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We present a study of nonlinear gravity–capillary waves with surface forcing and
viscous dissipation. Based on a viscous boundary layer approximation near the water
surface, the theory permits the efficient calculation of steady gravity–capillary waves
with parasitic capillary ripples. To balance the viscous dissipation and thus achieve
steady solutions, wind forcing is applied by adding a surface pressure distribution. For
a given wavelength the properties of the solutions depend upon two independent
parameters : the amplitude of the dominant wave and the amplitude of the pressure
forcing. We find two main classes of waves for relatively weak forcing: Class 1 and
Class 2. (A third class of solution requires strong forcing and is qualitatively different.)
For Class 1 waves the maximum surface pressure occurs near the wave trough, while
for Class 2 it is near the crest. The Class 1 waves are associated with Miles’ (1957, 1959)
mechanism of wind-wave generation, while the Class 2 waves may be related to
instabilities of the subsurface shear current. For both classes of waves, steady solutions
are possible only for forcing amplitudes greater than a certain threshold. We
demonstrate how parasitic capillary ripples affect the dissipative and dispersive
properties of the solutions. In particular, there may be a significant deviation from the
linear phase speed for gravity–capillary waves. Also, wave damping is strongly
enhanced by the parasitic capillaries (by as much as two orders of magnitude when
compared to the case with no capillary waves). Preliminary experimental results from
a wind-wave channel give good agreement with the theory. We find a sharp cut-off in
the wavenumber spectra of the solutions which is similar to that observed in laboratory
measurements of short gravity–capillary waves. Finally, for large wave amplitudes we
find a sharp corner in the wave profile which may separate an overhanging wave crest
from a train of parasitic capillaries.

1. Introduction

Cox (1958) undertook the first extensive experiments on the generation of capillary
waves by longer waves. Analysing experimental data from a wind-wave tank, he
showed that capillary waves form on the forward face of relatively short gravity waves.
This has proven to be a common phenomenon occurring at the surface of wind-driven
bodies of water. The wavelengths of the dominant waves usually lie in the range
3–15 cm, while the capillary wavelengths range from O(10−"–1) cm. The capillaries
(usually called parasitic capillaries) are stationary or quasi-stationary with respect to
the dominant wave. Together they constitute a characteristic asymmetric wave pattern
with the ripples on the forward face of the longer wave. The motivation for studying
such gravity–capillary waves is based on their importance for air–sea fluxes, especially
momentum and gas transfer, and for microwave remote sensing of the ocean surface.



2 A. V. Fedoro� and W. K. Mel�ille

Most widely accepted theories of wind-wave generation (Miles 1957; Phillips 1957) and
their extensions neglect such nonlinear effects ; however, measurements of wind-
generated surface waves by Klinke & Ja$ hne (1997) and Klinke (1996) and preliminary
experimental results by A. Rozenberg (private communication) indicate that very soon
after the initial stages of wave generation the steepness of gravity waves reaches the
threshold necessary for the appearance of the parasitic capillaries. Although small, the
capillary ripples influence the dissipative and other dynamical properties of the surface
waves. This makes it necessary to include the effects of parasitic capillary waves in any
comprehensive theory of wind-wave generation. It is commonly observed that the
suppression of capillary waves by surface films can significantly modify the wind-wave
field at much longer wavelengths.

Since Cox’s experiments, significant progress has been achieved in understanding the
dynamics of the interaction between gravity and capillary waves. Theoretical studies of
parasitic capillaries include works by Longuet-Higgins (1963), Crapper (1970) and
Ruvinsky, Feldstein & Friedman (1991) with extensive reviews by Zhang (1993), Perlin,
Lin & Ting (1993) and Longuet-Higgins (1995). The most recent study is by Longuet-
Higgins (1996), who related the capillary ripples to a ‘ leaky’ capillary jump near the
crest of the gravity wave. Models for the gravity–capillary wave spectrum, based on a
Hamiltonian formalism, were proposed by Watson & McBride (1993) and Watson &
Buchsbaum (1996). A great deal of experimental research on gravity–capillary waves
has been completed, including laboratory studies by Ebuchi, Kawamura & Toba
(1987), Perlin et al. (1993), Ducan et al. (1994a, b), Zhang & Cox (1994), Zhang (1995),
Ja$ hne & Riemer (1990) and Klinke & Ja$ hne (1997), with field measurements by Klinke
& Ja$ hne (1995). Dommermuth (1994), and Mui & Dommermuth (1995) have under-
taken direct numerical integration of the unsteady Navier–Stokes equations with a free
surface. Starting with profiles corresponding to pure gravity waves they obtained
solutions with developing parasitic capillaries on the forward face of the waves.

The physical reason for the appearance of the parasitic capillaries is relatively simple,
and corresponds to the amplification of higher harmonics of the fundamental waves
due to a resonance. The condition of the resonance can be obtained by approximately
matching phase speeds between the longer wave and the shorter capillary wave.
Nonlinearity, dissipation and forcing may further complicate the process. For
example, nonlinearity leads to the local resonant condition being different for different
phases of the longer-wave profile.

The most comprehensive theoretical explanation of the phenomenon so far was
given in the recent study by Longuet-Higgins (1995). He considered a steady model
with several physically motivated assumptions, the most important of which were:

(i) In the first approximation, the underlying wave is a pure gravity wave and is
given by a Stokes expansion.

(ii) Surface tension and the high curvature localized at the crest of the gravity wave
act as a forcing term.

(iii) Parasitic capillaries appear as a linear response to the local forcing and ride on
the Stokes wave as if on a slowly varying current in a slowly varying gravitational field.

