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An experimental and numerical study of parasitic capillary waves
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We report laboratory measurements of nonlinear parasitic capillary waves generated by longer
waves in a channel. The experiments are conducted for three frequencies of longetdyavesd

6 Hz), corresponding to wavelengths of approximately 11, 7, and 5 cm. For these wavelengths we
apply a model developed recently by Fedorov and Melille=luid Mech.354, 1 (1998] to predict

the wave profile. Based on a viscous boundary layer approximation near the surface, the model
enables us to efficiently calculate gravity-capillary waves. We present direct comparisons that show
good agreement between the measurements and numerical predictions over a range of parameters.
Finally, we give some simple estimates for a sharp cutoff in the wave number spectra observed in
both the numerical solutions and the laboratory measurements of short gravity-capillary waves.
© 1998 American Institute of PhysidsS1070-6630198)01206-9

I. INTRODUCTION Better qualitative and quantitative agreement with the
available experiments was achieved by the theory of
The generation of parasitic capillary wav@s parasitic  Longuet-Higgins(1995,'! who introduced a new perturba-
capillarie3 by steep gravity-capillary waves is an important tion model for steady gravity-capillary waves. The underly-
mechanism for momentum, energy, and gas transfer betweéng longer wave was assumed to be a pure gravity wave
the atmosphere and ocean. The effects of gravity and surfaggven by a Stokes expansion, which served as the first ap-
tension determine the fine structure of the ocean surfacg@roximation for the model. Surface tension and the large
which is important for microwave remote sensing of thecurvature of the crest of the gravity wave acted as a local
ocean. Experimental research on parasitic capillary waveforcing term, leading to the excitation of parasitic capillaries
has a relatively long history, including pioneering work by by a mechanism analogous to the “fish line” probléfThe
Coxt and subsequent studfesthat have provided temporal main limitation of Longuet-Higgins’ theory was that para-
measurements of the surface slope of mechanically or wingsitic capillary waves appeared only as a linear response to the
generated waves at a single location. Ebuthal? produced  forcing.
high-quality images of wind-generated gravity-capillary Recently, Fedorov and Melvilté have developed a new
waves with distinct trains of parasitic capillaries riding aheadtheory capable of describing nonlinear gravity-capillary
of bulging wave crests. They argued that the crest of sucaves. The theory is based on a viscous boundary layer ap-
waves(the “capillary roller” ) is a region of high vorticity ~Pproximation near the surface, and uses a full Stokes expan-
in the water. Jane and Riemér(1990, among otheré;® sion with complex coefficients, which reflects the asymmetry
have used various optical techniques to measure the loc&f the wave profile. It also includes external forcing neces-

slope of gravity-capillary waves and to deduce wave numbegary to balance the viscous dissipation. A preliminary com-
spectra. parison with experiments showed good agreement between

plunger-generated waves with parasitic capillaries. RegrettZcaTy out a more extensive set of measurements to further
bly, their results were strongly affected by the fact that theytest our theoretical results. _
took measurements within a few wavelengths of the wave We also dISCUSSUtg]g nature of the so-called “high-
generatot! Perlinet al. also tried to compare their measure- Wavenumber cut off™">~ (an abrupt decrease by several
ments with theoretical results available at that time, includ-orders of magnitudein the spectral energy density after the
ing the analytical models of Longuet-Higgin&963*2 and spectral maximum corre_spondlng. to capillary npp[@gc.
several other&4 Their comparisons gave large quantita- V). Wg provide some S|mple estlmates for calculating the
tive, and even qualitative, departures from these theorie@@ndwidth of the main capillary maximum, as well as the
Ruvinsky et al5 developed a new theory and comparedCutoff wave number.

