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An experimental and numerical study of parasitic capillary waves
Alexey V. Fedorov,a) W. Kendall Melville, and Anatol Rozenberg
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0230

~Received 6 October 1997; accepted 20 February 1998!

We report laboratory measurements of nonlinear parasitic capillary waves generated by longer
waves in a channel. The experiments are conducted for three frequencies of longer waves~4, 5, and
6 Hz!, corresponding to wavelengths of approximately 11, 7, and 5 cm. For these wavelengths we
apply a model developed recently by Fedorov and Melville@J. Fluid Mech.354, 1 ~1998!# to predict
the wave profile. Based on a viscous boundary layer approximation near the surface, the model
enables us to efficiently calculate gravity-capillary waves. We present direct comparisons that show
good agreement between the measurements and numerical predictions over a range of parameters.
Finally, we give some simple estimates for a sharp cutoff in the wave number spectra observed in
both the numerical solutions and the laboratory measurements of short gravity-capillary waves.
© 1998 American Institute of Physics.@S1070-6631~98!01206-9#
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I. INTRODUCTION

The generation of parasitic capillary waves~or parasitic
capillaries! by steep gravity-capillary waves is an importa
mechanism for momentum, energy, and gas transfer betw
the atmosphere and ocean. The effects of gravity and sur
tension determine the fine structure of the ocean surf
which is important for microwave remote sensing of t
ocean. Experimental research on parasitic capillary wa
has a relatively long history, including pioneering work b
Cox1 and subsequent studies2,3 that have provided tempora
measurements of the surface slope of mechanically or w
generated waves at a single location. Ebuchiet al.4 produced
high-quality images of wind-generated gravity-capilla
waves with distinct trains of parasitic capillaries riding ahe
of bulging wave crests. They argued that the crest of s
waves~the ‘‘capillary roller’’ 5! is a region of high vorticity
in the water. Ja¨hne and Riemer6 ~1990!, among others,7–9

have used various optical techniques to measure the l
slope of gravity-capillary waves and to deduce wave num
spectra.

Perlin et al.10 presented spatial measurements
plunger-generated waves with parasitic capillaries. Regre
bly, their results were strongly affected by the fact that th
took measurements within a few wavelengths of the w
generator.11 Perlinet al. also tried to compare their measur
ments with theoretical results available at that time, inclu
ing the analytical models of Longuet-Higgins~1963!12 and
several others.13,14 Their comparisons gave large quantit
tive, and even qualitative, departures from these theor
Ruvinsky et al.15 developed a new theory and compar
some of their results with those by Yermakovet al.3 How-
ever, they were able to reproduce parasitic capillaries of o
very low amplitudes, and their comparisons lacked import
details.

a!Current address: AOS program, Princeton University, P.O. Box CN7
Sayre Hall, Princeton, New Jersey 08544.
1311070-6631/98/10(6)/1315/9/$15.00
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Better qualitative and quantitative agreement with t
available experiments was achieved by the theory
Longuet-Higgins~1995!,11 who introduced a new perturba
tion model for steady gravity-capillary waves. The under
ing longer wave was assumed to be a pure gravity w
given by a Stokes expansion, which served as the first
proximation for the model. Surface tension and the la
curvature of the crest of the gravity wave acted as a lo
forcing term, leading to the excitation of parasitic capillari
by a mechanism analogous to the ‘‘fish line’’ problem.16 The
main limitation of Longuet-Higgins’ theory was that par
sitic capillary waves appeared only as a linear response to
forcing.

Recently, Fedorov and Melville17 have developed a new
theory capable of describing nonlinear gravity-capilla
waves. The theory is based on a viscous boundary layer
proximation near the surface, and uses a full Stokes exp
sion with complex coefficients, which reflects the asymme
of the wave profile. It also includes external forcing nece
sary to balance the viscous dissipation. A preliminary co
parison with experiments showed good agreement betw
the model and limited experimental data. In this study
carry out a more extensive set of measurements to fur
test our theoretical results.17

We also discuss the nature of the so-called ‘‘hig
wavenumber cut off’’17,6,9 ~an abrupt decrease by sever
orders of magnitude! in the spectral energy density after th
spectral maximum corresponding to capillary ripples~Sec.
V!. We provide some simple estimates for calculating
bandwidth of the main capillary maximum, as well as t
cutoff wave number.