(iv) The parasitic capillaries are damped by viscosity.
Despite good qualitative agreement with observations, this and earlier models are

unable to reproduce several features of gravity–capillary waves with parasitic
capillaries. These include the fact that parasitic capillary waves may become strongly
nonlinear features of the surface with large slopes, and that capillary waves are known
to generate a strong vorticity field that may interact with the waves (see Longuet-
Higgins 1953, 1992b, 1994; Ebuchi et al. 1987). In some cases the wave crest bulges
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forward, giving a surface that may become multi-valued in the horizontal coordinates.
Longuet-Higgins (1992b) referred to this bulge as a capillary roller. According to
Ebuchi et al. (1987) the capillary roller may be a region of high vorticity. The bulge and
the train of capillary waves are separated by a sharp corner in the profile of the free
surface (see figures 5b and 10b below). The latter feature has not been accounted for
by any theory, although it has recently been seen in numerical results by Longuet-
Higgins & Dommermuth (1997) on inviscid wave crest instabilities. A semi-quantitative
explanation of the bulge as a solitary wave trapped on a velocity gradient was given by
Longuet-Higgins (1996). Finally, the earlier models do not include the action of wind
which is the major source of waves in the ocean.

In our approach we are able to calculate nonlinear gravity–capillary waves with wind
forcing and dissipation accurately and efficiently, while taking into account the
underlying vorticity field. Our approach follows the classical boundary layer
approximation, assuming, in the first approximation, that the flow is irrotational. The
effect of a viscous boundary layer is included at the next order, allowing for a rotational
correction in a boundary layer adjacent to the surface. Thus, the main ideas and
assumption of our model can be summarized as follows:

(i) The flow is irrotational everywhere except in a thin subsurface viscous boundary
layer.

(ii) Irrotational flow is used to describe the gravity–capillary waves in the first
approximation. Additional terms due to the presence of the viscous boundary layer are
calculated. The effects of the new terms on the original irrotational variables and
surface profile are found.

(iii) Fully nonlinear boundary conditions are invoked in order to calculate nonlinear
capillary waves.

(iv) Steady waves are considered and a complete Stokes expansion with complex
coefficients is utilized. The irrotational velocity potential and streamfunction of the first
approximation are used as the independent variables. This part of our approach is
similar to calculations of steady gravity and gravity–capillary waves by Chen &
Saffman (1980), Zufiria (1987), Debiane & Kharif (1996) and others. (In effect, we have
generalized the method of Chen & Saffman for pure gravity–capillary waves to include
wave damping and external forcing. Ruvinsky et al. (1991) is another study, which
dealt with gravity–capillary waves with viscous dissipation).

(v) Simple atmospheric forcing, needed for the waves to remain steady and periodic,
is explicitly included in the model.

Using this approach we formulate a closed set of equations for the elevation of the
free surface. The equations are discretized and a truncated Stokes series is used to
obtain a set of algebraic equations for the Stokes coefficients. This set is solved
numerically by Newton’s method. Owing to the complicated form of our equations, we
calculate the Jacobian for Newton’s method numerically, rather than analytically as in
other studies (e.g. Chen & Saffman 1980; Longuet-Higgins 1993).

Asymmetric solutions with parasitic capillary waves appearing on the forward face
of the dominant wave are computed for different wave heights and different amplitudes
of the pressure forcing. The calculations are conducted for wavelengths of the
dominant wave in the interval 4–12 cm. (At larger scales the parasitic capillaries have
relatively small amplitudes). The strength of the parasitic capillary waves increases
with increasing amplitude of the dominant wave, so that the capillary ripples rapidly
become nonlinear.

For the forcing we use a cosine pressure distribution at the surface with the length
scale equal to the wavelength of the dominant wave. As long as the pressure forcing
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remains weak, we find two main classes of solutions (Class 1 and Class 2). There exist
other qualitatively different solutions which require relatively strong forcing (see
Appendix A). The major difference between the two main types of solutions is that for
the Class 1 waves the maximum surface pressure occurs near the wave trough, while
for the Class 2 ones it occurs near the crest. The Class 1 waves can be associated with
Miles’ (1957, 1959) mechanism of wind-wave generation by an instability of the shear
air flow above the water surface. The Class 2 waves may be related to surface wave
generation by instabilities of sub-surface shear flows (Morland, Saffman & Yuen 1991;
Shrira 1993). Both classes of waves share certain similarities, but have some important
distinctions, especially for larger wave amplitudes and larger pressure forcing.

For both classes of solution, for each particular wave height there is a minimum
amplitude of the forcing necessary for steady solutions to exist. Clearly, the amplitude
and wavelength of the parasitic capillaries depend upon the value of the pressure
forcing. If one increases the forcing amplitude together with the amplitude of the
dominant wave, the capillary waves become more nonlinear. However, if one increases
the forcing amplitude, while keeping the amplitude of the dominant wave fixed, the
capillary waves become stronger only for the Class 1 solutions, but weaken for the
Class 2 waves. Importantly, the forcing, together with nonlinear effects, lead to
significant deviations from the dispersion relationship for linear gravity–capillary
waves.

We calculate energy spectra for the solutions and find that each spectrum has a
characteristic cut-off with an abrupt decrease in spectral density by two to eight orders
of magnitude. The cut-off takes place immediately after the local peak in the spectra
corresponding to parasitic capillaries. According to the measurements by Klinke &
Ja$ hne (1995, 1997), Klinke (1996) and others the most typical cut-off wavenumber for
wind waves is around 1000 rad m−", corresponding to 6 mm wavelength. In our
solutions this cut-off wavenumber occurs in the energy spectrum for a dominant
wavelength of 4 cm. Finally, we compare our solutions with preliminary experimental
results from a wind-wave channel.

The structure of the paper is as follows. In §2 we introduce the governing equations
and outline the boundary layer approximation and linear damping. Most of the
mathematical derivations are completed in §§3–5, which include consideration of the
vorticity advection–diffusion equation and the derivation of Bernoulli’s integral for
weakly damped flows. In §6 we combine all the analytical expressions and give the final
mathematical formulation of the problem. In §7 we show how to calculate the energy
density and energy dissipation associated with the waves. In §8 we give a linear
approximation to the problem with a physical interpretation of the pressure forcing,
which leads to the introduction of the Class 1 and Class 2 solutions. In the same section
we discuss the relation of these solutions to different mechanisms of wind-wave
generation. Our numerical results are presented in §§9–13, including the profiles of the
free surface, dissipation estimates, and comparison with preliminary experimental
results. The reader who is so inclined can go directly to §6 or even §9 to avoid the
mathematical development.