some of their results with those by Yermakeval® How-

ever, they were able to reproduce parasitic capillaries of onl{}- ANALYTICAL MODEL AND NUMERICAL

very low amplitudes, and their comparisons lacked importanf‘PPROACH

details. For completeness, the theoretical model and numerical
approach of Fedorov and Melvifieare reviewed here. To
aCurrent address: AOS program, Princeton University, P.O. Box CN710freat periodic surface waves of permanent form, we trans-
Sayre Hall, Princeton, New Jersey 08544. form to a frame of reference traveling with speedo the
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right (c>0). In this reference frame the motion is steady. Here, p is the fluid density;g, gravity; T, the surface

Following the classical boundary layer approximation, wetension, andP, the external pressure forcing at the surface

assume that the flow is irrotational everywhere except in aecessary to balance the wave dissipatidh.Z', and 1R

thin subsurface viscous boundary layer. We also adopt thare the irrotational component of the flow velocity on the

assumption of classical linear dampitig?® It implies that  surface, the complex coordinate of the free surface, and the

all Fourier harmonics of the wave are damped independentlypcal curvature, respectively. In additionRlis the full local

while higher-order nonlinear dissipative terms can be neeurvature of the surface. Equatié8) is a Stokes expansion

glected. with as yet unknown coefficients,,. Equation(4) is Ber-
Irrotational flow is used to describe the gravity-capillary noulli’'s integral for a steady weakly damped flow with an

waves in the first approximation. Then additional terms duainknown constanE. When a,,,c and E are found,Z' is

to the presence of the viscous boundary layer are calculatedetermined from Eq(3). After calculatingZ, the elevation

modifying the original irrotational variables. Accordingly, of the free surface is given bi@).

Bernoulli's integral for the surface of the weakly damped In addition to Egs.(3)-(11), we introduce the dimen-

flow is derived, while a Stokes expansion with complex co-sionless wave amplitude as

efficients is used to represent the surface waves. External i

pressure forcing, which is needed for the waves to remain ak=[max(Y)—min(Y)]k/2, (12)

steady and periodic, is explicitly included in the model.  ¢orresponding to the characteristic slope of the wave of wave

Using this approach we formulate a closed set of equanuymberk=2#/\. Clearly, fixingak is necessary to specify
tions, yielding a parametric representation of the free surfacghe wave height.

X=X(), Y=Y(2), (1) . For the.externall forcing?q in (4) and (8), we took a
simple cosine profile,Py coskx, although more general
or forms may be used. The forcing is necessary to balance the
Z=X+iY, (2)  dissipation and keep the waves periodic and steady. For ex-

ample, the forcing may represent the surface pressure distri-
whereX andY are horizontal and vertical coordinates of the ption due to the effect of wind on the water surface. The

free surface, and is the independent parameter. The detailsiength scale of the forcing coincides with the wavelength of
of the derivation are given in Ref. 17. Here we present onlithe longer wave, so that parasitic capillaries are not directly
the final formulation: One needs to firl, such that affected by the external pressure. Together Wigh we use

a nondimensional amplitude of the forcing,

. —im¢ 2 ~
§+|mE:lame ) {C[0,27], ) o=Po/pc (13

and where

U' T Py vkd o co=glk+ Tk (14)