II. ANALYTICAL MODEL AND NUMERICAL
APPROACH

For completeness, the theoretical model and numer
approach of Fedorov and Melville17 are reviewed here. To
treat periodic surface waves of permanent form, we tra
form to a frame of reference traveling with speedc to the
,

5 © 1998 American Institute of Physics
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1316 Phys. Fluids, Vol. 10, No. 6, June 1998 Fedorov, Melville, and Rozenberg
right (c.0). In this reference frame the motion is stead
Following the classical boundary layer approximation,
assume that the flow is irrotational everywhere except i
thin subsurface viscous boundary layer. We also adopt
assumption of classical linear damping.17–19 It implies that
all Fourier harmonics of the wave are damped independen
while higher-order nonlinear dissipative terms can be
glected.

Irrotational flow is used to describe the gravity-capilla
waves in the first approximation. Then additional terms d
to the presence of the viscous boundary layer are calcula
modifying the original irrotational variables. Accordingly
Bernoulli’s integral for the surface of the weakly damp
flow is derived, while a Stokes expansion with complex c
efficients is used to represent the surface waves. Exte
pressure forcing, which is needed for the waves to rem
steady and periodic, is explicitly included in the model.

Using this approach we formulate a closed set of eq
tions, yielding a parametric representation of the free surfa

X5X~z!, Y5Y~z!, ~1!

or

Z5X1 iY, ~2!

whereX andY are horizontal and vertical coordinates of t
free surface, andz is the independent parameter. The deta
of the derivation are given in Ref. 17. Here we present o
the final formulation: One needs to findZi , such that

Zi5
1

k S z1 i (
m51

`

ame2 imzD , z,@0,2p#, ~3!

and

Ui 2

2
1gY1

T

R
1

P0

r
1

nk

c

]

]z
Ui 25E, ~4!

where

Ui52
c

k
~Zz

i Zz
i* !21/2, ~5!

Z5Zi2
2in

c2k E
0

zS Ui

Ri 2 K Ui

Ri L Ddz8, ~6!

1

R
52Im$ZzzZz

23/2Z* z
21/2%, ~7!

P05 P̃0 coskX, ~8!

with

X5Re Z2Re Zuz50 and Y5Im Z, ~9!

and

1

Ri 52Im~Zzz
i Zi

z
23/2Zi*

z
21/2!, ~10!

and

K Ui

Ri L 5
1

2p E
0

2p Ui

Ri dz8. ~11!
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Here, r is the fluid density;g, gravity; T, the surface
tension, andP0 the external pressure forcing at the surfa
necessary to balance the wave dissipation.Ui , Zi , and 1/Ri

are the irrotational component of the flow velocity on t
surface, the complex coordinate of the free surface, and
local curvature, respectively. In addition, 1/R is the full local
curvature of the surface. Equation~3! is a Stokes expansion
with as yet unknown coefficientsam . Equation~4! is Ber-
noulli’s integral for a steady weakly damped flow with a
unknown constantE. When am ,c and E are found,Zi is
determined from Eq.~3!. After calculatingZ, the elevation
of the free surface is given by~9!.

In addition to Eqs.~3!–~11!, we introduce the dimen-
sionless wave amplitude as

ak5@max~Y!2min~Y!#k/2, ~12!

corresponding to the characteristic slope of the wave of w
numberk52p/l. Clearly, fixingak is necessary to specify
the wave height.

For the external forcingP0 in ~4! and ~8!, we took a
simple cosine profile,P̃0 coskx, although more genera
forms may be used. The forcing is necessary to balance
dissipation and keep the waves periodic and steady. For
ample, the forcing may represent the surface pressure d
bution due to the effect of wind on the water surface. T
length scale of the forcing coincides with the wavelength
the longer wave, so that parasitic capillaries are not dire
affected by the external pressure. Together withP̃0 , we use
a nondimensional amplitude of the forcing,

p5 P̃0 /rc0
2, ~13!

where

c05Ag/k1Tk ~14!

is the phase speed of linear gravity-capillary waves. The
lutions have a parametric dependence onl, p, andak.

