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ABSTRACT

A model of surface waves generated on deep water by strong winds is proposed. A two-layer approximation

is adopted, in which a shallow turbulent layer overlies the lower, infinitely deep layer. The dynamics of the

upper layer, which is directly exposed to the wind, are nonlinear and coupled to the linear dynamics in the

deep fluid. The authors demonstrate that in such a system there exist steady wave solutions characterized by

confined regions of wave breaking alternating with relatively long intervals where the wave profiles change

monotonically. In the former regions the flow is decelerated; in the latter it is accelerated. The regions of

breaking are akin to hydraulic jumps of finite width necessary to join the smooth ‘‘interior’’ flows and have

periodic waves. In contrast to classical hydraulic jumps, the strongly forced waves lose both energy and

momentum across the jumps. The flow in the upper layer is driven by the balance between the wind stress at

the surface, the turbulent drag applied at the layer interface, and the wave drag induced at the layer interface

by quasi-steady breaking waves. Propagating in the downwind direction, the strongly forced waves signifi-

cantly modify the flow in both layers, lead to enhanced turbulence, and reduce the speed of the near-surface

flow. According to this model, a large fraction of the work done by the surface wind stress on the ocean in high

winds may go directly into wave breaking and surface turbulence.

1. Introduction

The preponderance of theories of surface waves are

based on the idea of irrotational linear free waves, that

is, waves propagating in an ideal fluid with no leading-

order forcing acting on the body of the fluid and no

departures from the classical free-surface boundary

conditions. Such waves satisfy a linear dispersion rela-

tionship with gravity and surface tension as restoring

forces. Departures from this idealized state are intro-

duced as weak higher-order perturbations, including the

effects of nonlinearity, wave growth due to the wind,

and wave decay due to viscosity, turbulence, or weak (in

the mean) intermittent breaking. The advantage of this

approach is that it is anchored in the linear dispersion

relationship with all the simplicity that it affords as a

basis for perturbation expansions, and all the detailed

understanding of the linear kinematics and dynamics.

There is an extensive literature on surface waves that

follows this approach and it has been the foundation of

all extant wind wave theories and numerical wind wave

prediction schemes (Komen et al. 1994). However, un-

der strongly forced conditions in which the time scales

for wave growth are comparable to, or not much greater

than, the wave period, the dynamics of the waves may

change significantly, and a new approach must be found.

Figure 1a (after Melville 1996) shows short, O(0.1–1) m,

waves at the ocean surface under winds in the range of 50–

60 kt during a storm in the North Atlantic. From this angle

it appears that the wave field is quasiperiodic with each

wave breaking on the steep forward face, while the rear

face is much less steep. Similar waves are to be found in the

downwash of a helicopter hovering over a water surface.

An example is shown in Fig. 1b, where it is seen that for

sufficiently high radial velocities of the downwash, a qua-

siperiodic field of breaking waves is generated. Although

such waves may differ in detail from the waves generated

naturally by strong winds in the open ocean, one can still

expect qualitative similarities. If such strongly forced wave
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fields could be described as approximately stationary and

homogeneous, then to leading order the dissipation owing

to the observed breaking and surface turbulence should

balance the energy input from the wind.1

Some observational and laboratory experimental re-

sults suggest that there is a qualitative change in air–sea

interaction at high wind speeds. The drag coefficient of

the ocean on the atmosphere, usually expressed as CD 5

(u
*
/U10)2, where u

*
is the friction velocity in the air and

U10 is the wind speed at 10 m above the ocean sur-

face, increases monotonically in the range 5–25 m s21.

Recent evidence from airborne measurements of u
*

in hurricanes (Powell et al. 2003) shows that, rather than

continuing to increase, CD reaches a maximum around

30 m s21, and may decrease slightly at higher wind

FIG. 1. (a) Examples of relatively short, O(0.121 m), strongly wind-forced breaking waves

from a storm in the North Atlantic in December 1993 [After Melville (1996)]. (b) Breaking

surface waves generated in the downwash of a helicopter hovering over a water surface (Photo

courtesy of the U.S. Coast Guard).

1 Similar waves may be generated in very shallow water under

strongly forced conditions in a shallow sound or estuary (with

depths smaller than 1 m, say), where a well-mixed layer can be

readily formed by the merging of the surface and bottom boundary

layers. In that case, the depth of the water provides the vertical

scaling for the long-wave dynamics, whereas in this paper the

vertical scale is provided by the turbulent surface boundary layer.
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speeds. Recent laboratory measurements (Donelan et al.

2004) appear to be consistent with the field data; how-

ever, there is some uncertainty about scaling the labo-

ratory results to the field. While there are many possible

reasons for this regime change in air–sea interaction,

a qualitative change in the wave field in high winds

from one of intermittent breaking to one in which al-

most all the shorter waves are breaking is certainly

plausible. Indeed, M. A. Donelan (2008, personal com-

munication) has suggested that state in which almost all

waves are breaking may decouple the aerodynamic drag

of the boundary layer from the geometry of the sur-

face through the effects of flow separation (Banner and

Melville 1976) on the flow above. If almost continuous

breaking is responsible, then models of strongly forced

trains of breaking waves, like the one described in this

paper, may be needed to better understand these

processes.

In a study of steady gravity–capillary waves with a

pressure forcing at the surface and viscous dissipation in

the surface boundary layer, Fedorov and Melville (1998)

found that under sufficiently strong forcing, and hence

dissipation, strongly asymmetric solutions for the wave

profile can be found with steep forward faces modulated

by capillary waves and long upwind faces of smaller

slope. The dissipation in these solutions is predomi-

nantly in the neighborhood of the capillary waves. In

effect, the regions of high surface curvature associated

with the capillary waves provide the dissipation that may

in reality be afforded by the turbulence associated with

breaking in naturally occurring strongly forced wave

fields.

These observations and models lead us to consider

quasiperiodic strongly wind-forced waves, including the

effects of breaking-induced turbulence. The dynamics

are similar in some respects to those of roll waves.

Shallow flows down inclined planes (e.g., the spillway of

a dam) are unstable, giving rise to roll waves. These have

been modeled either as monotonic solutions joined by

jump (shock) conditions to form periodic shallow water

wave solutions, or by turbulent models in which eddy

viscosity suppresses the jumps and leads to continuous

periodic solutions with regions of large gradients cor-

responding to the jumps (Dressler 1949; Whitham 1974;

Ng and Mei 1994; Balmforth and Mandre 2004). In the

case of roll waves, the flow is driven by the balance be-

tween the component of gravity parallel to the plane and

the stress at the bottom. For an extensive treatment of

roll-wave models and the solutions of the model equa-

tions, see Balmforth and Mandre (2004). While moti-

vational, the analogy between the roll waves and the

strongly forced waves on deep water is relatively limited,

as will become clear in the following sections.

In an open ocean, the ‘‘shallow’’ vertical scale is not so

apparent as there is no solid boundary near the surface

to support the hydrostatic pressure variations along the

wave profile. Nevertheless, one can assume that break-

ing and near-surface turbulence are essential parts of

the processes being modeled and lead to an enhanced

(eddy) viscosity in a shallow layer near the surface.

Thus, it is the layer of enhanced viscosity that defines the

shallow layer that is strongly forced by the wind above

and able to interact with the deep layer below. The dy-

namics of the upper layer are nonlinear and coupled to

the dynamics of the deep fluid. The flow in the upper

layer is controlled by the balance between the wind

stress at the surface, the turbulent drag at the interface

between the layers, and the wave drag induced at the

interface by steadily breaking waves.