—+gY+s+—+—— U"=E, (4)
P is the phase speed of linear gravity-capillary waves. The so-
where lutions have a parametric dependence\oip, andak.
c To solve the systerll)—(14), we discretize equations on
Ui=— " (zi(zi{*)—ﬂ{ (5) the interval of{ from 0 to 27 and truncate them, retaining
about 100 terms of the seriedMore terms are needed for
C 2ip reJuUl Ul calculating strongly nonlinear solutions with overhanging
Z2=7'- e f ( <§,—> )dg’, (6)  wave crests, which are not considered in this papeAll
the derivatives with respect tpare calculated using E(B),
and the integrals if6) and (11) are evaluated by means of
=—Im{Z,z2;%z* ;"3 (7)  the trapezoidal rule. This procedure yields a finite set of al-
gebraic equations ia,,,c andE, with ak, p, and the wave-
PO:”Iso coskX (8) length A\ as independent paramete($his is different from
regular steady gravity waves, for which the wave amplitude
with and the wavelength are the only paramejerbe coefficient
X=ReZ—Re ero and Y=Im Z, (9) of surface ten;ioﬁ and viscosi_tyv are assumed to bg fixed..
The resulting set of equations is solved numerically via
and Newton’s method. We calculate the Jacobian for Newton’s
1 _ iterations numerically, rather than analytically, as in other
B Im(Z},Z' 372" [ 1), (10)  similar studie€® As an initial guess, we usually take a pro-
file corresponding to a linear gravity-capillary wave. In other
and cases, we use a previously calculated solution as the initial
i i guess, but change the combination of parameters. The itera-
<B_> _ i fzw B_ , tions converge in a broad rangeaX andp. (For details see
| -dZ. 11 17
R'/ 2w R Fedorov and Melvillé-)

=

x|+~
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A Wavemaker

Beach

Laser Slope
Gauge

0.5 . . , . FIG. 2. Schematic of the experimental setup showing the channel, the wave-
maker, and the laser slope gauge. The channel is 30 m long.

dY/X underwater laser assembly, lenses to focus the beam on a
position photodiode, and a signal amplifier. The LSG uses
the refraction of a laser be&t by the water surface to
measure the slope of the surface. A Fresnel lens was used to
eliminate the effects of the vertical displacement of the sur-
‘ , . ’ face on the slope measurements. A detailed description of a
0 5 10 15 20 similar LSG can be found in Langet al.,?? for example.
Data were sampled at 1 kHz, while the time series for
FIG. 1. An example of numerical calculations for the profile of the free each combination of parameters was about 30 s long. The
surface and its slope for=7 cm, ak=0.30, andb=0.015. Strong capillary ~ experiments were conducted with wavemaker frequencies of
Ir‘lerangngltehssrclgtleesir\m;;nger waves. Note the different vertical and hor|zontal6, 5, and 4 Hz corresponding to wavelengths of approxi-
mately 5, 7, and 11 cm. The spatial resolution of the LSG
was approximately 0.7 mm. The errors in the slope measure-

Numerical calculations and linear analysis of the systenine€nt were estimated to be in the range 5%-10%.
(1)—(14) show that there are two main classes of solution for

weak forcing(class 1 and class 2, fg<ak). For the first V. WAVE SLOPES FOR DIFFERENT AMPLITUDES

class, the pressure maximum occurs near the wave troug ND FREQUENCIES: EXPERIMENTAL RESULTS
while for the second it is near the crest. Both types of waves '

are qualitatively similar, with only small quantitative differ- In Fig. 3 we show a 5 section of a typical time series
ences for weak forcing. Both yield asymmetric profiles with for 5 Hz gravity-capillary waves. The higher-frequency para-
shorter parasitic capillary waves riding on the forward facesitic capillaries are predominantly at the negative slopes. The
of the longer waves. An example of our solutions for thewave pattern is regular and almost stationary; however, one
class 1 waves is shown in Fig. 1. See Figs. 6 and 7 below fozan notice some temporal unsteadiness over timéx d) s.
comparisons of class 1 and class 2 solutions. (A substantially less steady pattern is observed for 4 Hz
waves, see Fig.(4) below. A typical frequency spectrum of
the slope time series is presented in Figo)3Following a
monotonic decrease in amplitude up to the eighth harmonic
Experiments were conducted in the Hydraulics Laborathere follows an increase in the spectral density associated
tory at Scripps Institution of Oceanography. A 30 m long,with the parasitic capillaries. There is a sharp decline in the
0.5 m wide, and 0.6 m deep glass wave channel equippesbectral energy density after this increase, or a spectral
with a wave generator was uséfelg. 2). Measurements were “cutoff.” 1"®89The plot also shows a higher-order capillary
taken at fetches greater thd m away from the wave gen- maximum, which has been predicted by the thedry.
erator, which is equivalent to 10 to 20 wavelengths of the In Figs. 4a)-4(c), we present a one-second-long time
longer waves. To remove contaminants, the surface of theeries obtained for different wave frequencies and ampli-
channel was cleaned periodically by blowing wind and skim-tudes. First, one can notice the apparent increase in ampli-
ming the surface at the downwind end of the channel. Withtude of parasitic capillaries with the increasing slope of the
time the surface becomes contaminated, resulting in a drdenger wave. The amplitude of the parasitic capillaries is
matic decrease in the amplitudes of capillary waves. rather sensitive to the amplitude of the longer waves. This is
Surface waves were generated mechanically by the vetrue, especially for 4 Hz waves that develop shorter capillary
tical motion of a wedge-shaped plunging wavemaker. Meawaves and require a greater steepness for the appearance of
surements of the surface slope were made with a fixed laséhe ripples. Although the local wavelength of the ripples var-
slope gaug€LSG). This device, which is designed to mea- ies along the longer wave, we can estimate characteristic
sure the fine structure of short water waves, consists of awavelengths of the capillary ripples from the spectrum. This