To solve the system~1!–~14!, we discretize equations o
the interval ofz from 0 to 2p and truncate them, retainin
about 100 terms of the series.~More terms are needed fo
calculating strongly nonlinear solutions with overhangi
wave crests, which are not considered in this paper.17! All
the derivatives with respect toz are calculated using Eq.~3!,
and the integrals in~6! and ~11! are evaluated by means o
the trapezoidal rule. This procedure yields a finite set of
gebraic equations inam ,c andE, with ak, p, and the wave-
length l as independent parameters.~This is different from
regular steady gravity waves, for which the wave amplitu
and the wavelength are the only parameters.! The coefficient
of surface tensionT and viscosityn are assumed to be fixed

The resulting set of equations is solved numerically
Newton’s method. We calculate the Jacobian for Newto
iterations numerically, rather than analytically, as in oth
similar studies.20 As an initial guess, we usually take a pro
file corresponding to a linear gravity-capillary wave. In oth
cases, we use a previously calculated solution as the in
guess, but change the combination of parameters. The i
tions converge in a broad range ofak andp. ~For details see
Fedorov and Melville.17!
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1317Phys. Fluids, Vol. 10, No. 6, June 1998 Fedorov, Melville, and Rozenberg
Numerical calculations and linear analysis of the syst
~1!–~14! show that there are two main classes of solution
weak forcing~class 1 and class 2, forp!ak!. For the first
class, the pressure maximum occurs near the wave tro
while for the second it is near the crest. Both types of wa
are qualitatively similar, with only small quantitative diffe
ences for weak forcing. Both yield asymmetric profiles w
shorter parasitic capillary waves riding on the forward fa
of the longer waves. An example of our solutions for t
class 1 waves is shown in Fig. 1. See Figs. 6 and 7 below
comparisons of class 1 and class 2 solutions.

III. EXPERIMENTAL SETUP

Experiments were conducted in the Hydraulics Labo
tory at Scripps Institution of Oceanography. A 30 m lon
0.5 m wide, and 0.6 m deep glass wave channel equip
with a wave generator was used~Fig. 2!. Measurements were
taken at fetches greater than 1 m away from the wave gen
erator, which is equivalent to 10 to 20 wavelengths of
longer waves. To remove contaminants, the surface of
channel was cleaned periodically by blowing wind and ski
ming the surface at the downwind end of the channel. W
time the surface becomes contaminated, resulting in a
matic decrease in the amplitudes of capillary waves.

Surface waves were generated mechanically by the
tical motion of a wedge-shaped plunging wavemaker. M
surements of the surface slope were made with a fixed l
slope gauge~LSG!. This device, which is designed to me
sure the fine structure of short water waves, consists o

FIG. 1. An example of numerical calculations for the profile of the fr
surface and its slope forl57 cm, ak50.30, andp50.015. Strong capillary
ripples ride on longer waves. Note the different vertical and horizon
length scales in~a!.
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underwater laser assembly, lenses to focus the beam
position photodiode, and a signal amplifier. The LSG u
the refraction of a laser beam8,21 by the water surface to
measure the slope of the surface. A Fresnel lens was use
eliminate the effects of the vertical displacement of the s
face on the slope measurements. A detailed description
similar LSG can be found in Langeet al.,22 for example.

Data were sampled at 1 kHz, while the time series
each combination of parameters was about 30 s long.
experiments were conducted with wavemaker frequencie
6, 5, and 4 Hz corresponding to wavelengths of appro
mately 5, 7, and 11 cm. The spatial resolution of the LS
was approximately 0.7 mm. The errors in the slope meas
ment were estimated to be in the range 5%–10%.

