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ABSTRACT

A semiempirical determination of the spectral dependence of the energy dissipation due to surface wave

breaking is presented and then used to propose a model for the spectral dependence of the breaking strength

parameter b, defined in the O. M. Phillips’s statistical formulation of wave breaking dynamics. The deter-

mination of the spectral dissipation is based on closing the radiative transport equation for fetch-limited waves,

measured in the Gulf of Tehuantepec Experiment, by using the measured evolution of the directional spectra

with fetch, computations of the four-wave resonant interactions, and three models of the wind input source

function. The spectral dependence of the breaking strength is determined from the Kleiss and Melville mea-

surements of the breaking statistics and the semiempirical spectral energy dissipation, resulting in b 5 b(k, cp/u
*

),

where k is the wavenumber and the parametric dependence is on the wave age, cp/u
*

. Guided by these semi-

empirical results, a model for b(k, cp/u
*

) is proposed that uses laboratory data from a variety of sources, which

can be represented by b 5 a(S 2 S0)
n, where S is a measure of the wave slope at breaking, a is a constant, S0 is

a threshold slope for breaking, and 2.5 , n , 3 is a power law consistent with inertial wave dissipation scaling and

laboratory measurements. The relationship between b(S) in the laboratory and b(k) in the field is based on the

relationship between the saturation and mean square slope of the wave field. The results are discussed in the

context of wind wave modeling and improved measurements of breaking in the field.

1. Introduction

Breaking wind waves play an important role in air–sea

interaction processes including the exchange of energy,

momentum, heat, and gases between the ocean and the

atmosphere; mixing of the upper ocean and aerosol

production (Melville 1996). Many of the present pa-

rameterizations of air–sea fluxes rely on empirical re-

lationships of the fractional whitecap coverage versus

the wind speed, typically referenced to 10 m above mean

sea level (U10), without information about the wind wave

spectrum or the spectral energy dissipation.

Recent advances in image-processing techniques, using

digitally acquired images of breaking waves, have allowed

the visual detection and quantification of the length and

velocity of breaking fronts, providing estimates of

Phillips’ (1985) L(c), the length of breaking fronts with

velocities in the range (c, c 1 dc) per unit surface area.

See, for example, Melville and Matusov (2002, hereafter

MM); Gemmrich et al. (2008); Thomson et al. (2009);

and more recently, for the Gulf of Tehuantepec Exper-

iment (GOTEX), Kleiss and Melville (2010, 2011).

Following Phillips, the first, fourth, and fifth moments

of L(c) are proportional to the breaking rate, wave

momentum flux lost to the upper-ocean surface currents,

and energy lost from the wave field due to wave

breaking. As shown by Kleiss and Melville (2010), the

second moment can be related to the active whitecap

coverage, which is the fractional area covered by ac-

tively breaking waves. Thus, L(c) and its moments

provide a framework to relate the energy and momen-

tum balances to the breaking rate and active whitecap

coverage, which would allow present numerical wind

wave models to predict the wave breaking statistics

more accurately than the traditional parameterizations

that depend on U10 and, in some cases, air–sea temper-

ature differences.
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Specifically, the spectral energy dissipation is related to

the fifth moment of L(c) by

rwgSds(c) dc 5 rw

b

g
L(c)c5 dc, (1)

where rw is the density of water; g is gravity; Sds(c) is the

wave energy dissipation; c and c are the wave phase

velocity and speed, respectively; and b is the dimension-

less breaking parameter, which is a measure of the

strength of breaking and was initially measured in lab-

oratory experiments (Melville 1994). Figure 1 shows the

data from several laboratory measurements (Melville

1994; Banner and Peirson 2007; Drazen et al. 2008)

showing b as a function of S, where S is the predicted

maximum linear slope of focusing wave packets (Drazen

et al. 2008). The data show that b is not constant, varying

by more than three orders of magnitude, ranging between

8 3 1025 and 9 3 1022 for gently spilling to plunging

waves.

In this study a semiempirical model of the spectral

energy dissipation is presented. The model follows Phillips

(1985), by solving for the spectral dissipation from the

energy balance—in this case using novel airborne obser-

vations of winds and waves in fetch-limited conditions,

collected during GOTEX (Melville et al. 2005; Romero

and Melville 2010a), three parameterizations of the wind

input, and ‘‘exact’’ computations of the nonlinear energy

transfer due to four-wave resonant interactions. The

model dissipation and the measurements of L(c) (Kleiss

and Melville 2010) are used to calculate and model a

spectral function b(k) that characterizes the strength of

wave breaking across the spectrum. Section 2 provides

background information. Section 3 describes the semi-

empirical model and presents the spectral breaking

parameter b(k). In section 4 two models of b(k) are

proposed and fitted to the data. In section 5 the results are

discussed, and the conclusions are given in section 6.

2. Background

This study is concerned with the spectral energy dissi-

pation of fetch-limited deep-water waves due to break-

ing. Neglecting any gradients of the surface currents, the

evolution of the directional spectrum F(k, u) is described

through the radiative transport equation:

›F(k, u)

›t
1 (cg 1 uc) � $F(k, u) 5 Sin 1 Snl 1 Sds, (2)

where F(k, u) is defined such that hh2i5
Ð

F(k, u)k dk du,

h being the sea surface displacement with the angle

brackets representing a spatial average; c
g

is the group

velocity, u
c

is the surface current velocity; and Sin, Snl,

and Sds correspond to the wind input, nonlinear energy

transfer, and energy dissipation, respectively. In sta-

tionary fetch-limited conditions, Eq. (2) becomes

(cg 1 uc) � $F(k, u) 5 Sin 1 Snl 1 Sds. (3)

The wind input Sin has been studied extensively both

theoretically and empirically from both laboratory and

field observations. Miles (1957, 1959) provided a theory

describing the generation of waves by wind due to shear-

flow instability. The theory predicts a small phase shift

between the surface pressure and the surface elevation

resulting in a transfer of energy and momentum corre-

sponding to hp ›h/›xi c and hp ›h/›xi, respectively. Here

the angle brackets correspond to a wave phase average,

p is the pressure at the surface h, and x is the wind

direction.

FIG. 1. Laboratory observations of the breaking parameter b as

a function of the predicted linear maximum slope S of the focusing

wave packet. The data by Banner and Peirson (2007) are shown with

circles and pluses. The open diamonds show the data from Melville

(1994) using results from earlier experiments at the Massachusetts

Institute of Technology. The black and gray triangles (DML) are the

data in Drazen et al. (2008) from experiments conducted at Scripps

Institution of Oceanography (SIO) and Tainan Hydraulics Labo-

ratory (THL), Taiwan, respectively. The bar shows the average error

of the field data for b(k) shown in Fig. 14. The dashed and solid lines

are given by Eqs. (23) and (24).
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Plant (1982) collated the available wind wave growth-

rate observations from the literature and provided an

empirical fit to the growth rate parameter g, defined by

g [ Sin(k, uw)/F(k, uw), (4)

where uw is the wind direction. Subsequently, Janssen

(1989, 1991) derived an extension to the Miles theory

with a quasi-linear theory that couples the waves and the

mean airflow by allowing modifications of the mean

wind profile due to wave-induced velocity and pressure

fluctuations.

The nonlinear energy transfer due to four-wave reso-

nant interactions has been known in analytical form since

the work by Hasselmann (1962, 1963) and Zakharov and

Filonenko (1967). It is characterized by a direct and an

inverse cascade of energy toward both higher and lower

wavenumbers, respectively. As shown by Young and van

Vledder (1993), the nonlinear energy transfer due to four-

wave resonant interactions plays an important role in the

evolution of the wind wave spectrum downshifting the peak

wavenumber and controlling the directional spreading.

In the past, owing to the lack of information about its

form, the dissipation function due to wave breaking used

in numerical wind wave models has served as the tuning

knob to match numerical models to observations. The

traditional approach is due to Komen et al. (1984), where

the dissipation function is formulated from physical argu-

ments and a few free parameters that are tuned, by trial

and error, against field observations under idealized

conditions. However, more recent studies (Banner and

Morison 2010) have constrained some of the whitecapping

parameters based on observations of breaking waves in

the field (Banner et al. 2000, 2002). In the present study,

the spectral dissipation Sds is solved as a residual from all

other terms in Eq. (3) according to

Sds(k) 5 Sad 2 Sin(k) 2 Snl(k), (5)

where Sad is the advective term on the left-hand side of

Eq. (3). The right-hand side of Eq. (5) is calculated using

the measured directional wavenumber spectra, their

spatial gradients, turbulent fluxes from GOTEX, several

parameterizations of Sin, and exact computations of the

nonlinear energy transfer due to four-wave resonant

interactions. The stationarity assumption in Eq. (5) for

this study is justified by the fact that the GOTEX data

were shown to agree with the classical fetch relations

(Romero and Melville 2010a), which supports the as-

sumption that the data were collected under approxi-

mately stationary fetch-limited conditions.