In addition, we provide the following clarification of the terminology we use in the
paper.

Gravity–capillary waves : nonlinear surface waves for which both gravity and surface
tension are important. In the parameter range we are using, they are characterized by
the existence of two major scales : the longer scale coincides with the entire wavelength,
and the shorter scale is due to a harmonic resonance. This shorter scale is observed as
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capillary ripples for which the effect of the surface tension is more important than
gravity.

Fundamental wave: the first Stokes harmonic of the appropriate Stokes expansion for
the gravity–capillary wave of a fixed wavelength.

Dominant wave (longer wave) : a gravity–capillary wave with parasitic capillary ripples
filtered out. The dominant wave can be approximated by taking the Stokes harmonics
before the local maximum associated with the parasitic capillaries. See §10.
Importantly, the dominant wave is still influenced by surface tension.

The separation of the wave into the dominant part and capillary ripples is
convenient, and provides a physical interpretation of the phenomenon. However, in
fact, there exists only one nonlinear wave, or wave system, in which capillaries are
higher harmonics of the fundamental waves.

2. Basic equations, the boundary layer approximation and other
assumptions

Potential-flow theory has been the traditional tool for studying gravity and
capillary–gravity waves on deep water. There have been many studies validating this
theory in different cases (e.g. Dommermuth et al. 1988). However, in several important
applications the flow near the surface cannot be considered irrotational. Since the fluid
has a small, but non-zero viscosity (Longuet-Higgins 1992a, b, 1994), the free surface
generates a vorticity field, which increases with increasing curvature of the free surface.
Usually the vorticity remains localized in a subsurface layer which is thin compared to
the characteristic wavelength. (For other examples of rotational surface waves see
Milinazzo & Saffman 1990; Fedorov & Melville 1997).

To treat periodic surface waves of permanent form we transform to a frame of
reference travelling with speed c to the right (c" 0). In the new reference frame the
motion is steady, and we let x and y be the horizontal and vertical coordinates,
respectively. When presenting the results, the origin of y will be shifted to let the mean
surface elevation be zero, but at this point it is arbitrary. The waves are considered two-
dimensional in space, i.e. the elevation of the free surface varies only with x, while the
flow velocities depend upon x and y.

Following Longuet-Higgins (1992b), we introduce a characteristic thickness of the
surface boundary layer (see figure 1) as

δC (2ν}σ)"/# (2.1)

where σ¯ ck is the radian frequency, ν the kinematic viscosity, k¯ 2π}λ the
wavenumber and λ is the wavelength for surface waves. For subsequent boundary
layer approximations we require that

γ¯kδ' 1. (2.2)

Note that the local thickness of the boundary layer δ
e

(see §3) will vary with the
horizontal coordinate, but its value remains of the same order of magnitude as δ.† Also
the estimates (2.1) and (2.2) imply that γ£ ν"/#.

† Strictly speaking, we should introduce two local thicknesses of the boundary layer : one due to
capillary waves, the other due to the dominant wave. The maximum of the two determines the actual
thickness of the boundary layer. However, γ will not enter the final equation explicitly, and this will
not affect our derivations.
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F 1. A surface wave with parasitic capillaries riding on the forward face of the longer wave. Also
shown are the viscous boundary layer near the surface and the natural coordinate system (s, n). The
thickness of the boundary layer is δ ; γ¯kδ' 1. (The figure is not to scale, and, in fact, δ is assumed
to be much smaller than the characteristic wavelength of capillary ripples.)

Next, we introduce natural coordinates (s, n), where s and n are unit vectors along
and normal to the surface, respectively. The scaling factors (Batchelor 1967, p. 598)
connecting them to the usual rectilinear coordinates are (Longuet-Higgins 1953)

h(s)¯ h¯ 1
n

R
, h(n)¯ 1, (2.3)

where R¯R(s) is the local radius of curvature of the water surface, positive at the wave
crests. More generally R is the radius of curvature for the streamlines. Since we are
considering a thin boundary layer, we can disregard the dependence of R upon n within
the boundary layer. Note that at the surface itself h(s, 0)¯ 1.

The usual expression for R is

1

R
¯

X
ss

Y
s
®X

s
Y
ss

(X #
s
Y #

s
)$/#

, (2.4)

where
X¯X(s), Y¯Y(s) (2.5)

is a parametric representation of the surface. Instead of s we can choose any other
independent parameter, as the form of (2.4) does not change under transformations of
the independent parameter (Korn & Korn 1968).

In the new coordinates the steady motion within the boundary layer is determined
by the vorticity equation and mass conservation:

u
¥ω
¥s

�h
¥ω
¥n

¯ ν 0 ¥
¥s 0

1

h

¥ω
¥s1

¥
¥n 0h

¥ω
¥n11 , (2.6)

and
¥u
¥s


¥(�h)

¥n
¯ 0, (2.7)

where

ω¯
1

h 0
¥�
¥s

®
¥(uh)

¥n 1 . (2.8)

Here, u¯u(s, n) is the fluid velocity, u¯ (u, �), P the pressure, ρ the fluid density,
g gravity, y the vertical coordinate, and ω the vorticity of the flow.

Equations (2.6)–(2.8) are supplemented by the generalized Bernoulli equation for
steady viscous flow:

¥
¥s 0

u#

2


P

ρ
gy1�

¥ω
¥n

¯ 0 at n¯ 0. (2.9)

Equation (2.9) is a consequence of momentum conservation along s (Lugt 1987).
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The dynamic boundary conditions on the surface are the continuity of the normal
and tangential stresses, respectively (Landau & Lifshitz 1987),

P

ρ
2ν

¥u
¥s

¯
P
!

