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1. Introduction 
It is now accepted that to better understand the coupling between the 

atmosphere and the ocean, surface-wave processes must be taken into 

account. Traditional airborne lidar systems and in situ instrumentation have 

limited directional and frequency responses and do not have the resolution 

required to fully test modern theories of directional wave spectra. 

Directional observations at lower and higher wavenumbers, the latter being 

close to the end of the gravity-wave range, are especially limited, but are 

important as they need to be resolved in current wind-wave models.  

Over the past two years, we have integrated a novel, portable, high-

resolution airborne topographic lidar with video and hyperspectral imaging 

systems. The scanning waveform lidar is coupled to a highly accurate 

GPS/inertial measurement unit permitting airborne measurements of the 

sea surface elevation and whitecap coverage with swath widths of up to 

800 m under the aircraft track over water, and horizontal spatial resolution 

as low as 0.2 m. We describe system performance, and present preliminary 

results from recent measurements, where we obtained wave directional 

spectra down to wavelengths of 0.8 m. 

2. Modular Aerial Sensing System (MASS) 

3. Wave Directional Observations down to 

wavelengths of 0.8m 

6. Summary 
• Over the past two years, we have integrated a novel, portable, high-resolution airborne 

topographic lidar, with video, infrared and hyperspectral imaging systems.  

• High resolution  airborne measurements of sea surface elevation and whitecap coverage with 

swath width of up to 800 m, and high horizontal spatial resolution of up to 4 – 5 cm. 

• Unprecedented airborne measurements of high wave wavenumber directional spectra down to 

wavelengths of 0.8 m. 

Fig. 3. (left) Omnidirectional wavenumber spectra for two passes flown at two different 

altitudes: 1100 m AMSL in blue, swath width 800 – 1000 m, spatial resolution of 1.2 m; 200 m 

AMSL in red 200 m swath, 12 – 25 cm spatial resolution from sea surface topography data 

recorded using the MASS on 4 Aug 2011 in the Santa Barbara Channel. These data give 

spectra down to wavelengths of 0.8 – 0.9 m, with directional resolution there of 0.2o, and 3.6o 

at the peak of the spectrum, λ = 64 m. Note -5/2 and -3 spectral slopes. (right) Directional 

spectrum from the sea surface topography recorded at 200m AMSL. 

Fig. 1. (top panel) Modular Aerial Sensing System (MASS) at the Air-Sea Interaction 

Laboratory, Scripps Institution of Oceanography  (upper panel) prior to a deployment in the 

Gulf of Mexico in October 2011. The instrument package was installed on an AspenHelo 

Partenavia P68 aircraft (bottom panel) for the Gulf of Mexico experiment, October 17-31 

2011. The airborne system includes a scanning waveform Lidar, Long-Wave Infrared 

(LWIR) camera, SST sensor, visible high resolution camera, hyperspectral (VNIR) imager, 

and a GPS/IMU system. 

4. High-Resolution Measurements of Breaking Waves 
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Fig. 2. Example of surface elevation as measured from the MASS during a recent experiment in 

the Gulf of Mexico, flying above NDBC buoy #42040. (wind~12m/s, Hs = 3.1m) 
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Fig. 4. Sample georeferenced images of a  

breaking wave in the visible and infrared (8-

9.2μm) bands during a recent experiment in the 

Gulf of Mexico. Note that the foam is colder 

(blue) due to rapid cooling (Twater - Tatm ≈ 8°C) 

while the active breaker is warmer (red), 

disrupting the surface skin layer and bringing 

warmer water from below. Also shown is a 

perspective view of the sea surface elevation for 

the same breaking wave color coded for WGS84 

height (World Geodetic System 1984 datum). 

The lower panel shows the profile of the transect 

A-B marked in the georeferenced visible image. 

Fig. 5. (left) Sea surface  temperature imagery of the northern edge 

of the Loop Current on October 30 2011. (right) Evolution of the 

omnidirectional wavenumber spectrum as the aircraft flew across the 

Loop Current . The color scale represents the average SST over the 

length of the wave record (4 km) used in the spectral analysis, also 

shown as a function of latitude in the upper panel.  

5. Wave Enhancement at a SST Front (Loop Current) 
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