Since the GOTEX observations did not collect surface

current data, in this study wave energy advection is

approximated by S
ad

5 c
g
� $F(k, u). The data used for

this study were collected at short fetches and within the

core of the wind jet; thus, it is expected that the surface

currents are locally homogeneous and purely wind driven.

The uncertainty of Sad associated with the lack of surface

current data is described and quantified in appendix B,

neglecting any horizontal current gradients. This is justi-

fied by the measurements of the sea surface temperature

(SST) in the sampling area of this study, which showed

very weak SST gradients, suggesting that the horizontal

shear of the surface currents is small. However, as dis-

cussed in Melville et al. (2005), the observed whitecap

coverage near sharp SST fronts showed substantial

variability over short spatial scales. Thus, it is important

for future field studies of wave breaking near fronts to

have good information about the underlying surface

currents with good spatial resolution.

Some of the earliest studies of the energy dissipation

due to wave breaking are by Duncan (1981, 1983). He

performed laboratory experiments with quasi-steady

breakers created by a submerged hydrofoil and showed

that the energy dissipation rate per unit length �l scaled

according to

�l 5
brwc5

g
, (6)

where b is the empirical breaking parameter, rw is the

density of water, g is gravity, and c is the wave phase

speed. However, this scaling is already implicit in the

scaling of the wave making power of a submerged cyl-

inder moving orthogonally to its axis (Lighthill 1978, p.

459). Phillips (1985) developed a model for the equi-

librium part of the spectrum of wind-generated waves

and assumed that b was a constant in order to infer the

wave breaking statistics from Eq. (1). Other recent

studies have estimated b from the field observations

by assuming that b is a constant across the spectrum

(Phillips et al. 2001; Gemmrich et al. 2008). However,

as shown by the nondimensional scaling in Melville

(1994) and recent laboratory experiments by Banner and

Peirson (2007) and Drazen et al. (2008), the breaking

parameter b is not constant. Its magnitude depends on

the wave slope and the bandwidth of the focusing packet

or on the rate of energy convergence at the center of

the breaking wave group (Banner and Peirson 2007). As

shown in Fig. 1, the magnitude of b can vary over three

orders of magnitude. Thus, it is expected that b is not

a constant across the wind wave spectrum but rather a

spectral function b(k), with a parametric dependence on

wave slope, wave age, and other parameters character-

izing the wave field. The recent model by Banner and

Morison (2010) also recognized the dependence of b on
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the scale of the waves, but their predictions of b were

limited to the peak of the spectrum, namely, b(kp).

3. The semiempirical model

The Gulf of Tehuantepec Experiment in February

2004 collected airborne measurements of waves and

wind in strong offshore wind conditions. The instruments

included the Airborne Topographic Mapper (ATM),

which is a conical scanning lidar to measure the sea sur-

face displacement as a function of two horizontal dimen-

sions and time, a fixed lidar (Riegl) to measure the surface

displacement along a single cut through the wave field,

video imagery of the sea surface to detect and measure

the kinematics and length of breaking fronts (Kleiss and

Melville 2010, 2011), and a high-frequency radome

pressure sensor array to measure the turbulent atmo-

spheric fluxes (Romero and Melville 2010a).

The ATM measurements provided two-dimensional

wavenumber spectra with an upper wavenumber limit

km 5 0.35 rad m21, before reaching the noise floor

(Romero and Melville 2010a). However, the fixed li-

dar measurements provided orthogonal one-dimensional

wavenumber k1 and k2 spectra with k1 approximately

aligned with the local winds, covering a wider range

of wavenumbers, with an upper wavenumber limit of

2 rad m21. The fixed lidar measurements showed that

at sufficiently high wavenumbers the directional spec-

trum is consistent with an isotropic form with F(k, u) ’

Bp21k24, and the proportionality constant B showed little

or no dependence on the external forcing, in good agree-

ment with the observations by Banner et al. (1989) at much

higher wavenumbers.1 To close the energy equation

[Eq. (3)] and momentum budgets, as well as to compute

the nonlinear energy fluxes due to four-wave resonant

interactions, the measured directional spectra were ex-

trapolated to large wavenumbers with an upper limit of

20 rad m21, as described below.

a. Spectral grid and extrapolation

The algorithm used to calculate the nonlinear energy

transfer due to four-wave resonant interactions, de-

veloped by Resio and Perrie (1991), requires a polar grid

with a constant bandwidth, such that dk/k 5 const,

where dk corresponds to the wavenumber resolution

of the spectral grid. In this study, the measured ATM

spectra were interpolated on a polar grid with a di-

rectional resolution of 4.68 and dk/k 5 0.0679 with ex-

trapolation to higher wavenumbers matching both the

fixed lidar data at intermediate wavenumbers and the

Banner et al. (1989) data at larger wavenumbers.

The measured directional wavenumber spectra were

extrapolated toward large wavenumbers with two power

laws: k23.5 and k24 at intermediate and large wave-

numbers, respectively. At intermediate scales, for km ,

k , kt(u), F(k, u) 5 F(km, u)(k/km)23:5, where kt(u) is the

wavenumber at which the intermediate wavenumber

extrapolation of the spectrum matches the constant

saturation regime for which F(k, u) 5 Bp21k24. Before

and after interpolation and extrapolation of the spec-

trum on a polar grid, it was smoothed to minimize the

spectral uncertainty, as described in appendix A.

Figure 2 shows an example of the measured directional

wavenumber spectrum F(k, u) with extrapolation to

20 rad m21, with the solid black line indicating the upper

FIG. 2. Sample directional wavenumber spectrum F(k, u) with

extrapolated tail at large wavenumbers and u 5 08 corresponding to

the direction of the spectral peak. The data were collected during

research flight 7 at 15.938N, 93.138W during GOTEX. The local

wave age cp/u
*

5 13. The solid black line indicates the upper

wavenumber limit of the ATM data. The black dashed lines show

k 5 1 3 1021, 1 3 108, and 1 3 101 rad m21.

1 The one-dimensional wavenumber spectra parallel to wind

direction reported in MM, extending to about 3 rad m21, is in ex-

cellent agreement with the GOTEX observations (after correcting

a processing error of a factor of 2 in MM; see Romero and Melville

2010a), partially filling the gap between the GOTEX observations

and Banner et al. (1989).
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wavenumber cutoff of the measured ATM directional

spectrum. There is a smooth transition in the directional

distribution from anisotropy, around the spectral peak, to

isotropy at large wavenumbers. The same spectrum when

integrated in azimuth f(k) 5
Ð

F(k, u)k du yields the

omnidirectional spectrum shown in Fig. 3. The integrated

spectrum also shows a smooth transition between the

measured ATM directional spectrum and the extrapo-

lation to large wavenumbers, matching the fixed lidar

measurements at intermediate wavenumbers, as well as

the observations by Banner et al. at very large wave-

numbers. The tail of the composite spectrum can be

described by two power laws, k22.5 and k23 at inter-

mediate and large wavenumbers, respectively.

The azimuth-integrated saturation spectrum defined by

B(k) [

ð
F(k)k4 du (7)

for all composite spectra is shown in Fig. 4a, with the

curves color coded according to the wave age cp/u
*
, where

cp is the wave phase speed at the spectral peak kp and u
*

is

the friction velocity. The B(k) distributions show a smooth

transition toward the constant saturation regime at large

wavenumbers. Figure 4b shows the directional spreading

su(k), following Banner and Young (1994), defined by

s
u
(k) [

ðp/2

p/2
F(k, u)jujk duðp/2

2p/2
F(k, u) du

, (8)

where u 5 0 corresponds to the dominant wave direction.

The su(k) curves are narrowest near the spectral peak

and are mostly smooth with small kinks at intermediate

FIG. 3. The solid black line shows a sample omnidirectional spec-

trum f(k) 5
Ð

F(k)k du with extrapolated tail matching the fixed lidar

measurements (dark gray line) and the video stereo observations by

Banner et al. (1989) (dark gray dashed line). The light gray dashed line

is a reference power law of k22.5. The fixed lidar data show the mean

level and standard deviation of the saturation spectrum approximated

by an isotropic assumption as u(k) 5 Bk23 ’ k23(B1 1 B2)/2 with

B1 and B2 corresponding to the mean saturation in the down wind

and crosswind directions, respectively (Romero and Melville 2010a).

The data were collected during research flight 7 at 15.938N, 95.138W.