The idea that surface waves can be generated through

the instability of a surface shear layer has a long tradi-

tion (Milinazzo and Saffman 1990; Morland et al. 1991;

Shrira 1993; Longuet-Higgins 1998). Those authors as-

sume that the wind creates a horizontal shear layer near

the surface that rapidly becomes unstable to surface

perturbations. In fact, Shrira (1993) showed that in a

realistic parameter range the growth rates for such in-

stability can be larger than those for the Miles’s (1957,

1959) mechanism of surface wave generation. The ap-

proach of the present paper follows the idea of the

presence of a surface layer, but here we assume it is

turbulent, having already become unstable to shear. We

assume that the momentum flux due to tangential wind

stress leads to a formation of a shallow shear layer near

the surface directly driven by the wind. This layer can

become unstable very rapidly, generating short breaking

waves and turbulence and thus creating the thin layer

with enhanced eddy viscosity near the surface, which is

necessary for our model.

We do not claim in this study that for all strongly

forced wind regimes the air–sea momentum exchange

takes place just through the wind shear stress at the sea

surface, but rather that there exists a wave regime where

this mechanism is a potentially important contributor.2

How significant this mechanism is remains to be ex-

plored by laboratory and field studies.

The structure of the paper is as follows. In section 2

we formulate the problem, study the linear stability of

the system, and introduce the ‘‘quasi nonlinear’’ ap-

proach, for which the dynamics are chosen to be non-

linear only in the upper layer. The numerical results

are described in section 3 (the initial value problem),

2 An extension of the model in appendix A designed to include

form drag at the surface shows qualitatively similar results to the

model with shear stress only.
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section 4 (steady-wave solutions), and section 6 (the

sensitivity of the results to changes in the main physical

parameters of the problem). Important balances, in-

cluding the energetics, are considered in section 5.

Section 7 summarizes the main conclusions of the study.

In appendix A we show how fluctuations in normal pres-

sure induced by variations in the slope of the free surface

can affect our solutions. Finally, appendix B illustrates

the effects on the wave profiles of varying the viscosity in

the upper layer.

2. Formulation of the problem

The approach adopted in this work can be easily un-

derstood from the sketch in Fig. 2, which shows a shallow

(turbulent) layer resting on top of the lower, infinitely

deep layer. The undisturbed thickness of the upper layer

is d. We will require that kd� 1, where k 5 2p/l is the

wavenumber and l is the wavelength of the surface

waves. This permits us to use the long-wave approxi-

mation for the motion in the upper layer. The flow in the

lower layer is assumed to be irrotational; however, the

dissipative effects of viscosity are incorporated by a

standard modification of the boundary conditions at the

interface between the two layers.

The waves are treated as two-dimensional in space,

with x and z as the horizontal and vertical coordinates,

and t as time. For the upper layer, t denotes a uniform

wind stress applied to the surface, h(x, t) the total local

upper-layer depth, z(x, t) the elevation of the free sur-

face, and U(x, t) the horizontal component of the ve-

locity, independent of z in the long-wave approximation.

In the lower layer u(x, z, t) and w(x, z, t) denote the

horizontal and vertical velocity components, respec-

tively; f(x, z, t) is the velocity potential; and h(x, t)

is the displacement of the interface between the two

layers; P(x, z, t) and Pa are the pressures in the water

and in the atmosphere, respectively; g is the accelera-

tion of gravity, and r is the density of the water. Variables

x, z, and t used in subscripts denote the corresponding

derivatives.

The equations of motion in the upper layer are

(Uh)
t
1 (U2h)

x
1 ghz

x
5 t/r � gU2 1 n(hU

x
)

x
, (1)

h
t
1 (Uh)

x
5 0, (2)

where

z 5 h 1 h� d. (3)

The pressure field P(x, z, t) is assumed to be hydrostatic

in the upper layer; that is,

P 5 P
a

1 rg(d 1 z � z). (4)

In appendix A we consider how adding a simple modi-

fication to the pressure field proportional to the surface

slope (which allows for a form drag) affects the solu-

tions. Equations (1) and (2) describe the momentum and

mass balance in the upper layer in the long-wave ap-

proximation. The term n(hUx)x is a conventional tur-

bulent momentum transport term in which n is the

turbulent (or eddy) viscosity (e.g., Gent 1993; Balmforth

and Mandre 2004). We use constant values of n for most

of the calculations, but demonstrate in the appendix B

that making viscosity a function of the horizontal gra-

dient in the thickness of upper layer, and hence in-

creasing viscosity in the regions of breaking, affect our

solutions very little. The turbulent stress at the interface

between the lower and upper layers is parameterized by

quadratic damping (2gU2), with g a constant.

The flow in the lower layer 2‘ , z # h is irrotational,

satisfying Laplace’s equation:

f
xx

1 f
zz

5 0, (5)

where

(u, w) 5 (f
x
, f

z
). (6)

At z 5 h,

h
t
1 uh

x
5 w 1 2mh

xx
, (7)

and

f
t
1

u2

2
1

w2

2
1

P� P
a

r
1 gh 5 gd 1 2mf

xx
, (8)

where

FIG. 2. Sketch of the two-layer fluid with the upper turbulent layer

riding on an infinitely deep layer.
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P 5 P
a

1 rg(d 1 z � h). (9)

The equations of motion for the lower layer are similar to

the conventional description of irrotational surface waves

generated by a pressure forcing. For example, the potential

of the flow f defined in (6) goes to zero at great depth:

f! 0 as z! �‘. (10)

Equation (7) is the kinematic boundary condition, and

Eqs. (8) and (9) provide the dynamic boundary condi-

tion for irrotational flows. In principle, we permit a

discontinuity in the tangential component of the velocity

at the interface between the layers, but require the

continuity of the normal velocity and normal pressure.

An important note on modeling turbulent viscosity in

the lower layer is necessary. Although viscous effects in

the lower layer are not modeled directly, two additional

terms describing viscous dissipation are added to the rhs

of (7) and (8). These terms are chosen to describe two

principle mechanisms contributing to dissipation: the

direct effect of friction (the dissipative term in the dy-

namic boundary condition) and the effect of a viscous

boundary layer near the interface. Longuet-Higgins

(1992) and Ruvinsky et al. (1991) discussed these effects

in application to free-surface flows. Similar viscous terms

were used in the dynamic and kinematic boundary con-

ditions for free-surface flows by Dommermuth (1994),

Fedorov and Melville (1998), and others. Here, these

additional terms are chosen to give classical viscous dis-

sipation in the absence of the upper layer and in the limit

of linear surface waves, with an amplitude decay rate of

2mk2. Values of the eddy viscosity, m, much larger than

molecular viscosity are used to account for turbulence

generated by wave breaking. Thus, even though the

motion in the lower layer remains irrotational [according

to Eq. (6)], the dissipative effects due to turbulence are

included in the model. Ultimately, these terms in the ki-

nematic and dynamic boundary conditions are necessary

for simulating breaking regions with a finite width.