IV. WAVE SLOPES FOR DIFFERENT AMPLITUDES
AND FREQUENCIES: EXPERIMENTAL RESULTS

In Fig. 3 we show a 5 ssection of a typical time serie
for 5 Hz gravity-capillary waves. The higher-frequency pa
sitic capillaries are predominantly at the negative slopes.
wave pattern is regular and almost stationary; however,
can notice some temporal unsteadiness over times ofO(1) s.
~A substantially less steady pattern is observed for 4
waves, see Fig. 4~c! below.# A typical frequency spectrum o
the slope time series is presented in Fig. 3~b!. Following a
monotonic decrease in amplitude up to the eighth harmo
there follows an increase in the spectral density associ
with the parasitic capillaries. There is a sharp decline in
spectral energy density after this increase, or a spec
‘‘cutoff.’’ 17,6,8,9The plot also shows a higher-order capilla
maximum, which has been predicted by the theory.17

In Figs. 4~a!–4~c!, we present a one-second-long tim
series obtained for different wave frequencies and am
tudes. First, one can notice the apparent increase in am
tude of parasitic capillaries with the increasing slope of
longer wave. The amplitude of the parasitic capillaries
rather sensitive to the amplitude of the longer waves. Thi
true, especially for 4 Hz waves that develop shorter capill
waves and require a greater steepness for the appearan
the ripples. Although the local wavelength of the ripples v
ies along the longer wave, we can estimate character
wavelengths of the capillary ripples from the spectrum. T

l

FIG. 2. Schematic of the experimental setup showing the channel, the w
maker, and the laser slope gauge. The channel is 30 m long.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1318 Phys. Fluids, Vol. 10, No. 6, June 1998 Fedorov, Melville, and Rozenberg
gives wavelengths of approximately 6, 5, and 4 mm for 6
and 4 Hz longer waves, respectively. Note that, especiall
the case of the 4 Hz waves, the definition of characteri
wavelength becomes less accurate because of the wide
of the capillary maximum in the spectrum.

For both 6 and 5 Hz waves, the wave patterns rem
quite regular, and no visible instabilities develop. Howev
with increasing amplitude, 4 Hz surface waves lose stabi
and capillary ripples become irregular. We believe that t
is due to modulational instability of the underlying long
gravity waves at these amplitudes and wavelengths, as
as three-dimensional instabilities,23 which could be observed
in the experiments.

There is another noticeable difference between the 6
5 Hz waves, and the 4 Hz waves. In the case of the sho
waves~5 and 6 Hz!, the capillaries appear along the enti
wavelength, while for the longer 4 Hz waves they are co
centrated on the forward face of the wave. This is related
the stronger decay of the shorter capillary ripples.

Figure 5 summarizes our experimental measurement
the slopes of the capillary ripples for different frequenc
and slopes of the longer waves. The characteristic rela
slope of the ripples is obtained by averaging the capill
waves out and subtracting the smoothed profile from
data. This gives the profile of the capillary ripples. Calcul
ing the mean square deviation yields the characteristic s
of the ripples relative to the slope of the underlying long
wave. Within the accuracy of this approach similar data c
be obtained from the numerical results.

FIG. 3. The 5 Hz waves.~a! An example of a 5 s time series of the mea-
sured wave slope. The darker unresolved parts of the plot correspon
parasitic capillaries.~b! A typical frequency spectrum of the time serie
Each peak to the right of 5 Hz is a harmonic of the fundamental wave.
increase in harmonic amplitudes indicated by the solid arrow correspon
the appearance of parasitic capillaries. Note a sharp decline in the sp
energy density after this increase~the cutoff17,6,9!. The open arrow shows a
higher-order capillary maximum, also predicted by the theory.17
Downloaded 01 Oct 2007 to 132.239.127.158. Redistribution subject to A
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FIG. 4. Experimental measurements of the slope of mechanically gene
waves in the channel for different wave amplitudesak and frequencies.
Arrows indicate the periods of the time series used for further compar
with numerical solutions~see Figs. 6, 7, and 8!. The measurements ar
conducted for three frequencies of the dominant longer wave:~a! 6 Hz, ~b!
5 Hz, ~c! 4 Hz. The particular values ofak are shown in each figure.
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In treating our results in Fig. 5, one should be aware t
~a! the amplitude of the capillary ripples varies along t
longer wave, and~b! the characteristics of the capillar
waves are very sensitive to changes in the amplitude of
longer wave and the conditions of the experiments. Nev
theless, Fig. 5 gives the typical dependence of the slop

FIG. 6. Experimental measurements of the slope of 6 Hz waves~solid line!,
compared with numerical solutions.~a! Class 1 solution, dashed line, fo
l55.2 cm,ak50.20, andp50.0015;~b! Class 2 solution, dot–dashed line
for l55.1 cm,ak50.205, andp50.005.