The local wave age cp/u
*

5 13. The vertical dotted line indicates the

upper limit of the ATM data.

FIG. 4. (a) Azimuth-integrated saturation spectrum B(k) 5Ð
F(k)k4 du. (b) Directional spreading su defined in Eq. (8). (c)

Normalized saturation ~B(k) 5 B/s
u
. The curves are color coded

according to the wave age cp/u
*

, where cp is the wave phase speed

corresponding to the wavenumber at the spectral peak kp and u
*

is

the friction velocity.
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wavenumbers due to the extrapolation to the high

wavenumber tail of F(k, u). Finally, Fig. 4c shows a

function introduced by Banner et al. (2002) for the

characterization of wave breaking, namely, the nor-

malized saturation ~B(k) defined by

~B(k) [
B(k)

s
u
(k)

. (9)

Notice that ~B(k) is enhanced near the spectral peak kp

when compared to B(k).

b. Wave energy advection

In this study, the wave energy advection Sad 5 cg � $F

is approximated by

Sad ’ cg cos(u)
›F(k, u)

›x
, (10)

where u 5 0 corresponds to the dominant wave direction

and x is the horizontal distance along the flight track.

Equation (10) is based on the assumption that the di-

vergence of energy in the cross-dominant-wave direction

is negligible when compared to that in the direction of the

dominant waves. This assumption was verified using the

numerical simulations of wind wave spectra in GOTEX

by Romero and Melville (2010b). The simulations suggest

that the approximation in Eq. (10) holds only for the

measurements collected near the core of the wind jet

and within 100 km of the coast.

Of all measurements from research flights 05, 07, and

10 during GOTEX (Romero and Melville 2010a), there is

a total of 16 pairs of measured spectra captured sequen-

tially along the wind jet with a spatial separation of 5–

24 km, which, as suggested by the numerical simulations,

would satisfy the approximation in Eq. (10). For each of

these pairs of measured spectra, Sad was calculated along

the dominant wave direction by

Sad 5 cg cos(u 2 up)
F2(k, u) 2 F1(k, u)

R/cos(uR 2 up)
, (11)

where F1(k, u) and F2(k, u) correspond to the upwind

and downwind spectra, respectively; up is the dominant

wave direction; and R and uR are the displacement and

direction, respectively, between each pair of spectra.

c. Nonlinear energy fluxes

The nonlinear energy fluxes due to four-wave resonant

interactions Snl were computed with an exact method,

Webb–Resio–Tracy (WRT) by Tracy and Resio (1982),

which is based on the work by Webb (1978). Specifically,

Snl was calculated with the subroutines by van Vledder

(2006), who rewrote the WRT method and implemented

it in various numerical wind wave models [e.g.,

WAVEWATCH III and Simulating Waves Nearshore

(SWAN)].

d. Wind input and stress partition

The wind input function Sin is calculated from the di-

rectional spectra and the measured friction velocity u
*

using

the parameterizations by Snyder et al. (1981) and Janssen

(1991) and a modification to Janssen’s wind input that,

motivated by the work of Chen and Belcher (2000), in-

cludes a reduction of the forcing at large wavenumbers due

to sheltering induced by the longer waves. As discussed in

Romero and Melville (2010a), the calculated profiles of the

wind stress reported by Friehe et al. (2006) gave nonzero

vertical flux divergence at short fetches, which approximat-

ed by a linear relationship suggest an underestimation of

the stress by 10%, with an error due to scatter of the data of

about 35%. At fetches of 230 km or larger, the data showed

negligible vertical flux divergence and scatter of about 1%.

Since the data analyzed in this study corresponds to the

measurements at short fetches, both the 10-m wind speed

and the wind stresses are corrected with a 10% increment

in order to account for the observed wind stress divergence.

The empirical wind input function by Snyder et al.

(1981) was originally given as a function of the wind

speed referenced at 5 m above mean sea level (MSL).

Subsequently, the WAMDI Group (1988) adopted the

following form of Snyder’s wind input in terms of u
*
:

Sin(k, u) 5 max

�
0, 0:25

ra

rw

28u*
c

cosuw 2 1

� �
vF(k, u)

�
,

(12)

where ra and rw are the density of air and water, c is the

wave speed according to the linear dispersion relation-

ship, and uw is the angle between the wind vector and the

wave propagation direction.

The wind input by Janssen (1989, 1991) is given by

Sin(k, u) 5
ra

rw

b
u*
c

cosuw

� �
2

vF(k, u), (13)

where the Miles parameter b 5 (b
m

/u*)m ln4m with

bm 5 1.2,

m 5
u*
kc

� �
2

Vm exp
kc

u* cosuw

 !
# 1, (14)

and Vm 5 kgzo/u
*

in which k 5 0.4 is von Kármán’s

constant and zo is the roughness length in the air. In this

study, zo is defined by

zo 5
ât

rag

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ztw/t

p , (15)
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where â 5 0:01 and z 5 1 are dimensionless constants,

t 5 r
a
u2

* is the total stress, and tw is the wave-induced

stress (i.e., the form drag in the absence of wave breaking)

given by

tw [ rwg

ð
cos(uw)

Sin(k)

c
dk. (16)

Janssen’s (1991) wind input formulation from Eqs. (13)–

(16) was calculated iteratively for each spectrum as out-

lined in the following steps. 1) The roughness length is

estimated by zo 5 exp(2U10k/u
*
)10, where U10 is the wind

speed referenced to 10 m MSL as described in Romero

and Melville (2010a); 2) Sin is calculated from the di-

rectional spectrum and the corresponding measurement of

u
*

with Eqs. (13) and (14); 3) tw and zo are calculated from

Eqs. (16) and (15), respectively; and 4) steps 2 and 3 are

repeated up to 10 times to ensure a proper convergence,

which was typically achieved in less than four iterations.

The third wind input formulation considered for this

study is based on the work by Makin and Kudryavtsev

(1999), followed by Chen and Belcher (2000) and Hara

and Belcher (2002), in which the longer waves induce a

sheltering on the growth of the spectrum at large wave-

numbers. Following the approach by Banner and Morison

(2010), the sheltering friction velocity us
*(k) is defined by

us
*(k) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t

ra

2
rw

ra

g

ð2p

0

ðk

k
l

cos(uw)
Sin(k)

c
dk

s
, (17)

where kl corresponds to the lowest wavenumber re-

solved, and Sin is given by

Sin(k, u) 5
ra

rw

b

"
us

*(k)

c
cosuw

#2
vF(k, u), (18)

corresponding to Janssen’s (1991) wind input with added

sheltering at large wavenumbers. Note that Eq. (17) differs

from that used by Banner and Morison (2010) as it neglects

momentum flux induced by wave breaking. The momen-

tum flux supported by separated flow over breaking waves

is poorly understood. Recent models (Kudryavtsev and

Makin 2007; Mueller and Veron 2009) suggest that it ac-

counts for about 20%–40% of the total momentum flux at

wind speeds between 15 and 18 m s21, corresponding to

the range of wind speeds observed in the data used in this

study (see Fig. 18).

Equation (18) was calculated iteratively according to

the following steps. 1) It is first assumed that us
*(k) 5

u* and the roughness length is estimated by zo 5

exp(2U10k/u
*
)10; 2) Sin is calculated from the directional

spectrum and us
*(k) 5 u* through Eqs. (18) and (14); 3)

tw and zo are calculated from Eqs. (16) and (15); 4)

us
*(k) is calculated from Eq. (17); and 5) steps 2–4 are

repeated up to 100 times to ensure a reasonable con-

vergence, which was typically achieved in less than 30 it-

erations. The procedure described above was carried out

using the same parameters as given for Eq. (13).

Figure 5 shows the dimensionless growth rate g/f as

a function of u
*
/c, where g 5 Sin(k, uw)/F(k, uw), with

Sin(k, uw) and F(k, uw) corresponding to the component of

the wind input and energy spectra, respectively, in the di-

rection of the wind uw and f and c are the wave frequency

in Hz and phase speed, respectively, according to the linear

dispersion relationship. The light gray, gray, and dark gray

lines correspond to Snyder et al. (1981), Janssen (1991),

and Janssen’s sheltered wind input [Eq. (18)], respectively.

The data shown in black symbols correspond to the data

FIG. 5. Dimensionless growth rate g/f as a function of u
*

/c, where

g 5 Sin(k, uw)/F(k, uw), with Sin(k, uw) and F(k, uw) corresponding

to the component of the wind input and the energy spectrum, re-

spectively, in the direction of the wind uw, and f and c are the wave

frequency (Hz) and phase speed according to the linear dispersion

relationship. The light gray, gray, and dark gray lines correspond to

Snyder et al. (1981), Janssen (1991), and Janssen’s sheltered wind

input [Eq. (18)], respectively. The symbols show the gravity wave

growth data collated by Plant (1982), where both the circles and

squares show the field measurements by Snyder et al., whereas the

triangles and crosses are the laboratory observations by Shemdin

and Hsu (1967) and Wu et al. (1979, 1977), respectively. For error

comparison, the bar shows the average error of the data on the

strength of breaking b shown in Fig. 14.
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collated by Plant (1982), which includes both field and

laboratory observations of surface gravity waves.