Ill. EXPERIMENTAL SETUP
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FIG. 3. The 5 Hz waveda) An example 6 a 5 stime series of the mea- 01 \/\/\/\/\/
sured wave slope. The darker unresolved parts of the plot correspond to -03F 1
parasitic capillaries(b) A typical frequency spectrum of the time series. -05k

Each peak to the right of 5 Hz is a harmonic of the fundamental wave. The
increase in harmonic amplitudes indicated by the solid arrow corresponds to
the appearance of parasitic capillaries. Note a sharp decline in the spectral
energy density after this increaghe cutoff”®9. The open arrow shows a
higher-order capillary maximum, also predicted by the thébry.

gives wavelengths of approximately 6, 5, and 4 mm for 6, 5,
and 4 Hz longer waves, respectively. Note that, especially in
the case of the 4 Hz waves, the definition of characteristic
wavelength becomes less accurate because of the widening
of the capillary maximum in the spectrum.

For both 6 and 5 Hz waves, the wave patterns remain
quite regular, and no visible instabilities develop. However,
with increasing amplitude, 4 Hz surface waves lose stability,
and capillary ripples become irregular. We believe that this
is due to modulational instability of the underlying longer
gravity waves at these amplitudes and wavelengths, as well
as three-dimensional instabilitiéyhich could be observed
in the experiments.

There is another noticeable difference between the 6 and
5 Hz waves, and the 4 Hz waves. In the case of the shorter
waves(5 and 6 Hz, the capillaries appear along the entire
wavelength, while for the longer 4 Hz waves they are con-
centrated on the forward face of the wave. This is related to
the stronger decay of the shorter capillary ripples.

Figure 5 summarizes our experimental measurements of
the slopes of the capillary ripples for different frequencies
and slopes of the longer waves. The characteristic relative 5 S S SR |

. X ) . . 0 041 0.2 03 04 0.5 0.6 0.7 08 0.9 1
slope of the ripples is obtained by averaging the capillary
waves out and subtracting the smoothed profile from the
data. This gives the profile of the capillary ripples. Calculat-FIG. 4. Experimental measurements of the slope of mechanically generated
ing the mean square deviation yields the characteristic slop&aves in the channel for different wave amplitudels and frequencies.

: - : Arrows indicate the periods of the time series used for further comparison
of the rlpples relative to the slope of the underlylng IongerWith numerical solutiongsee Figs. 6, 7, and)8The measurements are

wave. Within the accuracy O_f this approach similar data caronduycted for three frequencies of the dominant longer wéye8 Hz, (b)
be obtained from the numerical results. 5 Hz, (c) 4 Hz. The particular values afk are shown in each figure.