Substituting (9) into (8) yields the final form of the

dynamic boundary condition at z 5 h:

f
t
1

u2

2
1

w2

2
1 gh 5 2mf

xx
. (11)

To ensure the validity of the hydrostatic approxima-

tion we require that

l

d
� 1. (12)

The hydrostatic approximation also requires that ver-

tical accelerations are small compared to gravity. Using

incompressibility to scale w as Ucd/l, where Uc is a

characteristic velocity in the upper layer (Uc 5 co, or Uo),

we require that

U2
od

l2
� g;

c2
od

l2
� g, (13)

where co 5
ffiffiffiffiffiffiffiffiffiffi
g/jkj

p
, k 5 2p/l and Uo is the character-

istic velocity of the wind-driven current in the upper

layer (in the absence of the waves). Combining (12) and

(13) gives

l� d max(1, U
o
/c

s
, c

o
/c

s
), (14)

where cs 5
ffiffiffiffiffi
gd
p

. This condition (14) holds well in the

parameter range of interest.

a. The linear approximation

While solving the complete system of equations, (1)–(11),

is a difficult undertaking, and a matter of ongoing work,

there are several approximate procedures that can help

elucidate the most important properties of the solutions.

The first is a conventional linearization with respect to

the mean state, followed by a stability analysis.

The zeroth-order solution for this system is given by

U2 5
t

rg
, (15)

h 5 d, (16)

z 5 0, (17)

h 5 0, (18)

f 5 0, (19)

and

(u, w) 5 0, (20)

which corresponds to a wind-driven upper layer with the

uniform velocity Uo. There is no motion in the lower

layer in the zeroth-order approximation. The balance

in the upper layer is between the surface wind stress

and friction at the interface between the layers. Using

this solution as the basic state, introducing j 5 z 2 h

instead of h, and linearizing (1)–(11) yields the following

equations:

the linearized equations of motion for the upper layer

U
t
1 U

o
U

x
1 gz

x
5�

2gU
o

d
U 1 nU

xx
, (21)

j
t
1 U

o
j

x
1 dU

x
5 0, (22)

2506 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



and the linearized equations of motion for the lower

layer

f
xx

1 f
zz

5 0 for �‘ , z # 0 (23)

with

z
t
� 2mz

xx
5 f

z
1 j

t
� 2mj

xx
and (24)

f
t
1 gz 5 2mf

xx
(25)

at z 5 0.

To study the stability of the system to small wavelike

perturbations, we adopt the standard procedure and set

(U, j, z) 5 Re[( ~U, ~j, ~z) expi(kx� vt)]. (26)

The potential that satisfies the Laplace equation and

decays at larger depths is

f 5 Re[~f exp(jkjz 1 ikx� ivt)]. (27)

Substituting (26) and (27) into the linearized set yields

relationships between the complex amplitudes ~U, ~j, ~z,

and ~f:

i(kU
o
� v) ~U 1 igk~z 5�

2gU
o

d
~U 1 n(ik)2 ~U, (28)

i(kU
o
� v)~j 1 idk ~U 5 0, (29)

�iv~z � 2m(ik)2~z 5 jkj~f� iv~j � 2m(ik)2~j, (30)

and

�iv~f 1 g~z 5 2m(ik)2 ~f. (31)

The eigenvalues of this system are given by the

condition

detA 5 0, (32)

where

A 5

ikU
o
� iv 1

2gU
o

d
� n(ik)2 0 igk 0

idk ikU
o
� iv 0 0

0 iv 1 2m(ik)2 �iv� 2m(ik)2 �jkj
0 0 g �iv� 2m(ik)2

2
66664

3
77775. (33)

First, let us assume that dissipation is negligible by set-

ting g 5 m 5 n 5 0. Then (32) and (33) yield a simple

dispersion relation for the linear waves:

(v2 � gjkj)(v�U
o
k)2

5 v2k2gd. (34)

After introducing c 5 v/k, c
o

5
ffiffiffiffiffiffiffi
g/k

p
and c

s
5

ffiffiffiffiffi
gd
p

,

Eq. (34) can be rewritten as

(c2 � c2
o)(c�U

o
)2

5 c2
s c2 5 kdc2

oc2. (35)

Equation (35) has a simple physical interpretation. If

kd � 1, there are two types of waves in the system:

surface gravity waves (two branches), and waves of ad-

vection (also two branches), modified by the interaction

term on the rhs of (35). For very short waves, there are

two branches of gravity waves in the neighborhood of

c 5 0 and two branches of kinematic waves (Whitham

1974, p. 26) in the neighborhood of c 5 Uo. As the

wavelength increases (k decreases), one gravity wave

branch merges with an advective branch to give a pair of

complex conjugate roots and, hence, instability. Figure 3

shows a typical example of the wave phase speed and,

for the unstable solutions, the growth rates, obtained by

solving Eq. (35). Introduction of dissipation terms re-

duces the growth rates and shifts the wavelengths of the

most unstable waves toward longer wavelengths.

Figure 4 shows the growth rates, the wavelengths, and

the phase speeds of the most unstable waves as a func-

tion of d and Uo for the full system: Eqs. (32) and (33).

The lengths of the waves may vary from tens of centi-

meters to several meters. Significantly, the phase speed

of the most unstable waves is always slower than the

speed of the current. The wave growth rates given by the

model are quite high, but one can expect weaker growth

rates for more realistic (continuous rather than step-

wise) shear near the surface, which avoid surfaces of

infinite vorticity.

b. The ‘‘quasi nonlinear’’ approximation:
Formulation and numerical approach

The linear approach of the previous section predicts

that the system will become unstable to small perturba-

tions but cannot describe the eventual evolution of the

disturbances. The next step, which can answer whether

steady finite-amplitude wave solutions are possible, is

to incorporate nonlinearity. Here, we will assume that
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nonlinearity is important only in the upper layer, while

the fluid motion in the deep layer can still be considered

linear. Although the validity of such an approximation is

somewhat limited, this approach greatly simplifies the

overall treatment of the problem, while providing some

insight into the effects of nonlinearity.

First, let us rewrite the linearized equations (24) and

(25), assuming that the mean flow in the lower layer is

nonzero:

h
t
1 U

d
h

x
5 f

z
1 2mh

xx
(36)

and

f
t
1 U

d
f

x
1 gz 5 2mf

xx
, (37)

at z 5 0.

Here we have introduced Ud, a drift velocity in the

lower layer induced by the tangential stress across the

lower boundary of the upper layer. The transfer of mo-

mentum across the interface requires such a drift ve-

locity, and we parameterize it as a linear function of Uo:

U
d

5 aU
o
, (38)

where a is a parameter between 0 and 1. While this is a

crude approximation, it is consistent with the phenom-

enological approach to the formulation, which seeks to

maintain the essential physics while permitting simpli-

fications of secondary effects. The principal quantitative

effect of the drift velocity is on the phase speed of the

propagating disturbances. For most of the calculations

below we will set a 5 0.2 and then describe the main

effects of changing a.

FIG. 3. (a) The linear phase speed as a function of the wavelength

l for four different branches of the solutions of Eq. (35). When two

branches merge (the heavy line), the waves become unstable. The

calculations were conducted for d 5 1 cm and Uo 5 1 m s21. The

dashed line shows the value of Uo. (b) The exponential growth rate

as a function of wavelength for the unstable branches.