FIG. 5. The characteristic relative slope of the capillary ripples versus
slope of the underlying longer wave for different frequencies. The full lo
slope changes in the characteristic range of (ak) longer wave6(ak)ripples. Com-
piled from the data presented in Figs. 4~a!–4~c!.
Downloaded 01 Oct 2007 to 132.239.127.158. Redistribution subject to A
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of
the parasitic capillaries on the frequency and the slope of
longer waves. A sharp increase of the slope of the para
capillaries with increasing slope of the longer waves is
parent.

V. DIRECT COMPARISON OF NUMERICAL AND
EXPERIMENTAL DATA. SPECTRAL CUTOFF

Before presenting a direct comparison between the
merical and experimental results, we need to note a dif
ence between the model and experiments. In the wave c
nel the energy is transferred to the waves through the w
of a wave generator, rather than through a pressure distr
tion at the surface, as in the theory. Consequently, the wa
in the channel slowly decay, so that we can treat them
only quasiperiodic in space. The amplitude decay rates v
from O(1% – 10%) per wave period depending upon t
wave amplitude and frequency. This would lead to diffe
ences between the experimental measurements and the
cal predictions of the same order of magnitude~see below!.
However, since the error in the measurements are estim
to be in the range of 5%–10%, this should not be a leadi
order effect.

A fit of the experimental results with solutions obtaine
numerically is shown in Fig. 6 for 6 Hz waves, and Fig.
for 5 Hz waves. The calculations are made f
n50.01 cm2 s21 andT573 cm3 s22. The particular parts of
the time series taken for comparison are indicated by arr
in Figs. 4~a!, 4~b!, and 4~c!.

e
l

FIG. 7. Experimental measurements of the slope of 5 Hz waves~solid line!,
compared with numerical solutions:~a! Class 1 solution, dashed line, fo
l57.3 cm, ak50.265, andp50.0062; ~b! class 2 solution, dot–dashe
line, for l57.1 cm,ak50.265, andp50.0014.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1320 Phys. Fluids, Vol. 10, No. 6, June 1998 Fedorov, Melville, and Rozenberg
The procedure to obtain this comparison is as follow
First, we choose the appropriate value of the wavelength
numerical calculations to approximately match the freque
of the observed wave. Then we adjust the nondimensio
wave amplitudeak. Finally, the value ofp is changed to
obtain agreement with respect to the number of capill
ripples. This procedure is repeated several times, since
change ofak and p affects the frequency of the domina
wave. When calculating the solution, we also obtain the t
oretical phase speed of the wave. This enables us to pre
the numerical solution, as a function of time at any point
the surface.

As one can see from Figs. 6 and 7, both classes of s
tion provide good quantitative agreement with the obser
tions; although we have to choose slightly different values
l, ak, and p in each case. The number of ripples can
matched exactly, while the values of the slope differ by n
more than 5% in most cases. Although a larger deviat
occurs for the last ripple in the row~especially noticeable fo
the 5 Hz waves! the match is quite accurate. In Figs. 8~a! and
8~b! we also show a comparison between the experime
and numerical wavenumber spectra for 6 and 5 Hz wav
These are spectra of time series formed by repeating
single period used in the time-domain comparisons of Fig
and 7, 64 times. This treats the waves as essentially peri
rather than quasiperiodic with subharmonic components
harmonics of finite bandwidth. The agreement between
measurements and theory is very good.

The spectra in Figs. 8~a! and 8~b! deserve some specia
attention. The lower wave number region of the spectra w
a relatively slow decay corresponds to the first few harm
ics of the fundamental wave. The first local maximum is d
to parasitic capillaries. The second local maximum is as
ciated with higher harmonics of the main capillary ma
mum, and is significantly weaker in magnitude. A sharp
crease in spectral density~by three to four orders o
magnitude! develops after the first capillary maximum. Th
rapid decrease appears to be similar to the cutoff observe
the measurements of wind-wave spectra.6,9 We will estimate
the typical wave number corresponding to the main capill
maximum and its bandwidth, which is equivalent to findi
the location of the ‘‘cutoff.’’