0.3 0.4 05 0.6 07 0.8 09 1

Time, sec

(c) Time, sec
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FIG. 5. The characteristic relative slope of the capillary ripples versus the
slope of the underlying longer wave for different frequencies. The full local
slope changes in the characteristic rangeadd (onger wavet (2K)ipples- COM-
piled from the data presented in Figga$-4(c).

0.04 0.08 0.12 0.16 0.2
Time, sec

In treating our results in Fig. 5, one should be aware thafIG. 7. Experimental measurements of the slope of 5 Hz wés@l line),
(a) the amplitude of the capillary ripples varies along thecompared with numerical solutionga) Class 1 solution, dashed line, for
L . N=7.3cm, ak=0.265, andp=0.0062; (b) class 2 solution, dot—dashed
longer wave, and(b).'Fhe charactens'qcs of the _cap|llary line, for A—7.1 cm. ak—=0.265, andp—0.0014.
waves are very sensitive to changes in the amplitude of the
longer wave and the conditions of the experiments. Never-

theless, Fig. 5 gives the typical dependence of the slope of
the parasitic capillaries on the frequency and the slope of the

longer waves. A sharp increase of the slope of the parasitic
capillaries with increasing slope of the longer waves is ap-
@ parent.

V. DIRECT COMPARISON OF NUMERICAL AND
EXPERIMENTAL DATA. SPECTRAL CUTOFF

Before presenting a direct comparison between the nu-
merical and experimental results, we need to note a differ-
ence between the model and experiments. In the wave chan-
nel the energy is transferred to the waves through the work
of a wave generator, rather than through a pressure distribu-
tion at the surface, as in the theory. Consequently, the waves
in the channel slowly decay, so that we can treat them as
only quasiperiodic in space. The amplitude decay rates vary
from O(1%—10%) per wave period depending upon the
wave amplitude and frequency. This would lead to differ-
ences between the experimental measurements and theoreti-
cal predictions of the same order of magnitudee below.
However, since the error in the measurements are estimated
to be in the range of 5%—-10%, this should not be a leading-
order effect.

e e A fit of the experimental results with solutions obtained
Time, sec numerically is shown in Fig. 6 for 6 Hz waves, and Fig. 7

for 5 Hz waves. The calculations are made for

FIG. 6. Experimental measurements of the slope of 6 Hz wésai line), _ -1 _ -2 :
compared with numerical solution&) Class 1 solution, dashed line, for v=0.01cnfs ' andT=73cnPs % The particular parts of

\=5.2 cm,ak=0.20, andh=0.0015;(b) Class 2 solution, dot—dashed line, f[he '_cime series taken for comparison are indicated by arrows
for A=5.1 cm, ak=0.205, ancb=0.005. in Figs. 4a), 4b), and 4c).
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The procedure to obtain this comparison is as follows. 1 —s
First, we choose the appropriate value of the wavelength for 4@
numerical calculations to approximately match the frequency ' § ?
of the observed wave. Then we adjust the nondimensional | 0
wave amplitudeak. Finally, the value ofp is changed to /