ρ


T

R
(2.10)

and

τ

ρ
¯ ν

¥
¥n 0

u

h1¯ 0, (2.11)

where T is the surface tension and P
!
is the external atmospheric pressure, necessary to

supply the energy to keep the waves steady. P
!
is a function of the horizontal coordinate

x. The kinematic boundary condition on the surface is

�¯ 0 at n¯ 0, (2.12)
which is equivalent to

ψ¯ 0 at n¯ 0, (2.13)

where the streamfunction ψ is introduced so that

u¯
¥ψ
¥n

, �¯®
1

h

¥ψ
¥s

. (2.14)

Finally note that outside the boundary layer the flow is irrotational, with

ωU 0 and uU®c as yU®¢. (2.15)

We express the streamfunction ψ and the velocity u, as well as the elevation of the
free surface η, each as sums of two terms, with one part corresponding to the ideal flow
and a correction due to the viscous boundary layer :

ψ¯ψiψb, (2.16)

u¯uiub, (2.17)
and

η¯ ηiηb. (2.18)

For the ideal part of the flow we also introduce the potential φi. The parametric
description of the surface is now

X¯X iXb ; Y¯Y iYb, (2.19)

where all (X i,Y i ) and (Xb,Yb) are functions of s. Clearly, Y and η differ only by an
arbitrary constant, but for convenience we will use both notations. Also, according to
our definition of the irrotational terms and rotational corrections, and according to
formula (2.8) for ω, in the interior of the flow

ω¯
1

h 0
¥�b

¥s
®

¥(ubh)

¥n 1 , (2.20)

and

¥�i

¥s
®

¥(uih)

¥n
¯ 0. (2.21)
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It can be shown that (Ruvinsky et al. 1991; Longuet-Higgins 1992b)

ubCγ, �bCγ#, ψbCγ#, (2.22)

and consequently ηbCγ#. Also δ}R¯O(γ). As long as γ is small, this implies that the
boundary layer corrections are small compared to the ideal parts of the flow.

If ν¯ 0 and ω¯ 0, all the boundary terms vanish, and Euler’s description of the
irrotational surface waves is recovered from (2.6)–(2.11). The boundary condition
(2.11) is satisfied identically, and integrating (2.9) with respect to s gives Bernoulli’s
integral at the surface,

ui#

2
gYi

T

R


P
!

ρ
¯ const. (2.23)

The kinematic boundary condition remains the same:

ψi¯ 0 at n¯ 0, (2.24)
and ω¯ 0 implies that

~#ψi¯ 0 (2.25)

everywhere in the fluid. Thus, (2.25), together with (2.23) and (2.24), gives a standard
description of surface gravity–capillary waves with no viscosity. Now our task is to
correct this set of equations to allow for small viscosity. Accordingly, in the next
sections we will express boundary layer corrections in (2.6)–(2.11) in terms of the ideal
irrotational flow.

Finally, we need one more assumption. We introduce ε as a measure of the relative
characteristic slope of the free surface

ε¯max (ε
d
, ε

c
), (2.26)

where ε
d
and ε

c
are the characteristic slopes of the dominant wave and capillary ripples,

respectively. The slopes are defined as

ε
d
¯ ak, ε

c
¯ a

c
k
c
, (2.27)

where a and a
c

are characteristic amplitudes of the dominant wave and capillary
ripples, respectively, k is the wavenumber based on the length of the dominant wave,
and k

c
is the wavenumber based on the wavelength of the capillary ripples.

Now we adopt the assumption of linear friction, i.e. in describing weak frictional
effects, and only frictional effects, we will keep terms proportional to ε, but neglect
terms proportional to ε#. This assumption is equivalent to classical linear† damping
(Phillips 1977; Lighthill 1978) and implies that all Fourier harmonics of the wave are
damped independently. Provided ε is small, one can easily show that (Whitham 1974;
Phillips 1977; Longuet-Higgins 1992b, also see (2.4))

uE®c, rcurC ε, ηC ε, u
s
C ε, X

s
E 1,

1

R
E®Y

ss
C ε. (2.28)

(These expressions are well-known in the linear theory of surface waves.) The smallness
of ε and estimates of this kind will be used only in evaluating the damping terms. For
higher values of ε, consideration of the higher-order dissipative terms may become
necessary, but their relative importance remains an open question (see also the final
remark of §9).

† We need to emphasize that in this case ‘ linear ’ does not actually mean that the friction terms are
linear functions of surface velocity for example, as is used in some simple models.
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3. Vorticity field near the free surface

First, we study the vorticity field associated with the damped gravity–capillary waves
and consider a formulation to leading order in γ. Using the mass conservation
equation (2.7) with the kinematic boundary condition (2.12) we find that in the
boundary layer

�¯®
¥U i

¥s
n, (3.1)

where
U¯U(s)¯U iUb (3.2)

is the flow velocity at the surface. With (3.1) the vorticity equation (2.6) reduces to

U i
¥ω
¥s

®
¥U i

¥s
n
¥ω
¥n

¯ ν
¥#ω
¥n#

. (3.3)

Combining (2.3), (2.8), (2.11) and (2.12) yields the vorticity immediately at the free
surface as

ωr
n=!

¯®2U}R (3.4)
or to leading order

ωr
n=!

E®2U i}Ri, (3.5)

where Ri is calculated as in (2.4) but in terms of X i and Y i. This result is due to
Longuet-Higgins (1953, 1992b, see also Batchelor 1967 and Phillips 1977).

To solve (3.3) with the boundary condition (3.5) we introduce new variables

ζ¯®
k

c & U ids¯®
k

c
φi (3.6)

and

r¯®
k

c
U in. (3.7)

(Later we will use ζ as the independent variable for parametrizing the free surface.) One
can easily verify that in these new variables the vorticity equation becomes linear :

®
¥ω
¥ζ

¯
kν

c

¥#ω
¥r#

(3.8)

with
ωr

r=!
¯®2U i}Ri. (3.9)

A solution of (3.8)–(3.9) periodic in ζ can be written as

ω¯ω
"
ωa (3.10)

where

ω
"
¯Re (3

¢

m="

q
m

exp 9®iζm(1i) r 0mc

2νk1
"/#:* , (3.11)

with the Fourier coefficients q
m

:

q
m

¯
1

π&
#
π

!

0®2U i

Ri
-2U i

Ri .1 eiζ «mdζ «, (3.12)



10 A. V. Fedoro� and W. K. Mel�ille

and ωa given by

ωa ¯-®
2U i

Ri .¯
1

2π&
#
π

!