The parameterization by Janssen gives the lowest

forcing for weakly forced waves and the largest growth

rate for strongly forced waves. The Snyder forcing is

larger than Janssen’s for weakly forced waves but much

lower than the available data for strongly forced waves.

The modification to Janssen’s wind input with sheltering

at large wavenumbers gave nearly identical results to the

original formula without sheltering near the peak with

a reduction for the strongly forced or short waves.

The fraction of wave-induced momentum flux tw to

the total stress t as a function of the wave age is shown

in Fig. 6. The wave-induced momentum flux from the

Snyder wind input is in close agreement with the mo-

mentum flux due to Janssen’s sheltered wind input, being

approximately constant at about 50% of the total wind

stress.2 In contrast, the wind input by Janssen (1991) gives

larger values of tw and shows a weak reduction of tw/t

with increasing wave wage. This trend contrasts with the

model results by Banner and Morison (2010) at lower

wind speed (12 m s21). Their results give a weak increase

of tw/t with increasing wave age, as shown in Fig. 6 with

a solid black line.

e. Spectral energy dissipation

From the spectral energy balance in Eq. (5) three sets

of spectral dissipation were calculated from the data,

FIG. 6. Ratio of wave-induced momentum flux tw to total wind

stress ttot as a function of the local wave age cp/u
*

. The stars, di-

amonds, and triangles correspond to Snyder et al. (1981), Janssen

(1991), and Janssen’s sheltered wind input [Eq. (18)], respectively.

The solid line corresponds to the modeling results by Banner and

Morison (2010), with U10 converted into u
*

using the drag co-

efficient from Large and Pond (1982).

FIG. 7. Sample spectral energy balances at different stages of de-

velopment. The wave energy advection Sad, nonlinear energy fluxes

Snl, and wind input Sin are shown with solid black, gray, light gray

curves, respectively, and the dissipation Sds is shown with black dashed

lines. The wind input and model dissipation shown by the thin and thick

lines correspond to the wind input by Janssen (1991) and Snyder et al.

(1981), respectively: (a) cp/u
*

5 11 in research flight 05, (b) cp/u
*

5 14

in research flight 07, and (c) cp/u
*

5 17 in research flight 10.

2 The ratio tw / ttot reported in Romero and Melville (2010b, Fig.

A5) had a scaling error by a factor of 1.56. After correcting this

factor, the numerical simulations with the wind input by Snyder

(1981) give values slightly larger than those obtained in this study,

while the simulations with Yan’s (1987) wind input give tw / ttot near

unity for the younger waves and approaching 0.8 for older seas.
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each corresponding to a different parameterization of

Sin. Figure 7 shows three examples of the spectral energy

balance near the spectral peak at different stages of

development, with Figs. 7a–c corresponding to cp/u
*

5

11, 14, and 17. The wave energy advection Sad, nonlinear

energy fluxes Snl, and wind input Sin are shown with solid

black, gray, and light gray curves, respectively, and the

dissipation Sds is shown with black dashed lines. The wind

input and respective dissipation, shown with thin and

thick lines, correspond to the semiempirical model with

the wind input by Janssen (1991) and Snyder et al. (1981),

respectively. Figure 7 shows that all four terms, Sad, Sin,

Sds, and Snl, play significant roles in the energy balance.

The nonlinear transfers Snl show the typical three-lobe

structure, being negative at intermediate wavenumbers

and positive at both low and large wavenumbers.

The calculated wave energy dissipation is based on the

balance of the energy transport equation. It is expected

that this will correlate with the rate of viscous energy

dissipation underneath the breaking waves, reflected in

the inertial subrange of turbulence, but equality would

only be a special case (cf. Banner and Morison 2010) in an

equilibrium situation where the breaking waves are no

longer doing work to accelerate the underlying surface

currents. Thus, the total breaking wave dissipation may be

proportional, but not necessarily equal, to the dissipation

rates of turbulence in the water column near the surface.

Since the GOTEX observations did not collect in situ

measurements of the energy dissipation, the calculated

energy dissipation is compared against the data reported in

Thomson et al. (2009) from measurements collected in

winds up to 15 m s21, slightly below the range of wind

speeds reported in this study. Figure 8 shows the total dis-

sipation versus the significant slope. This study’s estimates

of the dissipation are consistent in magnitude with and show

similar variability to that reported by Thomson et al. (2009).

f. Statistics of breaking fronts

Kleiss and Melville (2010) present an analysis of airborne

visible video images collected during GOTEX. The video

imagery combined with data from the global positioning

system (GPS) and an inertial motion unit (IMU) were used

to quantify the kinematics and lengths of breakers yielding

L(cbr), where cbr is the speed of breaking. In Kleiss and

Melville (2010) the measurements of L(cbr) and its mo-

ments were analyzed in detail, including its relationship to

environmental parameters such as U10 and u
*

and wave

information such as the wave age and wave slope.

Figure 9a shows the azimuth-integrated L(cbr) 5Ð
L(cbr, u)cbr du distributions by Kleiss and Melville (2010)

that overlap with the spectra being analyzed in this study.

The elemental breaking speed is observed as a function

of space and time, with the velocity component normal

to the breaking front corrected for the underlying orbital

velocity (Kleiss and Melville 2011). The measured

L(cbr) distributions have a peak at low breaking speeds

(2–4 m s21). At larger values of cbr, after the peak, the

L(cbr) distributions show a decreasing trend with in-

creasing speed that differs substantially from the power

law of c26 previously suggested by the equilibrium

model of Phillips (1985). In Fig. 9b, the breaking

speed cbr is normalized by cp and L is scaled such that

L(cbr/cp)d(cbr/cp) 5 L(cbr)dcbr. The distributions of

L(c/cbr) show a trend with wave age cp/u
*
, generally

showing more breaking near the peak of the energy

spectrum of younger seas.

During the course of this work it became clear that

inclusion of the measured L(cbr) distributions for cbr

near and below their peaks would yield unrealistic

values of the breaking function b(k). Moreover, the

sensitivity analysis in Kleiss and Melville showed that

L(cbr) provided the greatest sensitivity to processing

method and parameters at lower speeds of breaking, and

the L(cbr) distributions robustly collapsed for the faster

FIG. 8. Energy dissipation rates as function of peak wave

steepness k
p
H

p
/2, where H

p
5 4[

Ð 1:7kp

:5kp
u(k) dk]1/2 (Banner et al.

2002). The black, dark gray, and light gray circles show the

data with wind input by Janssen (1991), Janssen’s sheltered wind

input, and Snyder et al. (1981), respectively. The open symbols

show in situ measurements of the energy dissipation rates from

other field experiments with weaker wind conditions (up to 15 m s21)

reported by Thomson et al. (2009), with the squares and circles

corresponding to the data from Lake Washington and Puget

Sound. As discussed in section 3e, the wave dissipation and the

water-column dissipation rates are generally expected to be pro-

portional but not necessarily equal.
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breaking speeds, giving greater confidence in these ob-

servations. Thus, the measurements of L(cbr) for cbr ,

co 5 4.5 m s21 were neglected in the calculation of the

breaking parameter b(k) described in section 3g. The

value of co was chosen as a common speed that is after

the peak of all the L(cbr) distributions (see Fig. 9). A

sensitivity analysis (not shown) revealed that the results

of this study are not significantly affected by small

changes in the chosen value of co.

g. Dimensionless breaking function: b(k)

As described in section 1, Phillips related the spectral

energy dissipation as a function of the wave speed Sds(c)

to L(c) through the breaking parameter b according to

Eq. (1). This study is the first attempt to calculate the

breaking parameter as a function of k. In the recent

modeling work by Banner and Morison (2010), b is im-

plicitly treated as a function of k, but their results are

limited to predicting b only at the peak of the spectrum,

namely, b(kp). Solving for b from Eq. (1) gives

b(c) 5
g2Sds(c)

L(c)c5
(19)

5
g2Sds(k) dk/dc

L(c)c5
, (20)

where c 5
ffiffiffiffiffiffiffi
g/k

p
is the wave phase speed given by the

linear dispersion relationship. As discussed in Kleiss and

Melville (2010), available laboratory measurements (Rapp

and Melville 1990; Stansell and MacFarlane 2002; Banner

and Peirson 2007) have reported a linear relationship

between speed of the breaking front and the wave phase

speed, namely, cbr 5 a c, where a is an empirical factor

near unity ranging between 0.7 and 0.95. In this study

three values of a are considered, 0.8, 0.9, and 1.0, with

L(c) related to L(cbr) by

L(c) 5 L(cbr)dcbr/dc (21)

5 aL(cbr). (22)

Figure 10a shows an example of the L(cbr) distributions

transformed to L(c) with a 5 0.9, and Fig. 10b shows the

fifth moment of L(c).