FIG. 4. The (a) exponential growth rates (s21), (b) wavelength

(m), and (c) phase speed of the most unstable waves as a function of

d and Uo. The reduction in growth rates for small d is associated

with shorter wavelengths and, consequently, the increased role of

dissipative terms. The data for the graphs were obtained numeri-

cally by solving Eqs. (32) and (33) for g 5 0.003, n 5 0.004 m2 s21,

and m 5 0.0005 m2 s21.
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Since f is a harmonic function, satisfying the Laplace

equation, its x and z derivatives at z 5 0 are related

through the Hilbert transform. That is, at z 5 0

f
z

5
1

p
P
ð‘

�‘

f
x

x� x9
dx9, (39)

where P stands for the Cauchy principal value.

Now introducing

F 5 fj
z50

, (40)

and rewriting equations (1)–(3) and (36)–(37), with the

use of (39), yields a complete system of equations con-

necting U, h, z, h, and F:

(Uh)
t
1 (U2h)

x
1 ghz

x
5 g(U2

o �U2) 1 n(hU
x
)

x
, (41)

h
t
1 (Uh)

x
5 0, (42)

z 5 h 1 h� d, (43)

h
t
1 U

d
h

x
5

1

p
P
ð‘

�‘

F
x

x� x9
dx9 1 2mh

xx
,

(44)

and

F
t
1 U

d
F

x
1 gz 5 2mF

xx
. (45)

We refer to this system as the ‘‘quasi nonlinear’’ ap-

proximation since it combines the fully nonlinear equa-

tions for the upper layer and linearized equations for

the deep layer. In principle, following the derivations of

the Benjamin–Ono equation (Benjamin 1967; Ono 1975)

in the weakly nonlinear regime, one could derive these

equations formally using the characteristic slope of the

interface as an expansion parameter.

3. Numerical results: An initial value problem

Equations (41)–(45) are solved numerically, using the

explicit Runge–Kutta pair of Bogacki and Shampine

(1989) as implemented in Matlab. Second-order finite

differencing is used for evaluating the x derivatives and a

spectral method for evaluating the Hilbert transform in

(44). Periodic boundary conditions are imposed in the x

direction. In the numerical experiments the domain of

integration ranges from 0.1 to 8 m. The resolution of

the numerical scheme is in the range O(0.1–1 mm) de-

pending on the wavelength and requirements for nu-

merical stability.

We solve the initial value problem for these equations

using as initial conditions the zeroth-order solution de-

scribed in section 3, that is, a uniform shallow layer with

the thickness d, having a constant velocity Uo, resting on

a infinitely deep layer. A spatially varying random per-

turbation with an O(0.01 mm) amplitude is added to the

top layer height at time zero. For all calculations we

choose g 5 0.003. With this value of g, it would take

about 10 s to accelerate the top layer from rest to 0.9Uo.

The coefficients of eddy viscosity are n 5 0.004 and m 5

0.0005 m2 s21. This choice of damping parameters en-

sures that the slope of the free surface and the layer

interface do not exceed O(1) in regions that correspond

to ‘‘breaking’’ or ‘‘hydraulic jumps.’’ Smaller viscosity

coefficients lead to larger slopes and the possibility of

numerical instabilities. Note that an initial value prob-

lem with the well-developed upper layer is considered

here only for the sake of simplicity. In fact, we ran sev-

eral experiments where both the depth and the mean

velocity of the upper layer could gradually evolve, which

led to qualitatively similar results.

Several sets of the calculations are presented. In the

first set, the domain of integration extends for only 0.5 m.

The results shown in Figs. 5 and 6 suggest that the evo-

lution of the wave field can be divided into three distinct

stages. The first is a period of quasi-linear growth that

takes place in accordance with the linear stability analysis

of section 3. The characteristic length and phase speed of

the excited waves (the top row in Fig. 5) approximately

coincide with those estimated from Fig. 4. The rapid in-

crease in wave amplitude quickly leads to wave steep-

ening and ‘‘breaking’’ (the very fast rise in the bottom

panel in Fig. 6).

It is worth commenting at this point on the represen-

tation of breaking in this model. It is clear that realistic

breaking, usually associated with wave overturning, in-

tense local mixing, and turbulence at and near the wave

crest, is not possible in the model. Effective viscous terms

in the equations prevent this from happening. Instead,

‘‘breaking’’ in the model simply implies the formation of

strong local gradients of relevant parameters, hx, Ux, and

hx, which provide the necessary dissipation. This ap-

proach has been frequently used for describing wave

breaking and front formation (e.g., Fedorov and Melville

1995, 1996, 2000).

Further nonlinear adjustment of the free surface and

the interface between the layers lasts for about 15 s (see

middle panels in Fig. 5 and the undulating regime of the

curves in Fig. 6). Eventually, these processes and dissi-

pation result in the formation of a steady-wave solution

propagating in the downwind direction (the bottom

panel in Fig. 5). Figure 6 confirms that by time t 5 20 the

wave profile is translating without changing shape at a

constant speed.

For the second set of numerical runs (Fig. 7), the do-

main of integration is extended to 8 m to demonstrate

that over intermediate times the characteristic horizontal
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scale of the waves is independent of the size of the do-

main. The wave profile undergoes the same stages of

evolution as previously, the main difference being that

the solution, even by time t 5 60, is still evolving, albeit

slowly, with the wave profile remaining quasi steady

except during overtaking events. The displacement of

the interface and the free surface, and the thickness

of the shallow layer, appear as if they are constructed

from several steady-wave solutions, each with a slightly

different wavelength and amplitude. The characteris-

tic wavelength (;50 cm in this case) tends to be longer

than that of the linear instability for this combination of

parameters and increases with time. Similar ‘‘reddening,’’

or coarsening, was observed in numerical experiments by

FIG. 5. (left) The elevation of the free surface z (the heavy line) and displacement of the layer

interface h (the light line) at times t 5 1, 2, 7, 8, and 25 s; (right) local thickness h of the upper

layer at the same times. The initial conditions correspond to the zeroth-order solution of the

system, i.e., a uniform upper layer with a constant velocity, Uo, riding on an infinitely deep

layer. A spatially varying random perturbation with an O(0.01 mm) amplitude was added to the

top-layer thickness at time t 5 0. The size of the integration domain is 0.5 m. The number of

integration points in the x direction is 210 1 1 5 1025. Note the different stages of wave evo-

lution as described in the text.
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Balmforth and Mandre (2004) on the evolution of roll

waves. As we show later, this increase in the wavelength is

ultimately limited by an instability similar to the original

linear instability.

These numerical results suggest that the appearance

of the steady or quasi-steady wave solutions is a robust

result, and can be expected in domains of arbitrary size.

Other calculations over domains of different lengths and

with different values of the parameters d, Uo, Ud, g, n,

and m confirm the universal character of this phenom-

enon. (Note that for small domains we find steady-wave

solutions with the wavelength matching the domain size

as in Fig. 5. However, for large domains the solution

continues to evolve and forms quasi-periodic waves with

the characteristic wavelength much shorter than the size

of the domain as in Fig. 7.) The next step then is to

consider the properties of these solutions in detail.

4. Numerical results: Steady-wave solutions

The structure of the steady-wave solutions is charac-

terized by alternating long intervals, where changes in the

streamwise direction occur slowly, and short intervals

with rapid changes in the relevant variables (Fig. 8). The

displacement of the free surface is small; it is the dis-

placement of the interface between the layers and the

thickness of the shallow layer that experience the greatest

changes. There is a jump in the thickness of this layer

from 0.4 cm to ;4 cm that occurs over a short distance of

about 5 cm. This implies a strong local slope, O(1) or even

larger, which we associate with quasi-steady wave break-

ing. This region of rapid changes in the wave profile, or

wave breaking, can be referred to as a hydraulic jump.