0®2U i

Ri 1dζ «. (3.13)

Without loss of generality we have assumed that the wave is 2π-periodic in ζ. The ©…ª
denotes the average over a wavelength with respect to ζ.

While ω
"
is exponentially decaying with r (i.e. with depth), ωa is a non-zero constant

(for nonlinear waves). Thus at the lower edge of the boundary layer the vorticity has
some non-zero value. Formally, we must subtract this constant in (3.12) for ω

"
to be

finite everywhere.
The component ωa , the so-called rectified vorticity, was first introduced by Longuet-

Higgins (1953, 1992b, see also Batchelor 1967; Mei 1983) although in a less general
form. This rectified vorticity should diffuse into the interior of the fluid resulting in a
growing shear current beneath the wave (Longuet-Higgins 1992b). Similarly, the shear
stress from the wind contributes to this shear current, which may affect the waves but
on longer time scales. In our calculations these effects are neglected, which is justifiable
for moderate wave amplitudes and wind speeds, or for shorter time scales.

With the use of (2.28) and (3.11)–(3.13) one can easily show that

ω
"
C ε, but ωa C ε#, (3.14)

so that ωa remains a variable of second order in ε. Following the assumption of linear
friction in §2 and a remark in the previous paragraph, we will neglect ωa further and
replace ω with ω

"
.

From (3.11) with (3.7) we calculate the dimensional local thickness of the boundary
layer, based on the exponential decay scale, as

δ
e
¯ 02ν

ck1
"/# c

rU ir
¯ δ

c

rU ir
. (3.15)

That is, the thickness of the boundary layer is modulated by the factor c}rU ir from δ.
If there is a stagnation point at the surface, the boundary layer becomes infinitely large,
which may correspond to flow separation.

For later use, we calculate ψb at the surface. From (2.14), (2.16), (2.17) and (2.20)
to leading order in γ

ψb¯®&!

−¢
&n

−¢

ωdndn. (3.16)

Introducing

I¯&!

−¢
& r

−¢

ωdrdr (3.17)

gives

ψbE®
c#

k#U i#
IE®

I

k#

. (3.18)

The value of I is obtained through integrating (3.8) twice and neglecting terms of
second order in ε :

®
¥I
¥ζ

¯
kν

c
ωr

r=!
E

kν

c
ω
"
r
r=!

(3.19)

and

IE®
kν

c &
ζ

!

ω
"
r
r=!

dζ «¯
2kν

c &
ζ

!

0U i

Ri
®-U i

Ri .1dζ «, (3.20)
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where again the symbol ©…ª stands for the average over a wavelength with respect to
ζ. Formula (3.20) for I corresponds to our solution (3.11) for ω

"
.

4. Bernoulli’s integral for a weakly damped flow

Now we are ready to derive Bernoulli’s integral for a weakly damped flow. Rewriting
(2.9) with (2.10) yields

¥
¥s 0

U #

2
gY

T

R


P
!

ρ
®2ν

¥U
¥s 1ν

¥ω
¥n

¯ 0 at n¯ 0. (4.1)

Integrating the vorticity equation (2.6) with (2.15) with respect to n from ®¢ to zero,
using integration by parts, and applying mass conservation (2.7) yields (at the surface)

ν
¥ω
¥n

¯
¥
¥s&

!

−¢

(uω) dn®ν
¥
¥s&

!

−¢

1

h

¥ω
¥s

dn (4.2)

or, to leading order in γ,

ν
¥ω
¥n

E
¥
¥s&

!

−¢

(uω) dn, (4.3)

since

ν£γ#, &!

−¢

ωdnC δCγ, ν
¥
¥s&

!

−¢

1

h

¥ω
¥s

dnCγ$. (4.4)

We replace u and ω with their expressions from (2.17) and (2.20) and neglect the terms
of order γ# and higher to obtain

ν
¥ω
¥n

¯
¥
¥s&

!

−¢

(uiub)
1

h 0
¥�b

¥s
®

¥(ubh

¥n 1dn (4.5)

E®
¥
¥s&

!

−¢

(uiub)
1

h

¥(ubh)

¥n
dnE®

¥
¥s 0&

!

−¢

ui

h

¥(ubh)

¥n
dn

Ub#

2 1 (4.6)

(integrating by parts)

¯
¥
¥s 0&

!

−¢

ubh
¥(ui}h)

¥n
dn®

Ub#

2
®U iUb1

E
¥
¥s 0&

!

−¢

ub
¥ui

¥n
dn®&!

−¢

uiub

R
dn®

Ub#

2
®U iUb1 . (4.7)

In the boundary layer (see (2.3), (2.12), (2.21) and (2.22))

¥ui

¥n
E®

ui

R«
(4.8)

that is,

ν
¥ω
¥n

E®
¥
¥s 0

Ub#

2
U iUb1 . (4.9)

Substituting (4.9) in (4.1) and neglecting terms of higher order gives

¥
¥s 0

U i#

2
gY

T

R


P
!

ρ
®2ν

¥U i

¥s 1¯ 0 at n¯ 0, (4.10)
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or after integrating (4.10),

U i#

2
gY

T

R


P
!

ρ
®2ν

¥U i

¥s
¯E at n¯ 0, (4.11)

where E is an arbitrary constant. Now replacing s with ζ in (4.11) yields

U i#

2
gY

T

R


P
!

ρ


νk

c

¥
¥ζ

U i#¯E at n¯ 0, (4.12)

This is Bernoulli’s integral for a weakly damped flow. Now we need to recalculate both
Y and R in terms of X i and Y i, as they include boundary layer corrections.

5. The change of the elevation and curvature of the free surface due to the
boundary layer corrections

To calculate the boundary layer corrections in both the elevation Y and curvature
1}R, we introduce a ‘virtual ’ surface (figure 2) parametrically described as

X i¯X i(s), Y i¯Y i(s). (5.1)

It can be defined as the surface where ψi¯ 0. The real surface is described as

X¯X(s), Y¯Y(s), (5.2)

or it can be similarly defined as ψ¯ 0.
Let nb¯nb(s) be a vector connecting the real and the virtual surfaces (see figure 2).