The sensitivity of the spectral breaking parameter b(k)

to small variations in a and the different wind inputs is

shown in Fig. 11, with b(k) estimated according to Eq.

(20) from model dissipation Sds(k) 5
Ð

Sds(k)k du and the

observed L(c) distributions (Kleiss and Melville 2010)

and converted to the wavenumber domain using the lin-

ear dispersion relationship. In Figs. 11a,d,g; Figs. 11b,e,h;

and Figs. 11c,f,i, the wind inputs used to calculate the

dissipation correspond to Janssen (1991), Janssen (1991)

with sheltering, and Snyder et al. (1981), respectively. In

Figs. 11a–c, Figs. 11d–f, and Figs. 11g–i, the scaling factor

a is 0.8, 0.9, and 1.0, respectively. All nine sets of b(k)

show substantial variability, spanning one order of mag-

nitude and, on average, a decreasing trend with increasing

wave age. The distributions of b(k) approximately show

similar shapes with peaks centered near k/kp 5 1. The

magnitude of b(k) between the spectral peak and the tail of

FIG. 9. (a) The L(cbr) distributions (Kleiss and Melville 2010) color coded according to the wave age cp/u
*

: the

black dashed line is a reference power law of c26 (Phillips 1985) and the vertical dotted line shows co 5 4.5 m s21,

corresponding to the lower limit of the L(cbr) data used in this study. (b) The breaking speed cbr is normalized by cp

and is scaled by cp such that L(cbr/cp)d(cbr/cp) 5 L(cbr)dcbr.
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the distribution varies between 1 3 1024 and 1 3 1022,

with the wind input by Snyder et al. (1981) giving the

largest magnitudes of b(k), with the upper values ap-

proaching the average values reported by Thomson

et al. (2009) of 1.7 3 1022 and much larger than those of

Gemmrich et al. (2008), b 5 7 3 1025.

Unlike the small variability of b(k) due to the differ-

ent wind input formulations, the data of b(k) show that

the results are very sensitive to small variations in a with

the results varying by one order of magnitude for values

of a between 0.8 and 1.0. A change of a factor between 5

and 10 is consistent with the predicted change in b from

error propagation of Eq. (20), which gives

dab(k) 5
›b

›a
da 5 5

da

a
b(k),

where dab(k) refers to the uncertainty of b(k) owing to

the uncertainty of a, and the factor of 5 arises from the

fifth power of c.

To reduce the scatter and the uncertainty of the

measured distributions of b(k), the data were bin aver-

aged according to the wave age, yielding three best es-

timates of b(k) at wave ages centered at cp/u
*

5 11, 13,

and 15. Following a standard error analysis procedure

(Taylor 1997, chapter 7), the bin-averaged data of b(k)

were calculated by

�
N

i51
wi(k)bi(k) �

N

i51
wi(k),

,

where wi(k) 5 1/db2
i (k) and the index i refers to the ith

observed distribution within a given bin with a total of N

observations within each bin (N ’ 5).

Figure 14 shows the bin-averaged data of b(k), cor-

responding to the data in Fig. 11. The bin-averaged data

retained a weak trend with wave age, with larger values

for younger seas. Despite the data averaging, the errors

of b(k) are large, occasionally approaching 100% at

large wavenumbers. This is mainly due to the large un-

certainty of L(c) and the reduced number of degrees of

freedom at large wavenumbers. The error bars shown

correspond to 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�wi(k)

q
. A description of the experi-

mental errors of db(k) is in appendix B.

4. The model of b(k)

Several laboratory measurements (Melville and Rapp

1985; Rapp and Melville 1990; Melville 1994; Banner

FIG. 10. (a) The L(c) distributions transformed from wave breaking speed cbr to phase speed c according to Eq. (22)

with a 5 0.9. The data are color coded according to the wave age cp/u
*

. The solid colored lines are the video

observations by Kleiss and Melville (2010). The black dashed and solid lines are reference power laws of c26 and c24,

respectively. The open triangles correspond to the peak of the L(c) distributions by Jessup and Phadnis (2005) from

laboratory measurements with a wind speed of 9 m s21, estimated from two different image processing methods. The

thick black and gray lines with bars show the bin-averaged predictions of L(c) based on Eq. (20) and the model b2(k)

(Table 1) and the spectral energy dissipation with wind inputs by Janssen (1991) and Snyder et al. (1981), respectively;

the error bars correspond to one standard deviation. (b) As in (a) but with the vertical axis scaled by c5.
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and Peirson 2007; Drazen et al. 2008) have shown that

both energy dissipation and momentum flux associated

with wave breaking exhibit threshold behavior. Figure 1

shows available laboratory measurements of the breaking

parameter b as a function of the predicted maximum linear

slope S of the focusing wave packet, which clearly shows

threshold dependence on S, rapidly approaching zero at

low values of S. The dashed and solid lines correspond to

b(S) 5 0:65(S 2 0:066)3 (23)

and

FIG. 11. Spectral strength of breaking b(k) estimated from the model dissipation Sds(k) 5
Ð

Sds(k)k du and the observed wave breaking

statistics L(c) from Kleiss and Melville (2010). The wind inputs used to calculate the dissipation correspond to (left to right) Janssen

(1991); Janssen (1991) with sheltering; and Snyder et al. (1981). The scaling factor a 5 cbr/c relating the breaking speed cbr to the phase

speed c is (a)–(c) 0.8, (d)–(f) 0.9, and (g)–(i) 1.0. The data are color coded by wave age cp/u
*

.
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b(S) 5 0:4(S 2 0:08)5/2, (24)

respectively, which in Fig. 1 smoothly connect all data-

sets. The powers of 5/2 and 3 are consistent with the in-

ertial scaling (b } S5/2) and measurements (b } S2.77) of

Drazen et al. (2008), while the slope thresholds ST 5 0.08

and 0.066 and scaling factors of 0.4 and 0.65 were ob-

tained from a visual fit through the data.

The concept of a wave breaking threshold behavior has

been around for many years. Following Longuet-Higgins

(1969), Snyder and Kennedy (1983) developed a theo-

retical model for the formation of whitecaps based on a

threshold mechanism of the vertical acceleration. The

laboratory experiments by Melville and Rapp (1985) and

Rapp and Melville (1990) showed that the loss of excess

momentum flux associated with wave breaking exhibits

a threshold dependence on the input wave slope akc of

the focusing wave group, where a is the wave amplitude

and kc is the center wavenumber of the energy spectrum.

Banner and Tian (1998) and Song and Banner (2002)

studied the onset of breaking from numerical simulations

of nonlinear unforced irrotational wave groups and its

relationship to the rate of energy convergence at the

center of the focusing wave packet. Their results were

further confirmed experimentally by Banner and Peirson

(2007). The field study by Banner et al. (2000) found

a threshold behavior for the probability of breaking de-

pending on the significant spectral peak steepness of the

local wind sea Hpkp/2. They concluded that Hpkp/2 is an

appropriate parameter for characterizing the nonlinear

wave group behavior. Banner et al. (2002) investigated

the wave breaking probability for multiple scales using

the so-called riding wave removal technique. They re-

ported a threshold behavior of the breaking probability

on the spectral saturation B(k) and a common threshold

behavior dependent on the normalized saturation ~B(k)

across the different scales analyzed.

Based on the inertial scaling of dissipation in plung-

ing waves (Drazen et al. 2008) and laboratory results

(Melville 1994; Banner and Peirson 2007; Drazen et al.

2008), along with the threshold behavior from Eq. (23), the

following models of the strength of breaking are proposed:

b1(k) 5 A1(B(k)1/2
2 BT(k)1/2)5/2 (25)

and

b2(k) 5 A2( ~B(k)1/2
2 ~BT(k)1/2)5/2, (26)

where the exponent of ½ is due to power-law consider-

ations since the spectral saturation is related to the mean-

square slope (mss) by mss 5
Ð

B(k)k21 dk, assuming

a constant bandwidth (dk/k 5 const). The exponent 5/2 is

based on the fit to the laboratory results from Eq. (24).3

The threshold coefficients BT and ~B
T

, as well as the

scaling factors An (n 5 1, 2), were determined by fitting

Eqs. (25) and (26) to the data of b(k) while maintaining

consistency with Eq. (24) through power-law consid-

erations as described below. The b(k) distributions

from Figs. 11d,g and from Figs. 11f,i, which correspond to

the model with the Janssen (1991) and Snyder et al.