Before the jump the current is gradually accelerated by

the wind, but within the jump the flow is decelerated to

lower velocities (Fig. 8c). It is easy to show that the flow

is supercritical before (i.e., to the left of the jump) and

subcritical after the jump.

That the strongly forced solutions are, indeed, associ-

ated with hydraulic jumps can be shown by considering

the equations of motion in a flux-conserving or nearly

flux-conserving form. After a little algebra, Eqs. (41)–(45)

can be written in a steady state as

�ch
x

1 (Uh)
x

5 0, (46)

�c(Uh)
x

1 U2h 1
gh2

2
� gh2

2
1 ghd� nhU

x

 !
x

5 g(U2
o �U2)� gzh

x
, (47)

and

�c
hU2

2
1

gh2

2
1 ghh

 !
x

1
hU3

2
1 gUh(h 1 h)� cg(h� dÞ2

2
� nhUU

x

 !
x

5 gU2
oU � gU3 � cgzh

x
� nhU2

x, (48)

which reflect mass, momentum, and energy conservation,

respectively. [If we set h 5 0, n 5 0, and g 5 0, the con-

ventional flux-conserving equations in the long-wave ap-

proximation are recovered; see Whitham (1974).] Changes

in mass, momentum, and energy across the jump are

[H]2
1 5 [Uh� ch]2

1 5 0, (49)

[M]2
1 5 U2h 1

gh2

2
� gh2

2
1 ghd� nhU

x
� cUh

" #2

1

, 0,

(50)

and

[E]2
1 5

hU3

2
1 gUh(h 1 h)� cg(h� d)2

2
� nhUU

x

"

� c
hU2

2
1

gh2

2
1 ghh

 !#2

1

, 0, (51)

FIG. 6. The characteristic speed of propagating disturbances,

calculated as c 5 (hh2
t i/hh

2
xi)

1/2, and maximum thickness of the

upper layer as a function of time. After about 20 s of adjustment,

the solution is already stationary so that c describes the actual

phase speed of the propagating wave. The rapid increase in h and

decrease in c, at time t 5 4 s, is associated with the initial wave

steepening and breaking.
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where 1 and 2 refer to points before (i.e., to the left of)

the jump and after (i.e., to the right of) the jump, re-

spectively. Mass is conserved across the jump in ac-

cordance with (49). Momentum and energy are lost

in the jump ([M]2
1 , 0 and [E]2

1 , 0), as seen from Fig. 9

displaying both M and E as a function of x. This dif-

fers from classical hydraulic jumps in which only

energy is lost while both mass and momentum are

conserved.

It is possible to show that these hydraulic jumps are

necessary to match the smooth ‘‘interior’’ flow to form a

periodic wave. Since outside the jump variations in the

elevation of the free surface z and the viscous terms are

negligible, in the frame of reference traveling with the

wave the equations of motion in the shallow layer re-

duce to

(U � c)U
x

5
g(U2

o �U2)

h
, (52)

[(U � c)h]
x

5 0, (53)

and

FIG. 7. As in Fig. 5, but the size of the integration domain is now 8 m (of which only 5 m are

shown). The number of integration points in the x direction is 213 1 1 5 8193.
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Uj
x5x1

5 U
1

and hj
x5x1

5 h
1
, (54)

where U1, h1 are values of U and h at a reference point

x1. Conditions (54) are added in order to specify a

unique solution of the system. Integrating Eqs. (52)–(54)

gives

U 5 U
o

tanh[A(x� x
1
) 1 B] (55)

and

h 5 h
1

U
1
� c

U � c
, (56)

where

A 5
gU

o

(U
1
� c)h

1

; B 5 a tanh
U

1

U
o

� �
. (57)

The dashed lines in Fig. 8 exhibit these ‘‘interior’’

solutions to be joined by hydraulic jumps (x1 is chosen at

the point where h1 5 d). Figures 10 and 11 show strongly

forced waves and corresponding interior solutions for

other values of l. [Iteration is used to obtain full solu-

tions for new values of l. A previous solution is set as the

initial condition for Eqs. (41)–(45), and slightly different

l. The model is then run until a new steady state is

reached.]

The approximate interior solutions provide a hint of

what controls the maximum length of the strongly forced

waves. The tangential function in (55) describes a uni-

form flow for sufficiently large x. According to the

analysis of section 3, such flows should be unstable to

linear perturbations. The characteristic length beyond

which the flow would become uniform is

l
max

;
1

A
5

(U
1
� c)h

1

U
o

1

g
. (58)

Unfortunately, practical use of this estimate is limited

because the constant (U1 2 c)h1 is a function of l (which

is not known a priori) and other parameters of the prob-

lem. However, one could use it a posteriori to check the

results of experiments.

5. The energy and other balances for steady waves

There are several important balances or constraints

that control the properties of the strongly forced waves.

The most obvious one follows from the equation of mass

conservation and implies that the mean thickness of the

FIG. 8. Details of the steady wave solutions, obtained in the in-

tegrations, shown in Fig. 5, with m 5 0.0005 m2 s21, n 5 0.004 m2 s21,

Uo 5 1 m s21, g 5 0.003, d 5 1 cm, and l 5 0.5 m. The dashed lines

show the approximate ‘‘interior’’ solutions to be joined by hydraulic

jumps. The waves travel to the right with a constant speed c. (a) The

elevation of the free surface z (the heavy line) and the displacement

of the layer interface h (the light line), (b) the thickness of the upper

layer h, (c) the velocity of the flow in the upper layer U, and (d) an

expanded version of (a).

FIG. 9. Momentum and energy fluxes, M and E, as a function of x

in the frame of reference moving with the wave to the right. Both

energy and momentum are lost in the hydraulic jumps associated

with the propagating strongly forced waves. For comparison, the

scaled thickness of the upper layer h is shown (the dashed lines):

m 5 0.0005 m2 s21, n 5 0.004 m2 s21, Uo 5 1 m s21, g 5 0.003, d 5

1 cm, and l 5 0.5 m.
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upper layer does not change with time; that is, h 5 d.

(Hereafter the bars stand for the average over one wave-

length.) The second constraint is dynamical and repre-

sents the balance of forces acting on the upper layer.

Integrating (41) yields

(Uh)
t
1 ghz

x
5 g(U2

o �U2), (59)

which can be written for the steady state as

gU2
o 5 gU2 1 ghh

x
(60)

or

t ’ t
i
1 p

i
sina, (61)

where

p
i
5 gh and sina ’ h

x
. (62)

Here t is the wind stress at the surface, ti is the mean

interfacial turbulent drag proportional to the square of

velocity, and pi sina is the component of hydrostatic

pressure tangential to the interface at the bottom of the

upper layer. The last term represents a form drag acting

at the interface. In the presence of waves, a phase shift

between hx and h causes this term to be nonzero. Thus,

the mean current in the upper layer is determined by the

balance between the imposed wind stress and the drag

(turbulent plus wave drag) at the interface between the

layers.

In the absence of waves, the surface wind stress and

the turbulent drag are equal, t 5 ti, so that U 5 U
o
.