The physical reason for the appearance of the para
capillaries is the amplification of higher harmonics of t
fundamental waves due to a resonance. The approxim
resonance condition1 can be obtained from matching pha
speeds between the longer wave (c) and the shorter capillary
wave (cc). This matching condition yields

cc
25c2, ~15!

or

Tkc'S g

k
1TkD ~11a2k2!, ~16!

wherekc is the resonant wave number of the capillary wav
For simplicity, we have disregarded the nonlinear, grav
Downloaded 01 Oct 2007 to 132.239.127.158. Redistribution subject to A
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and dissipative effects on the capillary ripples. The ph
speed of the longer wave in~16! includes a nonlinear Stoke
correction~Whitham, 1974!.

Equation~17! gives the typical ‘‘capillary’’ wave num-
ber as

kc'S gl

2pT
1

2p

l D ~11a2k2!. ~17!

Substituting the appropriate parameters for the 6 and 5
waves yields the typical wave numbers 1200 and 17
rad/m, respectively, which falls approximately in the cen
of each capillary maximum in Figs. 8~a! and 8~b!.

Furthermore, nonlinearity leads to the local reson
condition being different for different phases of the long
wave profile. In fact, we should match the phase speed of
capillary wave with the velocity of the local surface ‘‘cu

FIG. 8. The wave number spectra based on the experimental and num
data presented in Figs. 6 and 7. The circles correspond to the spectral
sity obtained from the numerical calculations for the class 1 solutio
Again, notice a sharp decline in the spectral density after the main capi
maximum~the arrow!. The estimated values of the resonant capillary wa
numberkc and cutoff wavenumberkc o are shown@see Eqs.~17! and ~21!#.
The frequencies of the dominant longer wave are~a! 6 Hz, ~b! 5 Hz.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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1321Phys. Fluids, Vol. 10, No. 6, June 1998 Fedorov, Melville, and Rozenberg
rent’’ induced by the longer wave. In the frame of referen
moving with the wave this velocity is calculated in terms
c andak as

U2'c2~112ak coskX!. ~18!

That is, locally, the resonant condition~16! should be re-
placed by

cc
2'c2~112ak coskX!. ~19!

This causes the formation of the capillary maxima with
finite bandwidthDkc , centered atkc , instead of a narrow
peak. Since cosine ranges from21 to 11, Eq.~19! implies
that

Dkc

kc
'4ak. ~20!

From Eq. ~20!, the cutoff wave number (kc o) can be
estimated as

kc o5kc1
Dkc

2
5kc~112ak!. ~21!

Under this definition the cutoff wave numbers may be ac
ally higher than in previous studies,15,7,10since formula~21!
provides an estimate for the uppermost limit of the m
capillary maximum, rather than the beginning of the spec
falloff.

Substituting our parameters for the 6 and 5 Hz wa
gives bandwidthsDkc of about 1000 and 1800 rad/m, an
the cutoff wave numberskc o about 1700 and 2600 rad/m
respectively, which is consistent with the data in Figs. 8~a!
and 8~b!.

The spectral cutoff appears to have a simple explanat
There is a resonant peak of finite bandwidth, after which
spectral density returns to its background values, before
creasing again to reach the next, but much weaker, capi
maximum. The background values of the spectral density
much lower after the main capillary maximum because of
significant width and general decay in the spectrum. T
consideration underlines the fact that the cutoff is related
the kinematics of the waves, and is not directly affected
wave dissipation as in Donelan and Pierson.24

Note that in the field, wind waves have a continuo
spectrum rather than a discrete spectrum determined by
fundamental wave and its harmonics. In other words, inst
of one fundamental wave we may have a continuous dis
bution of ‘‘fundamental waves.’’ Nevertheless, we belie
that Eqs.~16! and ~21! can still be used for crude estimate
of the cutoff wave numbers for oceanic waves.

Finally, in Fig. 9 we present a comparison between
measurements and the theory for 4 Hz waves. We still
serve good qualitative agreement, although there is no
sibility of a direct comparison, since the capillary ripples a
no longer stationary. An unsteady analytical formulati
possibly similar to the recent work by Watson a
Buchsbaum25 may be useful in this case.

