗ > 4× 10−2.

growth data, the considerable differences in the wind input models used in numerical
wind-wave models (Banner & Morison 2010, figure 3) and the fact that the parasitic
capillaries in nature are likely to be unsteady in any frame of reference, it is unlikely
that further evidence demonstrating that parasitic capillaries may be the primary wave
dissipative mechanism at these high wavenumbers will be achieved without DNS of
unsteady wind-forced short waves, and field measurements of gravity–capillary waves.
However, the results of this work are, we believe, strong evidence for the dissipative
role of the parasitic capillaries on short gravity waves. (Recent DNS of breaking
gravity–capillary waves by Deike et al. (2015) are consistent with the dissipation
predicted here.)

In reaching the conclusions above, based largely on figure 4, we have plotted β =
β(u∗/c), with the slope dependence indicated separately by a colour scale. However,
in the FM98 model, all the momentum flux from the air to the water goes into wave
growth, whereas in nature only a fraction of the total momentum flux represented
by u2

∗ goes into the waves, u2
∗w, with the ratio of the latter to the former given by

χ 6 1. In our comparison of the data with the predictions of FM98, χ = 1. In recent
laboratory measurements, Grare et al. (2013, figure 9) find that for 0.2 < ak < 0.35,
comparable to the range of slopes cited above, 0.74 < χ < 1. In our solutions, the
ratio of the maximum phase speed to the linear phase speed in the range of slopes
cited above ranges from 1.02< c/c0< 1.07 for 3< λ< 20 cm. Taking all these effects
into account, the comparison of the wave growth data and Miles’ predictions with our
predictions of dissipation using the FM98 theory would still balance within a factor
of order unity, say an average of 2.2.

In this paper we have used published measurements, Miles’ model of the wind input
and recent numerical wind-wave modelling by Yang et al. (2013) to test whether the
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dissipation due to parasitic capillary waves may be large enough to balance the wind
input to short O(10) cm gravity–capillary waves. However, we can also compare the
dissipation calculated here against that due to wave breaking. Since εl is the breaking
dissipation per unit length of crest (1.3), the breaking dissipation per unit area for
periodic breaking wave trains is just ĖW = εl/λ. It follows from (1.3) and (2.17) that

b= βEWg′ρ−1c−4. (4.1)

In figure 8 we plot b versus ak along with the semi-empirical result of Romero et al.
(2012): (1.4), the ‘breaking curve’. For the shorter wavelengths, λ = 3, 5 and 7 cm,
it appears that the breaking curve provides an upper bound on the FM98 dissipation
results for ak> 0.1; with λ= 7 cm appearing to approach it asymptotically following
the onset of the parasitic capillary effects at ak ≈ 0.2. For λ = 10, 12 and 20 cm,
with the onset of parasitic capillary effects in the range 0.25 < ak < 0.35, there is
a rapid increase of b approaching the breaking curve, but b remains unresolved for
ak > 0.4, the practical limit of our calculations for these longer waves. The results
suggest that the semi-empirical relationship for b obtained by Romero et al. (2012)
and based on Drazen et al. (2008) (see also Pizzo & Melville 2013) may also prove
useful in modelling and bounding the dissipation due to parasitic capillaries (see also
Deike et al. 2015).

In view of the simplicity of (2.25), relating the wave growth rate to the wave
age and wave slope, it is surprising that, with perhaps the exception of the very
recent work by Grare et al. (2013), it has not been previously used to compare
with measurements from both the laboratory and the field. (Equation (2.25) in this
context arose from a discussion with Laurent Grare regarding an earlier version
of Grare et al. (2013) and Townsend (1972).) The derivation of (2.25) assumes
that for weakly nonlinear waves (before the effects of parasitic capillaries become
significant) the wave energy density is quadratic in the wave amplitude a (Hogan
1980), an assumption that will not be true for very large wave slopes. Thus when
plotting β over the full range of slopes in the FM98 theory (figure 5), some small
departure from (2.25) is seen as β ranges over two to three orders of magnitude.
The departures from (2.25) are seen in figure 6 and are generally O(ak) over the
range of wavelengths and slopes studied. It should be noted that the rapid departure
at small slopes for the shorter waves is associated with the development of parasitic
capillaries at smaller slopes of the shorter waves, and, in the case of 3 cm waves,
for which Bo= 3.06, perhaps due to Wilton’s ripple effects.

We also found that, for the largest slopes we were able to compute for each
wavelength, the momentum flux was approximately proportional to the reciprocal of
the wavelength, with u2

∗λ= 0.023± 0.004 m3 s−1 over the six wavelengths considered
in this work; thus stressing the importance of the shorter waves in the momentum flux.