When waves are present, the magnitude of the wave

drag may reach and even exceed the magnitude of the

turbulent drag (Fig. 12a). As a result, the average cur-

rent velocity in the upper layer, U (Fig. 12b), may drop

significantly lower than Uo but never below the level of

the wave phase speed c (Fig. 12c): the strongly forced

waves always travel slower than the current.

The reduction of the current velocity in the upper

layer can also be explained from the point of view of

energy conservation; that is, the surface wind stress does

work on the ocean, which is then dissipated by various

mechanisms. After a little algebra [see Eqs. (48) and

(43)], the energy conservation for the upper layer can be

written as

d�«

dt
5 r(gU2

oU � gU3 � nhU2
x 1 ghh

t
), (63)

where

« 5
r

2
[hU2 1 g(h 1 h)2 � gh2] 5

r

2
(hU2 1 gh2 1 2ghh).

(64)

FIG. 10. Steady wave solutions for wavelengths l 5 1.2, 0.6, and

0.3 m showing elevation of the free surface z (the heavy line) and dis-

placement of the layer interface h (the light line): m 5 0.0005 m2 s21,

n 5 0.004 m2 s21, Uo 5 1 m s21, g 5 0.003, and d 5 1 cm.

FIG. 11. Steady wave solutions for wavelengths l 5 0.3, 0.6, and

1.2 m showing the horizontal velocity U in the upper layer for the

same conditions as in Fig. 10. The dashed lines show the approxi-

mate ‘‘interior’’ solutions to be joined by hydraulic jumps.
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For the steady state the balance is

W 1 D
break

1 D
turb

1 D
press

5 0, (65)

where

W 5 rgU2
oU, (66)

D
break

5�rnhU2
x, (67)

D
turb

5�rgU3, (68)

and

D
press

5 1rghh
t
. (69)

Here W is the power generated by the surface wind

stress working on the mean current in the upper layer

(i.e., the rate of work per unit area); Dbreak is the dissi-

pation in the breaking region of the upper layer, and it

can be easily shown that the region of breaking with

large Ux contributes the most to the integral in (67); Dturb

is the energy used for the generation of shear and/or

turbulence in the bottom layer by interfacial drag;3

and Dpress is the energy needed to perturb the interface

between the layers (by hydrostatic pressure), which is

then dissipated by the eddy viscosity in the lower layer.

Thus, instead of generating surface flow, a significant

part of the wind work is transformed into Dbreak and

Dpress.

Various components of the balance in (65) are shown

in Fig. 13. Overall, about 20% of the wind work goes

directly into wave breaking in the upper layer. This

fraction varies from about 5% to 60% for different Ud

(see next section). It is important that all the constraints

considered in this section do not depend on the ap-

proximation used for the lower layer and should remain

valid in the fully nonlinear case.

6. The sensitivity of the results to changes in the
main parameters

We have conducted a number of calculations explor-

ing the properties of the strongly forced steady waves for

different values of the parameters. The iterative ap-

proach, similar to that described in section 4, is used

again: a gradual change of the chosen parameter in

combination with solving equations (41)–(45). The first

results concern changes in the steady wave solution

when the eddy viscosity m is modified (Fig. 14). A de-

crease in m has a profound effect on the solution. For

small m, the displacement of the layer interface develops

a cusp penetrating deep into the water. Then the nu-

merical scheme fails because of an insufficient number

of node points to resolve such a singularity. The quasi-

nonlinear approximation also fails since nonlinearities

become crucial in the lower layer and must be taken into

account. Large values of m effectively make the flow in

the lower layer so viscous that the top-layer dynamics

become similar to those of a hydraulically controlled

flow over bottom topography (Baines 1995).

Changes in the eddy viscosity n of the upper layer

are also important, although to a lesser degree (Fig. 15).

With decreasing n the width of the hydraulic jump is

reduced, while the jump in thickness of the shallow layer

increases. Below a certain value of n no steady-state

solutions are found, apparently because of small-scale

instabilities associated with the sharp corner developed

in the wave profile. In effect, the hydraulic jump be-

comes unable to dissipate a sufficient amount of energy.

Overall, we have to use relatively large values of viscosities

FIG. 12. (a) Ratio of the wave drag, ghhx, to the turbulent drag,

gU2, both applied at the layer interface and acting on the lower

layer; (b) mean speed of the current in the upper layer U (m s21)

(note that U is smaller than Uo.); and (c) the speed of wave

propagation c (m s21)—all as a function of the wavelength: m 5

0.0005 m2 s21, n 5 0.004 m2 s21, Uo 5 1 m s21, g 5 0.003, d 5 1 cm,

and Ud/Uo 5 0.2.

3 Although not modeled directly, it is implicitly assumed that the

turbulence leads to an enhanced viscosity in the lower layer, which

is accounted for in the interfacial boundary conditions. See Eqs. (7)

and (8), and Ruvinsky et al. (1991).
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n and m (one to three orders of magnitude larger than

regular molecular viscosity) in order to simulate break-

ing regions with a finite width.

An increase in Uo (Fig. 16) has an effect on the solu-

tions somewhat similar to that of a decrease in n. A

stronger imposed current (i.e., larger Uo) leads to

sharper gradients associated with the jump, a smaller

width of the jump, and also a stronger surface signature

of the waves. Above a certain value of Uo, O(4 m s21)

for l 5 0.5 m with the other parameters fixed, no steady-

state solutions are found because the slope in the wave

profile becomes too steep. For low values of Uo, the

solutions lose the character of hydraulic jumps, degen-

erating into kinematic waves, which completely disap-

pear when Uo 5 0.

The effects of changes in d are displayed in Fig. 17.

Below and above certain values of d (about 1 mm and

3 cm, respectively, for l 5 0.5 m with other parameters

fixed), no steady solutions exist, apparently because the

‘‘interior’’ flow becomes unstable. We believe that ap-

propriate values of d should be of the order of 1–2 cm.

With these numbers the upper-layer thickness can reach

5–10 cm in the breaking region, which appears to be a

reasonable number for 50-cm wavelengths.

Finally, variations in g have a similar effect as chang-

ing Uo since increasing (decreasing) g can increase (re-

duce) the mean velocity of the current in the upper layer.

In addition, in accordance with (58), steady solutions

of longer wavelength become attainable for smaller

values of g.

Another important parameter that affects the char-

acteristics of the strongly forced waves is Ud, the mean

flow in the lower layer. Because of vertical shear of

the horizontal velocities, one can expect a transfer of

momentum from the upper layer to the lower layer,

inducing an accelerating current there. We have pa-

rameterized the speed of this current as Ud 5 aUo(0 ,

a , 1). The momentum transfer is a time-dependent

process so that fixing a as a constant is valid only for

shorter time scales. Particular values of a do not change

the wave profile qualitatively; however, they do influ-

ence the phase speed of the solution in the laboratory

FIG. 13. Different components of the upper-layer energy balance as a function of the

wavelength: W, the power generated by the surface wind stress working on the current in the

shallow layer (i.e., the rate of work per unit area); Dbreak, energy dissipation in the breaking

region of the upper layer; Dturb, energy used for the generation of shear and/or turbulence in

the bottom layer by the interfacial drag (it is implicitly assumed that this process contributes to

an enhanced viscosity in the lower layer); and Dpress, the energy needed to perturb the interface

between the layers (it is eventually dissipated by the eddy viscosity in the lower layer). In the

steady state, W 1 Dbreak 1 Dturb 1 Dpress 5 0. The dotted line shows the sum of the four. For

m 5 0.0005 m2 s21, n 5 0.004 m2 s21, Uo 5 1 m s21, g 5 0.003, d 5 1 cm, and Ud/Uo 5 0.2.
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frame of reference, and the amount of energy lost in

the wave breaking. The phase speed increases almost

linearly with Ud, while the relative loss of energy in the

breaking region drops sharply for large Ud (Fig. 18). The

most appropriate values of a for this model should

lie in the range 0.1–0.4 (0.2 was used in most of the

calculations.)