We calculate nb, using a Taylor expansion for ψi. At the real surface

ψiE
¥ψi

¥n
nbEU inb, (5.3)

but from (2.16)
ψi¯®ψb. (5.4)

Combining these two expressions gives

nbE®ψb}U i. (5.5)

One should immediately notice that nbCγ#, and rnbr' δ. That is, the boundary layer
thickness is much larger than the depth of the virtual surface. In addition, an
expression for ψb in (5.5) was obtained in §3 ((3.18) and (3.20)).

Now recalling that the difference between the real and virtual surfaces is just the
boundary layer correction, and projecting nb onto the horizontal and vertical axes gives

Yb¯ nb cosαW (5.6)
and

Xb¯®nb sinαW , (5.7)

where αW is the angle of inclination of the surface to the horizontal. Using ζ instead of
s for parametrizing the surface gives

cosαW EX i
s
¯®

kU i

c
X i

ζ (5.8)

and

sinαW EY i
s
¯®

kU i

c
Y i

ζ. (5.9)
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α
nb

ψ = 0

ψ i = 0

F 2. The real surface described by ψ¯ 0 and the virutal surface ψi ¯ 0. The connection is
given by the vector nb. Note that rnbr' δ. (The figure is not to scale.)

We combine (5.6)–(5.8) and (5.7)–(5.9) to yield

Yb¯
kψb

c
X i

ζ (5.10)

and

Xb¯®
kψb

c
Y i

ζ. (5.11)

Introducing
Z¯XiY, Z i¯X iiY i, Zb¯XbiYb (5.12)

gives

Zb¯
ikψb

c
Z i

ζ, (5.13)

and

Z¯Z i
ikψb

c
Z i

ζ. (5.14)

Since

rZ i
ζr¯ )Z i

s

ζ
s

)E 1

ζ
s

¯
c

U ik
E

1

k
(5.15)

and
ψbE®I}k# (5.16)

(see §3, (3.18) and (3.20)), in the approximation of linear friction we write

ZEZ i®
iI

k#c
, (5.17)

which allows us to calculate the elevation of the surface Y. Knowing Z, the curvature
1}R can be computed as (cf. (2.4))

1

R
¯®Im ²Zζζ Z−$/#

ζ Z$ζ
−"/#´, (5.18)

where the asterisk denotes the complex conjugate.
There are still two more problems to resolve. First, the velocity U i is different at the

real and virtual surfaces. The difference ∆U i is given by a Taylor expansion, along with
(2.28), (4.8) and (5.5),

∆U iE
¥U i

¥n
nbE®

U i

R
nbE

ψb

R
Cγ#ε#, (5.19)

so that in the linear friction approximation it can be neglected.
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Finally, it will be necessary to express U i in terms of X i and Y i :

U i¯®
c

k5
ds

dζ
E®

c

k(X i#
ζ Y i#

ζ )"/#
, (5.20)

or

U i¯®
c

k
(Z i

ζ Z i$ζ )−"/#. (5.21)

This concludes our preliminary calculations.

6. Final formulation of the problem and numerical approach

In the previous sections we calculated Bernoulli’s integral for weakly damped flows.
Now following a standard approach (Chen & Saffman 1980; Longuet-Higgins 1984;
Zufiria 1987) we represent the ideal part of wave motion in the fluid by means of a
Stokes expansion

kzi¯®
φiiψi

c
ki 3

¢

m="

a
m

eim
φi+iψ

i

c k. (6.1)

Here, the complex potential φiiψi is used as a complex independent variable for
describing the motion. Expression (6.1) is a consequence of the complex potential being
an analytic function of zi, or alternatively, zi being analytic function of the complex
potential. Complex factors a

m
are Fourier coefficients to be determined (Stokes

coefficients). If the a
m

are zeros then the motion is a steady uniform flow to the left that
is determined by a simple complex potential (remember that we sit in the frame of
reference travelling to the right)

φiiψi¯®czi. (6.2)

Clearly, non-zero a
m

correspond to a superposed wave motion.
On the virtual surface ψi¯ 0, and (6.1) gives a parametric representation for Z i :

kZ i¯®
φi

c
ki 3

¢

m="

a
m

eim
φi

c k¯ ζi 3
¢

m="

a
m

e−imζ. (6.3)

Now combining equations (3.13), (3.20), (4.12), (5.17), (5.18), (5.21) and (6.3) leads to
the final formulation of the problem: find Z i, such that

Z i¯
1

k 0ζi 3
¢

m="

a
m

e−imζ1 , ζZ [0, 2π], (6.4)

and

U i#

2
gY

T

R


P
!

ρ


νk

c

¥
¥ζ

U i#¯E, (6.5)

where

U i¯®
c

k
(Z i

ζ Z i$ζ )−"/#, (6.6)

Z¯Z i®
2νi

c#k&
ζ

!

0U i

Ri
®-U i

Ri.1dζ «, (6.7)

1

R
¯®Im ²Zζζ Z−$/#

ζ Z$ζ
−"/#´, (6.8)

P
!
¯P�

!
coskX, (6.9)
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with
X¯ReZ®ReZrζ=!

, Y¯ ImZ, (6.10)

1

Ri
¯®Im ²Z i

ζζ Z i
ζ
−$/#Z i$ζ

−"/#´, (6.11)

and

-U i

Ri.¯
1

2π&
#
π

!

U i

Ri
dζ «. (6.12)

In (6.10) we have additionally subtracted a constant (ReZrζ=!
) in order to fix the

reference point with respect to x. Finally, we introduce the wave amplitude as

a¯
max (Y )®min (Y )

2
, (6.13)

corresponding to the characteristic slope of the longer wave ak. Equations (6.4)–(6.13)
must be solved for a

m
, c and E with a and P�

!
as independent parameters. As soon as

a
m
, c and E are found, Z i is calculated from (6.4) and Z from (6.7). This gives the

profile of the free surface uniquely. Note that the system (6.4)–(6.13) is equivalent to
one equation, which can be written as

Q(ζ, c,E, a
"
, a

#
, a

$
,…)¯ 0, ζZ [0, 2π], (6.14)

where Q is some nonlinear operator. However it is more convenient to keep all the
terms separately, as in (6.4)–(6.13).