We have also compared the results of our calculati
with calculations by Longuet-Higgins.11 For moderate wave
slopes our models appear to give qualitatively similar res
Downloaded 01 Oct 2007 to 132.239.127.158. Redistribution subject to A
e

-

l

s

n:
e
n-
ry
re
s
is
o
y

s
he
d
i-

e
-
s-

s

ts

with the difference only significant for higher wave slop
and shorter wavelengths. An example of this compariso
given in the Appendix.

VI. CONCLUSIONS

The model developed by Fedorov and Melville17 is dem-
onstrated to be in good agreement with experimental m
surements over a range of parameter space. In our ex
ments there existed a threshold wavelength of approxima
8 cm. For smaller wavelengths the theory and measurem
are in good quantitative agreement in reproducing paras
capillary waves. Small differences can be attributed to s
eral factors, including wave decay along the channel a
errors in the measurements.

Importantly, the spectral characteristics of the measu
capillary ripples are consistent with the theory. For instan
there is a cutoff~an abrupt decrease by several orders
magnitude! in the spectral energy density after the first loc
maximum corresponding to capillary ripples. We have d
duced some simple relations providing the peak and
bandwidth of the main capillary maxima, or alternatively, t
cutoff wave number.

For longer wavelengths the agreement between
theory and experiments is qualitative, possibly due to
appearance of modulational and three-dimensional insta
ties of the waves, as in Zhang and Melville.23 The instability
of the dominant waves affects the shorter capillaries, mak
them unsteady, so that a direct comparison with a ste

FIG. 9. Experimental measurements of the slope of 4 Hz waves~a!, com-
pared with a numerical solution~b!. Calculations are forl511 cm, ak
50.31, andp50.006, and the class-1 solutions.
IP license or copyright, see http://pof.aip.org/pof/copyright.jsp
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model becomes impossible. However, the steady model
be used as the basis for studies of the stability of grav
capillary waves.
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APPENDIX: COMPARISON WITH LONGUET-HIGGINS
MODEL „1995…

We have compared the results of our calculations w
those of Longuet-Higgins.11 For moderate wave slopes ou
models appear to give qualitatively similar results, althou
there exist several quantitative differences. For instan
Longuet-Higgins’ model usually gives fewer capilla
ripples per wavelength, which is likely due to neglecting t
effect of surface tension on the overall phase speed of
dominant wave. The number of ripples becomes the sa
only for much stronger forcing for the class 1 solutions~the
agreement is significantly worse for the class-2 solutions,
which any increase of the forcing leads to weaker capill
ripples; see Fedorov and Melville17! in the model of Fedorov
and Melville.17 Such strong forcing would affect the overa

FIG. 10. A comparison between the results using our model@the class 1
solutions: ~a! p50.001, dashed line;~b! p50.02, dash–dotted line#, and
those of Longuet-Higgins~1995!, solid line, for l55.5 cm, ak50.199,T
574 cm3 s22, and n50.01 cm2 s21. For weak forcing the present mode
yields more smaller capillary ripples. For the class 1 solutions the two m
ods agree better only for much stronger forcing. The agreement is sig
cantly worse for the class 2 solutions.
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phase speed of the longer wave, increasing the phase s
and resulting in shorter and stronger capillary waves.

An example of the comparison is given in Fig. 10 for 5
cm gravity-capillary waves~5.5 cm is the lowest wavelengt
of the longer waves for which Longuet-Higgins’ model
still valid, which is close to our calculations for 6 Hz waves!.
With increasing amplitude of the longer wave the differenc
become larger.

Although for weaker forcing (p50.001) the amplitudes
of the capillaries calculated in our model~Fig. 5! are smaller
than those given by Longuet-Higgins, there is no consiste
as to which model gives stronger capillaries. Longu
Higgins showed a comparison between his theory and m
surements by Cox1 for waves of approximately 5 Hz. Fo
this particular case, our study yields more pronounced ca
lary ripples, both in the experimental and numerical da
which indicates the importance of nonlinearity for the pa
sitic capillary waves.@In contrast to our experiments for thi
frequency~see Sec. V!, in Cox’s measurements the wav
height was not completely uniform and steady.# Using a lin-
ear approximation for parasitic capillaries, Longuet-Higgin
method is restricted to small capillary slopes. For examp
in some cases, it may be necessary to increase the effe
value of viscosity to obtain the correct values for the amp
tude of the capillary ripples.
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