In summary, changes in different parameters affect

both the ‘‘interior’’ flow and the local properties of the

jump, making steady wave solutions possible in a broad

parameter range of different combinations of wave-

length l and parameters m, n, d, g, Ud, and Uo. It is

noteworthy that an increase in m, n, Ud, or Uo and a

reduction in d increase the thickness of the jump in the x

direction and result in a larger phase speed of the

waves. Also note that some of the solutions, especially at

larger values of l or d, can become unstable due to

slow modulational instabilities.

7. Discussion and conclusions

We have shown that there exist strongly forced sur-

face waves in a two-layer fluid that consists of a shallow

wind-driven turbulent layer on the surface of an infi-

nitely deep fluid. These waves propagate in the down-

wind direction, significantly modifying the flow in both

layers. The wave structure is characterized by long in-

tervals where the current is gradually accelerated by

the wind, separated by relatively short confined regions

associated with quasi-steady wave breaking where the

flow is decelerated to lower velocities. The regions of

breaking (described in our model as regions of strong

gradients in the relevant parameters) can be referred

to as hydraulic jumps that are necessary to match the

smooth ‘‘interior’’ flow in a periodic wave train.

The mean current in the upper layer is determined by

the balance between the surface wind stress and the drag

at the interface between the layers. This interfacial drag

has two components: turbulent drag modeled as pro-

portional to the second power of the current velocity and

wave drag, whose magnitude may actually exceed that

of the former. (In the absence of the waves, the surface

FIG. 14. Steady wave solutions for different values of the eddy

viscosity, m, of the lower layer for n 5 0.004 m2 s21, Uo 5 1 m s21;

g 5 0.003, d 5 1 cm, and l 5 0.5 m: elevation of the free surface, z

(the heavy line) and displacement of the layer interface, h (the light

line). From top to bottom: m 5 1000, 200, 50, and 1 3 1025 m2 s21.

Corresponding values of the phase velocity obtained from our

calculations are c 5 0.65, 0.47, 0.32, and 0.24 m s21. Note that at

very high values of m, the flow in the lower layer is effectively so

viscous that the solution in the upper layer effectively resembles a

jump in a hydraulically controlled flow over the bottom topogra-

phy. At low values of m, the interface develops a singularity, and

the quasi-non-linear approximation fails.

FIG. 15. Steady wave solutions for different values of the eddy

viscosity n of the upper layer for m 5 0.0005 m2 s21, Uo 5 1 m s21,

g 5 0.003, d 5 1 cm, and l 5 0.5 m: elevation of the free-surface

z (the heavy line) and of the displacement of the layer interface h

(the light line). From top to bottom n 5 20, 4, and 1 (31023 m2 s21).

Corresponding values of the phase velocity, as obtained from cal-

culations, are c 5 0.45, 0.32, and 0.30 m s21.
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wind stress and the turbulent drag balance each other.)

The wind stress does work on the ocean, which is then

dissipated through three main mechanisms: 1) dissipa-

tion in the breaking region, 2) the work of the hydro-

static pressure needed to perturb the interface between

the layers (it is eventually dissipated by the eddy vis-

cosity in the lower layer), and 3) the generation of shear

or turbulence in the bottom layer by the interfacial

stress. (Although not modeled directly, it is implicitly

assumed that this mechanism leads to an enhanced vis-

cosity in the lower layer.)

It is tempting to compare these strongly forced solu-

tions to the roll waves in shallow water on an inclined

plane, but there are important differences. Unlike clas-

sical hydraulic jumps (as discussed in Lighthill 1978), the

strongly forced solutions lose not only energy across the

jump but momentum as well. To that end, these jumps

must have a finite thickness in the x direction. These and

other differences make a direct comparison with roll

waves somewhat limited. The roll waves are basically

long nonlinear gravity waves and, as such, travel with a

speed faster then that of the mean current. In contrast,

the strongly forced wave solutions propagate with speeds

smaller than the mean current of the upper layer. (One

can easily observe this in the wave field generated by the

downwash of a low-flying helicopter, if the trajectories

of air bubbles that act as passive tracers are followed.

Within the frame of reference traveling with the waves,

the bubbles quickly move toward the region of breaking

where their trajectory is pushed downward with a con-

siderable acceleration.) If one uses the frame of refer-

ence traveling with the waves in both cases, that is, for

the classical roll waves and the strongly forced wind

waves described here, this difference disappears.

One of the important effects of the strongly forced

waves, besides generating enhanced turbulence by wave

breaking, is to reduce the mean speed of the surface

current in the upper layer, as compared to the case of a

uniform wind-driven layer. The speed of the current can

decrease by a factor of 2–5, depending on the wave-

length, eddy viscosity, and other parameters. In effect,

the wind work goes directly into wave breaking and

turbulence.

The evolution of an initially undisturbed wind-driven

layer follows a simple scenario: linear instability leads to

wave growth and steepening and, eventually, breaking.

Further adjustment results in the formation of quasi-

steady wave solutions. Continual interactions among

those (with wave breaking and also with the excitation

of free surface waves) lead to the establishment of a

characteristic wavelength, which is usually longer than

that of the linear instability. This wavelength has a ten-

dency to grow; however, it is limited by an instability,

similar to the original linear instability, that tends to

FIG. 16. Steady wave solutions for different values of Uo for m 5

0.0005 m2 s21, n 5 0.004 m2 s21, d 5 1 cm, g 5 0.003, and l 5 0.5 m:

elevation of the free-surface z (the heavy line) and of the dis-

placement of the layer interface h (the light line). From top to

bottom Uo 5 2.5, 0.5, and 0.05 m s21; corresponding values of the

phase velocity are c 5 0.37, 0.30, and 0.25 m s21.

FIG. 17. Steady wave solutions for different values of d for m 5

0.0005 m2 s21, n 5 0.004 m2 s21, Uo 5 1 m s21, g 5 0.003, and l 5

0.5 m: elevation of the free-surface z (the heavy line) and the dis-

placement of the layer interface h (the light line). From top to

bottom, d 5 1.8, 0.5, and 0.2 cm. Corresponding values of the phase

velocity c 5 0.30, 0.38, and 0.50 m s21.
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develop on smooth parts of the wave profile as the

wavelength becomes too long.

Under less strongly forced conditions, intermittent

microscale wave breaking in which there is no significant

air entrainment has been recognized at least since the

work of Banner and Phillips (1974). Such breaking may

result from the instability of parasitic capillary waves

generated on the forward faces of short gravity–capillary

waves (Duncan et al. 1994, 1999; Duncan and Dimas

1999; Fedorov et al. 1998; Jiang et al. 1999; Perlin and

Schultz 2000). Even in the absence of breaking, it has

been shown that parasitic capillaries may lead to signif-

icantly enhanced radiation damping of longer gravity–

capillary waves (Ruvinsky et al. 1991; Longuet-Higgins

1995; Fedorov and Melville 1998). Kolmogorov-type

weak turbulence theories of wind wave generation and

evolution (Zakharov et al. 1992) would have essentially

all of the dissipation occurring in these short unresolved

waves while the dynamics of the longer resolved waves

are the result of wind forcing and weakly nonlinear

wave–wave interactions. A more complete model of

strongly forced waves would need to include these effects

of surface tension and surface curvature and, perhaps,

flow separation near the crests of these steep short waves

(Longuet-Higgins 1990).