obtain agreement with respect to the number of capillary 107}
ripples. This procedure is repeated several times, since any
change ofak and p affects the frequency of the dominant b
wave. When calculating the solution, we also obtain the the- 15|
oretical phase speed of the wave. This enables us to present
the numerical solution, as a function of time at any point of 10 ¢
the surface. Ll
As one can see from Figs. 6 and 7, both classes of solu-
tion provide good quantitative agreement with the observa- 107
tions; although we have to choose slightly different values of ke keo
\, ak, andp in each case. The number of ripples can be Wavenumbet, rad/m
matched exactly, while the values of the slope differ by not
more than 5% in most cases. Although a larger deviation
occurs for the last ripple in the ro@@specially noticeable for 107 ® o
the 5 Hz wavesthe match is quite accurate. In FiggaBand o
8(b) we also show a comparison between the experimental ' | °
and numerical wavenumber spectra for 6 and 5 Hz waves.
These are spectra of time series formed by repeating the
single period used in the time-domain comparisons of Figs. 6 107
and 7, 64 times. This treats the waves as essentially periodic
rather than quasiperiodic with subharmonic components and
harmonics of finite bandwidth. The agreement between the 5[
measurements and theory is very good.
The spectra in Figs.(8) and 8b) deserve some special 107
attention. The lower wave number region of the spectra with . .
a relatively slow decay corresponds to the first few harmon- 10° 10°
ics of the fundamental wave. The first local maximum is due
to parasitic capillaries. The second local maximum is asso-
ciated with higher harmonics of the main capillary maxi- FIG. 8. The wave number spectra based on the experimental and numerical
mum, and is significantly weaker in magnitude. A sharp de_dgta presented in Figs. 6 and 7 The circle§ correspond to the spectrgl den-
. . sity obtained from the numerical calculations for the class 1 solutions.
crease In SpeCtral denSItf{by three to four orders of Again, notice a sharp decline in the spectral density after the main capillary
magnitude develops after the first capillary maximum. This maximum(the arrow. The estimated values of the resonant capillary wave
rapid decrease appears to be similar to the cutoff observed immberk. and cutoff wavenumbek,, are showr[see Eqs(17) and(21)].
the measurements of wind-wave speétfave will estimate 1" frequencies of the dominant longer wave @e6 Hz, (b) 5 Hz.
the typical wave number corresponding to the main capillary
maximum and its bandwidth, which is equivalent to finding

the location of the “cutoff.” _and dissipative effects on the capillary ripples. The phase
The physical reason for the appearance of the parasitigheed of the longer wave {i16) includes a nonlinear Stokes

capillaries is the amplification of higher harmonics of the correction(Whitham, 1974

fundamental waves due to a resonance. The approximate gquation(17) gives the typical “capillary” wave num-

resonance conditidncan be obtained from matching phase per as

speeds between the longer waeg and the shorter capillary

wave (C.). This matching condition yields

Wavenumber, rad/m

gN 27 —
kc~(m+T (1+a“k?). (17)

c2=c?, (15

Substituting the appropriate parameters for the 6 and 5 Hz
waves Yyields the typical wave numbers 1200 and 1700
rad/m, respectively, which falls approximately in the center
chw(gjLTk)(Hazkz), (16) of each capillary maximum in Figs(& and 8&b).
k Furthermore, nonlinearity leads to the local resonant
condition being different for different phases of the longer
wherek, is the resonant wave number of the capillary waveswave profile. In fact, we should match the phase speed of the
For simplicity, we have disregarded the nonlinear, gravity,capillary wave with the velocity of the local surface *“cur-

or
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rent” induced by the longer wave. In the frame of reference , , , @
moving with the wave this velocity is calculated in terms of o ,
c andak as 0.3F Experiment
0.2
U2~c?(1+2ak coskX). (18 0.
That is, locally, the resonant conditiaii6) should be re- _0:’
placed by on
c2~c?(1+2ak coskX). (19 -3
0.4
This causes the formation of the capillary maxima with a 05
finite bandwidthAk;, centered ak., instead of a narrow o
peak. Since cosine ranges froml to +1, Eq.(19) implies o4l
that
Ak,
~4ak. (20

C

From Eg. (20), the cutoff wave numberk(,) can be
estimated as

k
Keo=Ke+ T°=kc(1+ 2ak). (21) '
o8 0.05 0.1 018 0.2 0.25
Under this definition the cutoff wave numbers may be actu- Time, sec

ally higher than in previous StUdiégzleSinC? fgrmula(21) . FIG. 9. Experimental measurements of the slope of 4 Hz wéesom-
provides an estimate for the uppermost limit of the MalNpared with a numerical solutiotb). Calculations are fol =11 cm, ak
capillary maximum, rather than the beginning of the spectral0.31, andp=0.006, and the class-1 solutions.
falloff.