(1981) wind input with a 5 0.9 and 1.0 were used to fit the

parametric models of bn (n 5 1, 2). The model of b(k) was

also tested with the distributions of b(k) with a 5 0.8, but

the result did not converge with the wind input by Janssen.

Data fitting

The azimuth-integrated saturation is defined by

B 5 a2
kk2 k

dk
,

where ak is the Fourier amplitude corresponding to the

wavenumber k and dk is the spectral resolution. It is as-

sumed that the linear focusing slope parameter S, when

applied to wind-generated waves, is related to the square

root of the saturation through a scaling factor j as given by

S 5 j1

ffiffiffiffi
B
p

or S 5 j2

ffiffiffiffi
~B

p
, (27)

and similarly

ST 5 j1

ffiffiffiffiffiffiffi
BT

q
or ST 5 j2

ffiffiffiffiffiffiffi
~BT

q
, (28)

where jn (n 5 1, 2) are empirical factors determined by

the data and Eq. (24) as described below.

Substitution of Eqs. (27) and (28) into (24) yields

b 5 0:4j5/2
1 (

ffiffiffiffi
B
p

2
ffiffiffiffiffiffiffi
BT

q
)5/2. (29)

Equating (25) and (29) and solving for A1 gives

A1 5 0:4j5/2
1 , (30)

and similarly A2 5 0:4j5/2
2 , which enforce consistency

with the laboratory data.

Visual examination of the data of b(k) in Fig. 11 and the

saturation spectra in Figs. 4a,c indicate a net phase shift

in the peak of the distributions with both B and ~B hav-

ing a maximum just above the spectral peak. Although it

would be expected that the peak of b(k) correlates with the

3 The exponent of 5/2 is consistent with the inertial scaling by

Drazen et al. (2008) in Eq. (24).
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peak of either B(k) or ~B(k) shifting to larger wavenumbers

with increasing wave age, the peaks of the b(k) data are

nearly centered at k/kp 5 1 and show considerable hori-

zontal scatter. This lack of correlation of the wavenumber

at the peak of b(k) with increasing wave age may be

associated with the uncertainties of the spectrum at low

wavenumbers. As discussed in appendix B, the directional

resolution of the measured spectra du is inversely pro-

portional to k owing to the conversion of the measured

spectra with a finite Cartesian grid to polar coordinates.

Moreover, the accuracy of the calculations of b(k) at

wavenumbers below the spectral peak are also expected

to be affected by the presence of opposing swell, which,

although partially removed, has some of its energy wrap-

ped up with the wind sea part of the spectrum because of

the 1808 ambiguity inherent in spatial Fourier transforms.

Figure 12 shows the wavenumber at the peak of B(k)

and ~B(k), defined as kBp
and k ~Bp

, normalized by the

wavenumber at the peak of b(k), kbp
, plotted against

the wave age. The data shows no trend with wave age,

with mean values of 1.3 and 1.2 for kBp
/kbp

and k ~Bp
/kbp

,

respectively.

To improve the saturation based models b1(k) and

b2(k), prior to fitting the free parameters of the models,

the wavenumber of b(k) and both saturation functions

B(k) and ~B(k) are scaled by the wavenumber at the

mode of their distributions. Figure 13 shows examples of

b(k/kbp
) all having peaks centered at k/kbp

5 1. Below,

we describe the fitting procedure of the breaking models,

carried out after alignment of the peaks of the distribu-

tions. For brevity, the normalization factors kbp
, k

Bp
, and

k ~Bp
in b(k/k

bp
), B(k/k

B
), and ~B(k/k ~B), respectively, will

be dropped and the normalized spectral functions will be

referred to as b(k), B(k), and ~B(k).

Parameters A1 and BT in Eq. (25) were calculated

from the data in Figs. 14d,f and Figs. 14g,i with the fol-

lowing iterative procedure:

FIG. 12. Wavenumber at the peak of B(k) and ~B(k), defined as

kBp
and k ~Bp

, respectively, normalized by the wavenumber at the

peak of b(k), k
bp

, against the wave age cp/u
*

. The data of k
bp

was

calculated with a 5 1.0 and the Snyder et al. (1981) wind input.

Results for other values of a (0.8 and 0.9) were very similar and,

thus, not shown.

FIG. 13. Spectral strength of breaking b(k) estimated from the semiempirical dissipation Sds(k) 5
Ð

Sds(k)k du and the observed wave

breaking statistics L(c) from Kleiss and Melville (2010). The horizontal axis is normalized by kbp
, which is the wavenumber at the peak of b(k).

The wind inputs used to calculate the dissipation correspond to Janssen (1991), Janssen (1991) with sheltering, and (c) Snyder et al. (1981).

The scaling factor a 5 cbr/c relating the breaking speed cbr to the phase speed c is 0.9. The data are color coded by wave age cp/u
*

.
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1) It is first assumed that BT 5 0.

2) A1 is calculated by

A1 5

ðk
o

0:85k
p

b(k) dk

ðk
o

0:85k
p

(
ffiffiffiffi
B
p

2
ffiffiffiffiffiffiffi
BT

q
)5/2 dk

, for B . BT ,

(31)

where kp is the wavenumber at the peak of the en-

ergy spectrum and ko 5 ga2/c2
o is the upper wave-

number limit before the peak in L(c), according to

the linear dispersion relationship.

3) j1 is calculated from A1 and Eq. (30).

4) BT is calculated from Eq. (28). Finally steps 2–4 were

repeated until reaching convergence, typically in less

than 20 iterations. The lower limit in Eq. (31) of 0.85kp

provides a sufficiently wide range of wavenumbers

FIG. 14. Bin-averaged spectral strength of breaking b(k) estimated from the model dissipation Sds(k) 5
Ð

Sds(k)k du and the observed wave

breaking statistics L(c) from Kleiss and Melville (2010). The wind inputs used to calculate the dissipation correspond to Janssen (1991);

Janssen (1991) with sheltering; and Snyder et al. (1981). The scaling factor a 5 cbr/c relating the breaking speed cbr to the phase speed c is

(a)–(c) 0.8, (d)–(f) 0.9, and (g)–(i) 1.0. The data are color coded by wave age cp/u
*

, with the black, dark gray, and light gray lines corre-

sponding to bins centered at cp/u
*

5 11, 13, and 15, respectively. The bars show the total error of b(k), which is described in section 3g.
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while preventing the uncertainties of the data at low

wavenumbers. Finally, the algorithm described above

was also used to fit the parameters A2 and ~BT in Eq.

(26) to the data in Figs. 11d,f,g,i.

The mean results from the fitting algorithm, which is

the average of the three cases at different wave ages, are

shown in Table 1. Both scaling factors A1 and A2 are of

order unity, varying between 3.6 and 5.0 and between 1.6

and 2.3, respectively. The mean threshold saturation

parameters BT and ~BT , varying between 8.5 3 1024 and

1.1 3 1023 and between 1.6 3 1023 and 2.1 3 1023, re-

spectively, are low when compared to those obtained

from the field observations by Banner et al. (2002),

where BT 5 1.1 3 1023 and ~BT 5 4:5 3 1023. The satu-

ration values reported by Banner et al. (2002) may be

larger because in fact the measured probability of

breaking should go to zero as the saturation approaches

a given threshold. Also, as the probability goes to zero, the

record length becomes a significant factor in the robustness

of the measured breaking probability as the number of rare

events becomes small. Thus, the measured threshold sat-

uration from field observations of the breaking probability

will always be larger than the ‘‘true’’ saturation threshold.

Comparisons between the bin-averaged data of b(k)

and the models b1 and b2 with parameters in Table 1 are

shown in Figs. 15 and 16, with a equal to 0.9 and 1.0,

respectively. The black dashed line is the bin-averaged

data and the dark and light dashed lines are models b1

and b2, respectively. The data and the model are in good

agreement and mostly within error bars, with the model b1

giving the best agreement for a 5 0.9 and b2 when a 5 1.

5. Discussion

The results presented on the measured spectral

strength of breaking b(k) in section 3g have large errors,

with the binned data having on average an uncertainty

of 65%. However, as shown in Fig. 5, a 65% uncertainty

is not very large when compared to the scatter of the

available wind input data and also the laboratory data of

b in Fig. 1. Additionally, the measured data of b(k) are

limited to wavenumbers in the range 0.5kp , k , 8kp.