As the external pressure P
!

(atmospheric forcing, (6.9)) we take a simple cosine
profile P�

!
coskx. It is convenient to use a non-dimensional amplitude of the forcing

p¯P�
!
}ρc#

!
, (6.15)

where
c
!
¯ (g}kTk)"/# (6.16)

is the phase speed of linear gravity–capillary waves. Changing p (or P�
!
) alters the

properties of the system. The length scale of the forcing coincides with the wavelength
of the dominant wave, so that parasitic capillaries are not affected directly by the
external pressure. Clearly, other choices of pressure forcing are possible, but the limited
aim here is to balance the viscous dissipation with the energy flux across the surface.

To solve the system (6.4)–(6.13) we discretize equations on the interval of ζ from 0
to 2π. The derivatives are calculated using (6.4), while the series in (6.4) is truncated.
In most of the runs 100–400 terms are kept in the series. The integrals in (6.7) and (6.11)
are evaluated using the trapezoidal rule. The procedure yields a finite set of algebraic
equations in a

m
, c and E, while ak and p are used as independent non-dimensional

parameters. The wavelength λ, the coefficient of surface tension T and viscosity ν are
assumed to be fixed. (This is different from regular steady gravity waves, for which the
wave amplitude or the wave slope is the only parameter after fixing λ.)

The set is solved numerically by Newton’s method. The Jacobian for each iteration
is computed numerically. As an initial guess, we usually take a linear wave profile. For
other cases, we use a previously calculated solution as the initial guess for other
combinations of parameters. Newton’s method converges in a broad range of ak and
p. As a rule, for each p there is an upper limit of the wave slope ak, and for each ak
there is a lower limit of the forcing amplitude p, for which solutions are found. The
former constraint means that there are limits to the wave heights, while the latter
indicates that there should exist a minimum external forcing necessary for the waves
to remain steady and not decay.
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In presenting the results, the level from which we measure y is chosen so that the
mean free surface elevation becomes zero. Also, since there is a phase shift, say Θ,
between the profile of the free surface and the pressure distribution, again for
presentation we shift the origin of the coordinate in the x-direction to centre the wave
profile in the presentation window. We will briefly discuss the significance of Θ, when
giving a physical interpretation of the pressure forcing in §8.

7. Calculations of wave energy and wave dissipation

In this section we calculate the energy and energy dissipation associated with
gravity–capillary waves. We introduce the full energy density of a surface wave as

E
W

¯E
K
E

G
E

T
, (7.1)

where E
K
, E

G
and E

T
are the mean energy densities of the kinetic energy, potential

energy due to gravity, and potential energy due to surface tension, respectively. To
compute separate terms in (7.1) at leading order in γ, we can apply formulas known
for ideal surface waves (see Lighthill 1978; Longuet-Higgins 1984; Balk 1996). These
formulas are useful, provided we know the elevation of the free surface and the
distribution of the potential on the surface as functions of the horizontal coordinate:

E
K

¯
ρc

2λ&
λ

!

Ydφi, (7.2)

E
G

¯
ρg

2λ&
λ

!

Y #dX, (7.3)

and

E
T

¯
ρT

λ &
λ

!

((1Y #
X
)"/#®1) dX. (7.4)

Here, each energy density is obtained as the average over the wave period. The
dimension of E

K
, E

G
and E

T
is energy per unit area. The kinetic energy E

K
is calculated

in the laboratory frame of reference, while the average surface elevation must be zero:

Y{ ¯
1

λ&
λ

!

YdX¯ 0. (7.5)

The errors in calculating the energy from (7.2)–(7.5) are proportional to γ# and, as
such, neglected.

The rate of work E~
W

produced by the surface pressure (per unit area) can be easily
calculated as

E~
W

¯
c

λ&
λ

!

P
!
dY¯

c

λ&
λ

!

P�
!
cos (kX ) dY. (7.6)

Consequently, the rate of energy dissipation (the relative loss of energy in the wave in
one wave period) is

β¯
2π

σ

E~
W

E
W

. (7.7)

Note that in the field, the local balance between energy input from the wind and viscous
dissipation may not hold exactly, since usually there is energy transfer between
neighbouring waves in a wave group, or wave growth, or decay.
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Another parameter important in characterizing gravity–capillary waves is the ratio
of potential energies due to surface tension and gravity :

α¯E
T
}E

G
. (7.8)

This parameter describes the strength of parasitic capillaries. For linear waves (see
(8.3) below), using (7.3) and (7.4), α¯Tk#}g. Any substantial increase from this value
indicates the appearance of strong capillary waves. For brevity we will call α the
relative potential energy.

Finally, all the integrals in (7.2)–(7.6) can be recalculated using ζ as the independent
parameter instead of x. For example for E

K
this yields

E
K

¯®
c#ρ

4π &
#
π

!

Ydζ. (7.9)

8. Linear approximation and physical interpretation of the pressure
forcing

From (6.4)–(6.13) we can easily obtain simple wave solutions in the linear
approximation. Even though this approximation does not include parasitic capillary
waves, it reveals a number of physical properties of the full nonlinear solutions and is
useful in investigating the effects of the pressure forcing.

Following a Stokes hypothesis (see Lamb 1932), we assume that the first Stokes
coefficient a

"
is O(ε), while other coefficients are O(ε#) and smaller (ε' 1). Also to

comply with (6.13) we must choose a
"

as

a
"
¯ ak e−iΘ, (8.1)

where Θ is the phase shift and Θ}k is the displacement of the maximum of the pressure
forcing with respect to the wave crest. Thus the Stokes expansion (6.3) reduces at
leading order to

Z iE
1

k
(ζia

"
e−iζ ) (8.2)

and
Y iE a cos (ζΘ)E a cos (kxΘ). (8.3)

This last expression actually solves the problem, once we find Θ and the wave speed
c. Now using (6.6) and (8.3) and neglecting terms of order ε# gives

U i#E c#(1®2kY i). (8.4)
For small ε we obtain

1}RE®Y
xx

, 1}RiE®Y i
xx

, (8.5)
and from (6.7)

YEY i®
2ν

χ
(Θ ι

ξ®Θ ι
ξrx=!