Substituting our parameters for the 6 and 5 Hz waves

gives bandwidthsAk. of about 1000 and 1800 rad/m, and ) o .
the cutoff wave numberk,, about 1700 and 2600 rad/m, with the difference only significant for higher wave slopes

respectively, which is consistent with the data in Fig&) 8 apd shorter wavelengths. An example of this comparison is
and 8b). given in the Appendix.
The spectral cutoff appears to have a simple explanation:
There is a resonant peak of finite bandwidth, after which the
spectral density returns to its background values, before iny; coNnCLUSIONS
creasing again to reach the next, but much weaker, capillary
maximum. The background values of the spectral density are  The model developed by Fedorov and MelVilles dem-
much lower after the main capillary maximum because of itonstrated to be in good agreement with experimental mea-
significant width and general decay in the spectrum. Thisurements over a range of parameter space. In our experi-
consideration underlines the fact that the cutoff is related tanents there existed a threshold wavelength of approximately
the kinematics of the waves, and is not directly affected by8 cm. For smaller wavelengths the theory and measurements
wave dissipation as in Donelan and Pierébn. are in good quantitative agreement in reproducing parasitic
Note that in the field, wind waves have a continuouscapillary waves. Small differences can be attributed to sev-
spectrum rather than a discrete spectrum determined by theral factors, including wave decay along the channel and
fundamental wave and its harmonics. In other words, insteadrrors in the measurements.
of one fundamental wave we may have a continuous distri-  Importantly, the spectral characteristics of the measured
bution of “fundamental waves.” Nevertheless, we believe capillary ripples are consistent with the theory. For instance,
that Egs.(16) and(21) can still be used for crude estimates there is a cutoff(an abrupt decrease by several orders of
of the cutoff wave numbers for oceanic waves. magnitude in the spectral energy density after the first local
Finally, in Fig. 9 we present a comparison between thenaximum corresponding to capillary ripples. We have de-
measurements and the theory for 4 Hz waves. We still obduced some simple relations providing the peak and the
serve good qualitative agreement, although there is no pofandwidth of the main capillary maxima, or alternatively, the
sibility of a direct comparison, since the capillary ripples arecutoff wave number.
no longer stationary. An unsteady analytical formulation  For longer wavelengths the agreement between the
possibly similar to the recent work by Watson andtheory and experiments is qualitative, possibly due to the
Buchsbaurf® may be useful in this case. appearance of modulational and three-dimensional instabili-
We have also compared the results of our calculationsies of the waves, as in Zhang and MelviffeThe instability
with calculations by Longuet-Higgins.For moderate wave of the dominant waves affects the shorter capillaries, making
slopes our models appear to give qualitatively similar resultshem unsteady, so that a direct comparison with a steady
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phase speed of the longer wave, increasing the phase speed
and resulting in shorter and stronger capillary waves.

An example of the comparison is given in Fig. 10 for 5.5
cm gravity-capillary wave$5.5 cm is the lowest wavelength
of the longer waves for which Longuet-Higgins’ model is
still valid, which is close to our calculations for 6 Hz wayes
With increasing amplitude of the longer wave the differences
become larger.

Although for weaker forcing g=0.001) the amplitudes
of the capillaries calculated in our modélig. 5 are smaller
than those given by Longuet-Higgins, there is no consistency
as to which model gives stronger capillaries. Longuet-
Higgins showed a comparison between his theory and mea-
surements by Cdxfor waves of approximately 5 Hz. For
this particular case, our study yields more pronounced capil-
lary ripples, both in the experimental and numerical data,
which indicates the importance of nonlinearity for the para-
sitic capillary waves|In contrast to our experiments for this
frequency(see Sec. Y, in Cox’s measurements the wave
height was not completely uniform and steddysing a lin-
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