This range of wavenumbers was motivated partially by

the limitations on the measurements of L(c) at low

values of c, being greatly affected by the image pro-

cessing methods used to compute L, such as the image

brightness threshold. Moreover, the assumption is also

justified by the fact that at small scales, O(0.1–1.0) m in

length (Jessup et al. 1997), wave breaking does not

produce significant numbers of bubbles and conse-

quently L(c) cannot be reliably measured with visible

imagery. Furthermore, the inclusion of the L(cbr) data at

low values of cbr would yield unrealistic values of b.

However, it is expected that the high wavenumber

portion of the spectrum not resolved in the present study

(k . k
o

5 ga2/c2
o, where co 5 4.5 m s21) contains a sig-

nificant fraction of the total wave energy dissipation rate

and most of the wave momentum flux lost due to breaking.

Considering the different wind input parameterizations,

the wind input by Janssen (1991), Janssen (1991) with

added sheltering, and Snyder et al. (1981), it is estimated

from the data that on average 49%, 44%, and 36% of the

total energy dissipation, respectively, is carried at large

wavenumbers (k . ko), whereas the momentum flux due

to wave breaking in the same wavenumber range is on

average 75%, 70%, and 58% of the total wave breaking

momentum flux, respectively.

Assuming that the model b2 is applicable for shorter

waves, using the mean parameters in Table 1 combined

with the semiempirical dissipation function in Eq. (5), it

is possible to estimate the L(c) distribution that would

close the energy balance in Eq. (19), as shown with thick

black and gray lines in Fig. 10, correspond to the model

with Janssen’s (1991) and Snyder’s et al. (1981) wind

input, respectively. The power-law behavior of the pre-

dictions of L(c) are consistent with the scaling ob-

tained by balancing the energy wind input to the energy

dissipation, assuming a saturated spectrum f } k23.

For a constant value of b(k), L(c) would scale as c24 and

c25, for the wind input by Snyder et al. (1981) and

Janssen (1991), respectively.

It is interesting to note that the predictions of L(c)

at low values of c approximately connect the distributions

of visible breakers by Kleiss and Melville (2010) and the

available measurements in the literature of microbreaking

TABLE 1. Average and standard deviation of the parameters of

models b1(k) and b2(k) in Eqs. (25) and (26) fitted against the bin-

averaged data of b(k). The mean and standard deviation values

given correspond to the mean and standard deviation of the pa-

rameters fitted for each bin-averaged distribution of b(k).

Avg Std dev Avg Std dev

Parameter a 5 0.9 a 5 1.0

Janssen (1991)

A1 3.6 0.4 4.5 0.2

BT 11.1 3 1024 1.0 3 1024 9.3 3 1024 0.3 3 1024

N
w1

5.8 0.5 6.9 0.2

A2 1.6 0.2 2.1 0.1
~BT 2.1 3 1023 0.2 3 1023 1.7 3 1023 0.1 3 1023

Nw2
3.0 0.3 3.7 0.2

Snyder et al. (1981)

A1 4.0 0.4 5.0 0.2

BT 10.2 3 1024 0.9 3 1024 8.5 3 1024 0.3 3 1024

N
w1

6.3 0.5 7.5 0.2

A2 1.8 0.2 2.3 0.1
~BT 2.0 3 1023 0.2 3 1023 1.6 3 1023 0.1 3 1023

Nw2
3.3 0.3 4.1 0.2
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from laboratory experiments in 9 m s21 winds by Jessup

and Phadnis (2005). This highlights the need for simulta-

neous field measurements of L(c) for both visible and

microscale breaking. Figures 17a,b show the spectral

breaking strength models b1 and b2, respectively. Both

models were calculated using the parameters shown in

Table 1 with a 5 0.9. The dashed lines are extrapolations

of the models b1 and b2 based on B(k) and ~B(k), re-

spectively. Both models vary substantially near the peak,

while converging for k . 10 kp.

The semiempirical model presented in this study does

not explicitly account for momentum flux due to airflow

separation from steep or breaking waves or the viscous

stress. It is assumed that for a range of conditions the

viscous stress does not contribute significantly to wave

generation. As shown in Fig. 6, the calculated wave-

induced stresses are 40%–80% of the total stress, leav-

ing somewhere between 20% and 60% for viscous and

separation stresses, depending on the wind input for-

mulation. Present models in the literature define the

momentum flux partition by

t 5 tw 1 ts 1 t
n
, (32)

where tw, ts, and tn are the wave-induced stress, stress

due to airflow separation from breaking waves, and

viscous stress, respectively. Figure 18 shows the mo-

mentum flux partition in Eq. (32) as a function of wind

speed from three recent models in the literature:

namely, Kudryavtsev and Makin (2007), Mueller and

Veron (2009), and Banner and Morison (2010). Banner

and Morison (2010) presented solutions only for 12 m s21

winds, with a momentum flux partition approximately

consistent with Kudryavtsev and Makin (2007). At high

wind speeds (U10 . 15 m s21), the model by Kudryavtsev

and Makin predicts a momentum balance with tw and ts

but no viscous stress. Their tw is slightly lower than that

in this study for wind speeds between 15 and 18 m s21

with Janssen’s (1991) sheltered wind input. In contrast,

the model by Mueller and Veron (2009) has significant

viscous stress even at large wind speeds, giving low

values of tw that are approximately consistent with this

study using Snyder’s et al. (1981) wind input. Based on

FIG. 15. Fits of the models b1 and b2, shown in gray and light gray dashed lines, respectively, compared with the bin-averaged data of b(k),

shown with dark-dashed lines. The scaling factor a 5 cbr/c relating the breaking speed cbr to the phase speed c is 0.9.
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the results from Kudryavtsev and Makin (2007), Mueller

and Veron (2009), and Banner and Morison (2010), in

appendix B, the uncertainty of the wind input due to

the lack of breaking stress has been estimated to be

about 20%.

Another aspect that deserves discussion is the physical

interpretation of the parameters A1 and A2 of the wave

breaking strength models b1 and b2 in Eqs. (25) and (26),

respectively. Here we provide a scaling argument based

on the assumption that the ocean is composed of a su-

perposition of self-similar modulated wave groups. Two

separate definitions of a spectral background slope, sb1

and sb2
are introduced, one in terms of B(k) and the other

as a function of ~B(k) as given by

sb
1
(k) [ B(k)

Dk

k

� �1/2

(33)

and

sb
2
(k) [ ~B(k)

Dk

k

� �1/2

, (34)

where k21Dk is the relative bandwidth of the spectral

self-similar wave groups. Then, the expected maxi-

mum focusing slope S within each self-similar packet

is given by

S 5 sbNw, (35)

where Nw is the number of waves in a spatial packet

or the reciprocal of the relative bandwidth (k/Dk). By

combining Eqs. (27), (30), and (35), with the corre-

sponding definition of the spectral saturation (B or ~B),

two relative bandwidth parameters are obtained: 1/N
w1

5

(A
1
/0:4)24/5 and 1/N

w2
5 (A

2
/0:4)24/5. As shown in

Table 1, the results give on average 7 and 4 waves per

focusing group, for N
w1

and N
w2

, respectively. Although

this interpretation is largely speculative, it is interesting to

note these values for the spatial number of waves in a group

FIG. 16. Fits of the models b1 and b2, shown in gray and light gray dashed lines, respectively, compared with the bin-averaged data of b(k),

shown with dark gray–dashed lines. The scaling factor a 5 cbr/c relating the breaking speed cbr to the phase speed c is 1.0.
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are qualitatively consistent with the narrowband statisti-

cal theory of wave groups by Longuet-Higgins (1984).

Longuet-Higgins [1984, Eq. (4.5)] derived the average

number of waves in a group with waves exceeding

threshold amplitudes in terms of the spectral bandwidth,

which gave good agreement with field observations. The

analysis by Longuet-Higgins of temporal field observa-

tions gave on average eight waves in a group with wave

amplitudes exceeding 2hh2i1/2, which corresponds to

four waves per group in the spatial domain. This is

qualitatively consistent with the values shown in Table 1.

6. Conclusions

A semiempirical model for the energy dissipation due

to wave breaking is presented. The model is based on the

radiative transport equation for fetch-limited wind-wave

conditions. The model dissipation is estimated from the

wave energy advection from measured spectra in the

Gulf of Tehuantepec (Romero and Melville 2010a),

combined with ‘‘exact’’ computations of the nonlinear

energy transfer due to four-wave resonant interactions

and three different parameterizations of the wind energy

input. Following Phillips (1985), the observed statistics

for the length and kinematics of breaking fronts (Kleiss

and Melville 2010) are combined with the model dissi-

pation to calculate a spectral function b(k) that charac-

terizes the strength of wave breaking. The calculated

values of b(k) are within the range of previous mea-

surements in the laboratory, with b(k) mostly between

1 3 1024 and 1 3 1022, but having significant variability

across the different scales and strong sensitivity to the

assumed value of a, which is the ratio of the speed of the

breaking wave front to the linear phase speed.