In addition to the dynamics of gravity–capillary waves in equilibrium with the wind
forcing, the FM98 theory predicts the statistical description of the idealized steady
gravity–capillary wave surface. We had anticipated that the theory would offer some
insight into CM54’s field measurements of the correlation between the mean square
slope and the wind speed at 10 m, U10. Figure 7, which shows the MSS versus
u∗, offered some hope when the MSS was approximately proportional to u∗ for the
larger u∗. However, using a logarithmic atmospheric boundary layer with a simple
Charnock relation for the roughness length,

U(z)= u∗
κ

ln
(

z
z0

)
, z0 = αCHu2

∗
g
+ 0.11ν

u∗
, αCH = 0.011, (4.2)
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FIGURE 8. The equivalent breaking parameter b versus ak predicted by the FM98 model.
Also shown is the semi-empirical breaking curve b = 0.4(ak − 0.08)5/2 of Romero et al.
(2012). Note that above ak=0.1, close to the threshold of 0.08, the breaking curve appears
to provide an upper bound on b, especially for the shorter wavelengths.

to estimate U10 (Janssen 2004) gave the results shown in figure 9. Here we plot MSS
versus U10, along with the results of CM54 for the along-wind component of MSS.
With significant scatter, our model results give a linear fit to U10 that is approximately
6.6 times larger than the ‘clean’ surface values of CM54. However, we do not expect
the ocean surface to be uniformly distributed with short gravity–capillary waves of the
kind modelled here. These O(10) cm waves will be generated locally and modulated
by the wind and the longer waves as seen in figure 1.

Are the results of figure 9 inconsistent with CM54 and wind-wave dynamics?
Now the momentum flux, ρau2

∗, is, by definition, momentum per unit time per unit
area. Let us assume that, in order to be consistent with the CM54 measurements
of MSS, including the fact that the waves of wavenumbers greater than say ks
contribute a significant fraction of the MSS, the short gravity–capillary waves
k > ks account for a fraction αs of the total MSS so that longer waves account
for (1− αs) of the total MSS. Furthermore, the model results show that the MSS for
a monochromatic wave representing all k > ks would be greater by a factor γs > 1
than CM54 (cf. figure 9). The implication is that agreement with CM54 on the MSS
could be accomplished by the short waves covering a fraction of the surface equal
to αs/γs with an average momentum flux over that area of ρau2

∗. The full surface
area is covered by the longer waves that are subject now to an average momentum
flux ρau2

∗(1− αs/γs). Thus the total average momentum flux (wind input) to the wave
field is still ρau2

∗(αs/γs + 1 − αs/γs) = ρau2
∗. This and other variants of this simple

momentum budget demonstrate that, in the absence of a full wind-wave model, the
MSS results of this paper do not fully constrain the dynamics. A full numerical
wind-wave model, especially at these higher wavenumbers, would require nonlinear
wave–wave interactions, gustiness of the wind, wave modulation and breaking. As
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FIGURE 9. Model predictions of the along-wind component of MSS versus U10 computed
using (4.2), and assuming the entire surface is covered by gravity–capillary waves for each
wavelength, along with the CM54 data.

far as we are aware, such models typically use the CM54 results to tune the model
parameters, with the result that there is no independent prediction of the CM54
results (Munk 2009). However, if the equilibrium growth–dissipation regime of these
short gravity capillary waves is confirmed by measurements, then the FM98 theory
could be used to predict the surface coverage of the high-wavenumber, high-slope
wave components consistent with the MSS results of CM54 and potential future
measurements.

We expect that the steady solutions, which have been used here to estimate the
dissipation in these short gravity–capillary waves, will in nature become unsteady,
leading to microbreaking and turbulence. Prompted in part by this work, very
recently Deike et al. (2015) have conducted DNS of periodic wave breaking in two
dimensions in wave regimes that extend from air-entraining breaking to non-breaking
gravity–capillary waves, showing significant agreement with this work, especially in
the predictions of the breaking parameter b.

It still remains to conduct wind-forced DNS modelling of waves in the gravity–
capillary wave range. In anticipation of this possibility, in Fedorov & Melville (2009)
we developed a two-layer model of the strongly forced surface layer, with a thin
turbulent boundary layer over the underlying irrotational waves. This model leads to
instabilities that develop with very steep streamwise gradients in the wave profile, or
‘breaking’, supporting dissipation and mixing in the thin surface layer. Together, these
studies suggest the importance of undertaking DNS of these unsteady wind-forced
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small-scale phenomena, which lie at the heart of an improved understanding of the
fluid dynamics of air–sea interaction, air–sea fluxes and their measurement by remote
sensing of the ocean surface.
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