The above description reveals several limitations of

our model. The first is that the wave breaking is nu-

merical, as there is no wave overturning possible in the

system. The second is that the upper-layer thickness and

the coefficients of eddy viscosity are assumed to be fixed.

In reality, one would expect a gradual deepening of the

top layer, accompanied by changes in the turbulence and

mixing. Last, but not least, are the limitations imposed

by the quasi-nonlinear approximation. While making

the problem more tractable, it also defines its main

weaknesses. From Figs. 5 and 7, or Figs. 14 and 15, it is

clear that unless relatively high values of eddy viscosity

are used, the slope of the interface may exceed O(1),

implying that a fully nonlinear approach is desirable.

The model also assumes a relatively simple (constant

stress) forcing by the wind, whereas the flow in the air

and water are coupled so that the evolution of the

surface layer and surface waves feed back onto the

airflow. It is most unlikely that significant progress can

be made in this area without resorting to direct nu-

merical simulation (DNS) or large eddy simulation (LES)

of strongly nonlinear (e.g., Iafrati and Campana 2003)

and coupled flows.

Despite these limitations, the results are surprisingly

robust in a very broad range of parameters. We were

able to reproduce the strongly forced solutions in the

range of wavelengths from 10 cm to 4 m, using eddy viscos-

ities of the upper layer in the range O(1023–1022 m2 s21),

eddy viscosities of the lower layer in the range O(1025–

1022 m2 s21), and different values of Uo, Ud, g, and d.

We have investigated how the effect of variations in

normal pressure related to variations in surface slope

influence our solutions; see appendix A. (These are

variations in normal pressure that induce form drag.)

We find that over a broad range of parameters, reflecting

the relative importance of the form drag, the structure

and qualitative behavior of the solutions remain un-

changed. Furthermore, the model results show qualita-

tive agreement with the two examples presented in Fig. 1:

the waves ‘‘break’’ continuously at each crest, and the

wave phase speed is slower than the surface flow (for the

helicopter downwash). This suggests that developments

of the model may be applicable in describing strongly

forced surface wave fields. However, such developments

should be pursued in concert with experiments to test the

essential ideas of the model. For example, rapid distor-

tion theory, or even empirical data on the parameteri-

zation of turbulence in accelerating flows, might be used

to relax the assumption of constant eddy viscosities,4 but

this should be done in concert with measurements of the

turbulent properties of the surface layer, and the disper-

sion relationship for strongly forced surface waves. As far

as we are aware, there are no empirical data with which to

compare this model.
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APPENDIX A

The Role of Normal Surface Pressure

In the main body of the text we assumed that the

dominant effect of winds on the ocean is in generating

surface flow in the upper layer via tangential wind stress.

To evaluate the effect of normal pressure generated by

the airflow above a wavy surface, we now add to the

momentum equations (41) and (45) a simple parameter-

ization of normal pressure anomalies, which allows for a

surface form drag:

(Uh)
t
1 (U2h)

x
1 h(P/r)

x
5 g(U2

o �U2)� n(hU
x
)

x
,

(A1)

F
t
1 U

d
F

x
1 (P/r) 5 2mF

xx
, (A2)

with

P/r 5 g(z 1 L
p
z

x
). (A3)

Here P includes the hydrostatic component associated

with the modulation of the height of the free surface

(rgz) as used in the body of the paper along with an

additional term (rgLpzx) that is in phase with the surface

slope. This latter term leads to a form drag and hence

wave growth.

The characteristic length, Lp, is introduced to describe

the relative magnitude of the form drag. In general, Lp is

a function of the wind speed and the surface wavelength.

If one uses (A3) in the conventional theory of irrota-

tional linear surface gravity waves (e.g., Whitham 1974),

the calculated amplitude growth rate G for a mono-

chromatic wave is given by

G 5
ck2L

p

2
5

2p2cL
p

l2
5 pL

p

2pg

l3

� �1/2

. (A4)

For surface gravity waves with l 5 0.5 m and Lp 5 0.005 m,

this expression gives G 5 0.35 s21, or roughly 3 s as

the e-folding time scale for wave growth, which can be

achieved only at high wind speeds (see Komen et al.

1994, p. 85, Fig. 2.3).

We have conducted multiple numerical experiments

to investigate the properties of the solutions with the

modifications given in Eqs. (A1)–(A3) and the results

are as follows (Fig. A1). For values of Lp smaller than

approximately 0.005 m both steady waves and quasipe-

riodic solutions exist, very similar to the ones described

in the main body of the paper. The limit 0.005 m depends

to some extent on the parameters used for the calcula-

tions, including n, m, and l.

For values of Lp larger than 0.005 m, steady wave

solutions become unstable almost immediately, but the

solutions still represent quasiperiodic strongly forced

waves with regions of strong breaking. One of the effects

of surface pressure variations simulated by our simple

model is to add short-wave undulations that reduce the

typical wavelength of the solutions (Fig. A1c). Another

effect is to increase the surface height of the waves and,

at the same time, to introduce irregular long-wave modu-

lations of the solutions.

Finally, for values of Lp approaching or larger than

0.01 m, the waves become more and more chaotic and

resemble our original solutions less and less. Neverthe-

less, one can still recognize the regions of wave breaking

characterized by steep gradients on the forward face of

the waves (Fig. A1d). Based on these results, it appears

FIG. A1. Elevation of the free-surface z (heavy line) and displace-

ment of the layer interface h (light line) for m 5 0.0005 m2 s21, n 5

0.004 m2 s21, Uo 5 1 m s21, g 5 0.003, and d 5 1 cm: (a) a steady

wave solution for Lp 5 0.003 m and l 5 0.75 m; (b)–(d): typical

quasi-periodic time-dependent solutions for Lp 5 0.003 m, 0.006 m,

and 0.01 m.

2520 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39



likely that different balances of the total surface stress

between shear and normal stresses may lead to different

strongly forced wave regimes.

APPENDIX B

Varying Eddy Viscosity in the Upper Layer

In the main body of the paper, we used constant values

of eddy viscosity for the upper layer. However, it is clear

that wave breaking occurs only in confined areas, which

we expect will have narrow regions of elevated viscosity.

To take this effect into account, one can parameterize

viscosity as a function of the upper-layer thickness, for

example see Fig. B1.

We have tried several such parameterizations, all of

which work quite well with an appropriate choice of

parameters. For the sake of brevity, in this appendix we

describe only one such representation:

n 5 n
0

0.1 1 0.9
›h

›x

�� 2
" #

. (B1)

Here viscosity n is proportional to a base value n0

multiplied by a factor, varying along the wave as a

function of the horizontal gradient in the thickness of

the upper layer. The numerical coefficients in (B1) could

be easily changed, but that would lead only to minor

modifications in the wave profiles.

The difference between solutions with constant and

varying viscosities is rather small (Fig. B1a), even though

viscosity along the wave profile in the latter case (except

in the breaking region) is an order of magnitude smaller

than the value originally used.
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