Based on the laboratory measurements by Melville and

collaborators (Melville 1994), Banner and Peirson (2007),

and Drazen et al. (2008), in addition to an inertial scaling

argument, b(k) is parameterized in two ways: as a function

of the spectral saturation B(k) and the saturation nor-

malized by the directional spreading ~B(k). To better un-

derstand the energy and momentum balance across the

air–sea interface, it is important for future field studies to

collect simultaneous measurements of L(c) from both

visible and microscale breakers, including, if possible, in

situ measurements of the upper-ocean currents; water

column turbulent dissipation; good broadband measure-

ments of the directional spectrum, including its gradients

in both the downwind and crosswind directions; and sup-

porting atmospheric turbulent fluxes.
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APPENDIX A

Data Smoothing

The computations of the nonlinear transfer are prone to

large errors due to their cubic dependence on the energy

spectrum. Thus, it is desirable to have a spectrum with a

large number of degrees of freedom (DOF) and thus a

small spectral uncertainty. The original wave spectrum

has 480 DOF and a spectral uncertainty of 25% of the

energy as described in Romero and Melville (2010a).

In this study, the spectrum was smoothed, prior to the

interpolation on the polar grid, increasing the DOF to

3000, which corresponds to a spectral uncertainty of ap-

proximately 5% (Young 1999).

Despite the smoothing of the spectrum prior to the

calculation of the various source terms,A1 the calculated

directional wavenumber dissipation occasionally gives

values greater than zero. However, further analysis has

shown that these errors generally occur at large angles

relative to the spectral peak, typically near ju 2 upj ’

p/4, and the data confirmed that about 90% of the total

dissipation was contained within ju 2 upj, p/4. Figure A1

shows an example of the source terms corresponding to

the spectrum shown in Figs. 2 and 3. Figures A1a–d show

Sin, Snl, Sad, and Sds. The gray contours show the area

where Sds . 0, which is located at about 458 to the right

of the spectral peak, overlapping with an area where

Sad . 0, Snl , 0, and Sin is rapidly decreasing. According

to Eq. (5), this implies that Sin is not large enough to

balance or exceed Sad 2 Snl. This lack of balance is likely

due to the asymmetry in the wavenumber plane of Sad,

which in turn is induced by the slow rotation of the

spectral peak with increasing fetch in the Gulf of

Tehuantepec (Romero and Melville 2010a). The dis-

sipation shown in Fig. A1d was obtained by removing

the data where Sds . 0 and then filled by interpolation

using Gaussian weights. This procedure was repeated

with the rest of the data used for the analysis.

APPENDIX B

Error Analysis

The calculation of spectral energy dissipation Sds and

the strength of breaking b(k) can have potential errors

from various sources such as uncertainty of the energy

spectrum, the wind stress error, directional resolution,

and the lack of surface current data. Here, we define the

uncertainty of Sds by

dSds 5 (dS2
in 1 dS2

nl 1 dS2
ad)1/2, (B1)

where dSds is the total error of Sds; dSin, dSnl, and dSad

are the uncertainties in the dissipation due to errors

from the wind input, nonlinear fluxes, and advective

term. Below, we describe the sources of error for each

term on the rhs of Eq. (B1) and calculate the error

for Sds.

FIG. 18. Stress partition as function of wind speed referenced at

10 m MSL. The closed diamonds, triangles, and stars show this

study’s wave-induced momentum flux normalized by the total wind

stress corresponding to the wind input by Janssen (1991), Snyder

et al. (1981), and Janssen’s sheltered wind [Eq. (18)], respectively.

The wave-induced stress tw, viscous stress tn, and stress due to

airflow separation from breaking waves ts from the models by

Kudryavtsev and Makin (2007), Mueller and Veron (2009), and

Banner and Morison (2010) are shown with black lines, gray lines,

and open symbols, respectively.

A1 Following a reviewer’s suggestion, Snl was calculated from the

spectrum with and without the additional smoothing. It was de-

termined that Snl was nearly identical between the two sets.
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The uncertainty of the nonlinear energy fluxes dSnl

due to the uncertainty of the spectrum dF was calculated

directly from the upper and lower error estimates of the

spectrum. As expected from the cubic dependence of Snl

on the energy spectrum (Phillips 1985), dSnl is approxi-

mately 3dF 5 15%: about 14% for the lower and 17%

for the upper error bound.

The uncertainties of Sin are dominated by the un-

certainty of the wind stress, which is 35% based on the

uncertainty of the vertical wind stress divergence at short

fetches (Romero and Melville 2010a). To leading order,

the wind input has a linear dependence on wind stress;

thus, the error due to the wind input uncertainty becomes

dS
u*
in 5 0:35Sin. Here the uncertainties due to finite di-

rectional resolution du are calculated according to

dSu
in 5

›Sin

›u
du 5

›Sin

›u

0:02

k
,

where du 5 0:02/k is taken from Eq. (14) in Romero and

Melville (2010a) and the value of 0.02 rad m21 corre-

sponds to the resolution of the cross-track wavenumber

from the measured spectra (Romero and Melville

2010a). An additional 5% error of the computed wind

input is due to the uncertainty of the energy spectrum:

namely, dSF
in 5 0:05Sin. Since the wind input source

functions considered for this study do not allow for

a modification of the fluxes due to airflow separation

over steep breaking fronts, here the uncertainty of the

total energy dissipation due to the stress from breaking

waves is calculated. The model by Banner and Morison

(2010) at winds of 12 m s21 predicts a ratio of wave

stress due to breaking waves to total stress of about 15%,

whereas the models by Mueller and Veron (2009) and

Kudryavtsev and Makin (2007) predict ratios of 20%

and 40% for wind speeds of 17 m s21, respectively (see

Fig. 18). Thus, we assume that the uncertainty of the

wind input due to the wave breaking stress is roughly

20%.

The advective term has two main sources of error, the

finite directional resolution and the lack of surface cur-

rent information. The propagation of the error of the

former gives dSu
ad 5 tan(u)S

ad
du. For consistency with

the calculation of directional errors from the wind input

the directional error is evaluated at u 5 p/4. Neglecting

any horizontal shear, the error due to surface currents is

dS
uc

ad 5 Sadduc/cg, where the uncertainty duc is approxi-

mated by the magnitude of the surface currents. The

surface current can be approximated as 3% the magni-

tude of the wind speed (Wu 1975). Thus, for a typical

FIG. A1. Terms in the radiative transport equation: (a) Sin, (b) Snl, (c) Sad, and (d) Sds. The white contours show the

area where Sds . 0. The data shown correspond to the spectrum shown in Figs. 2 and 3.
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wind speed of 17 m s21, the uncertainty duc 5 0.5 and

the propagation error becomes dS
uc

ad 5 0:5Sadc21
g .

In this study, all of the errors due to Sad, Snl, and Sin

described above, except the contribution of the airflow

separation due to breaking waves, have been computed

and added according to Eq. (B1). An example of the

directional error functions is shown in Fig. B1, with the

error of the wind input (Fig. B1a), nonlinear energy

fluxes (Fig. B1b), advection (Fig. B1c), and the energy

dissipation (Fig. B1d) normalized by the spectral dissi-

pation. The normalized errors show that the error is

largest due to the wind input and that the region of

positive dissipation is in regions with large errors in all

four source terms.

Finally, the propagation of the error of b(k) [Eq. (19)]

gives

db

b
5

dS2
ds

S2
ds

1
dL2

L2
1 25

dc2
br

c2
br

 !
1/2

, (B2)

where dSds is given in Eq. (B1), whereas dL and dcbr are

the experimental errors of L and cbr, where the large

factor in front of the breaker speed error is due to the

fifth moment of L(cbr) in Eq. (20). As shown in Kleiss

and Melville (2011) (Fig. 5), the uncertainty in dL(cbr) is

smallest for large values of cbr for cbr between 4.5 and

10 m s21. However, within this range of breaker speeds

L has a strong dependence on cbr, giving errors O(50%).

The uncertainty of the breaker speed dcbr due to camera

motions is 1 m s21, which produces relative errors,

b21db 5 5c21
br dc

br
, between 110% and 50%, for cbr 5

4.5 and 10 m s21, respectively. Finally, the overall uncer-

tainty db was calculated according to Eq. (B2) by com-

bining the errors from Sds, L, and cbr, and is on average

about 107% for wavenumbers between the spectral peak

and larger.
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