). (8.6)

For simplicity, we replace ν}c with ν}c
!
, since the viscosity ν is small, and there is only

a small difference between c and c
!
.

Substituting (8.4)–(8.6) in Bernoulli’s integral (6.5), taking into account (8.3), and
separating different terms yields two equalities

E¯
c#

2


2gν

c
!

Y i
x
r
x=!

(8.7)
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and

0c#®g

k


T

k
¥
xx1Y i

2ν

c
!

0c#g

k
®

T

k
¥
xx1Y i

x
¯

P�
!

kρ
coskx, (8.8)

where the operator ¥
xx

denotes the second derivative with respect to x. Equation (8.8)
is an ordinary differential equation for Y i. Using (6.15) and (8.3) in (8.8) gives two
constraints (or compatibility conditions), which can be expressed after some algebra as

c#¯ c#
! 01

p

ak
cosΘ1 (8.9)

and

cosΘ#
4ν#k#

c#
!

0cosΘ
2ak

p 1
#

¯ 1, (8.10)

with
®π%Θ% 0. (8.11)

Now considering (8±10) as a quadratic equation for cosΘ yields its discriminant D as

D¯ 1
4ν#k#

c#
!

01®
4a#k#

p#
1 . (8.12)

Since the discriminant should be positive, for small p (8.12) leads to an approximate
condition for steady linear solutions to exist :

p&
4νk

c
!

ak. (8.13)

This means that for each ak the pressure amplitude should exceed a certain threshold,
which is determined by finite dissipation in the wave. As we show below, the dissipation
turns out to be much stronger for nonlinear waves, and for the full nonlinear solutions
the lower limit in (8.13) is significantly larger. In fact, most of the solutions we are
going to present will satisfy the condition

4νk

c
!

ak' p' ak, (8.14)

which conforms to (8.13), while keeping the pressure relatively small.
As long as (8.14) holds, (8.10) can be simplified to obtain two possible solutions Θ

"
and Θ

#
with

cosΘ
"
E®1

1

2 0
4νk

c
!

ak

p 1
#

(8.15)

and

cosΘ
#
E 1®

1

2 0
4νk

c
!

ak

p 1
#

. (8.16)

Together with (8.11), this gives

Θ
"
E®π

4νk

c
!

ak

p
(8.17)

and

Θ
#
E®

4νk

c
!

ak

p
. (8.18)
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c
Class 2

Class 1

Θ2/k
Θ1/k

F 3. The profile of a linear sinusoidal wave with the locations of the maximum surface pressure
for the Class 1 and Class 2 solutions. Note that in both cases the maximum of the surface pressure
is applied on the rear face of the wave, leading to the air doing work on the water.

ak p ak p

0±10 0±0003 0±30 0±016
0±15 0±0004 0±35 0±032
0±20 0±0027 0±40 0±049
0±25 0±0069 0±45 0±067

T 1. The non-dimensional forcing amplitudes p in the numerical simulations of 5 cm waves.

This implies that there are two different classes of solution (Class 1 and Class 2,
corresponding to Θ

"
and Θ

#
). The main difference between the two is that for the first

class, the surface pressure maximum occurs near the wave trough, while for the second
class, it is near the crest. The pressure maximum is displaced slightly downwind from
the trough for the Class 1 waves, and upwind from the crest for the Class 2 waves
(figure 3). Such a shift is necessary for the pressure to transfer energy into the waves
(see (8.19) below). Importantly, these two classes of solution will still exist in the
nonlinear problem and will retain the basic properties we have just discussed.

The linear phase speed for the Class 1}Class 2 solution is smaller}larger than the
linear phase speed in the absence of the forcing (see (8.9), (8.15) and (8.16)). Thus one
of the effects of the pressure forcing is to reduce the speed of the Class 1 waves and
increase it for the Class 2 waves. Note that the main effect of the pressure forcing is to
supply energy to the wave to balance dissipation. That is why the physical properties
of the Class 1 and Class 2 waves will be only slightly different as long as the pressure
forcing remains relatively small.

To check the results for the linear approach we can calculate the linear dissipation
rate. Substituting (6.15), (8.3) and (8.17) or (8.18) in (7.6) yields

E~
W

E®"

#
ρpc$

!
ak sinΘE 2νk$a#ρc#

!
. (8.19)

Calculating the full energy density of a surface wave gives

E
W

E "

#
ka#ρc#

!
. (8.20)

Thus the rate of energy dissipation per unit time is

E~
W

}E
W

E 4νk#. (8.21)

This is exactly the dissipation rate for surface waves on deep water from the classical
linear theory (Phillips 1977; Lighthill 1978).

Now, based on the above analysis, we can give a physical interpretation of the
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ak = 0.10 ak = 0.30

ak = 0.15 ak = 0.35

ak = 0.20 ak = 0.40

ak = 0.25 ak = 0.45
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F 4(a). For caption see facing page.

pressure forcing. It is well recognized that the main mechanisms of wave generation in
the ocean are connected with the direct or indirect action of the wind. For instance, in
Phillips’ (1957) model the energy of the stochastic turbulent fluctuations in the wind is
transferred to the waves by the action of the normal pressure. In Miles’ (1957, 1959)
theory a shear flow in the air becomes unstable while blowing above a wavy water
surface. As shown by Miles and confirmed by field measurements (Snyder et al. 1981)
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(b)

0 1 2 3 4 5 0 1 2 3 4 5

ak = 0.10 ak = 0.30

ak = 0.15 ak = 0.35

ak = 0.20 ak = 0.40

ak = 0.25 ak = 0.45
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F 4. Class 1, λ¯ 5 cm. (a) Surface elevations Y for different non-dimensional amplitudes ak of
the longer wave. Capillary ripples are clearly seen on the forward face of the surface wave. For
ak¯ 0±40 and 0±45 the wave profiles are multi-valued, resembling waves close to breaking. (b) Surface
slope dY}dX for different ak. The spikes in the plots for ak¯ 0±40 and 0±45 correspond to the multi-
valued solutions.
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the maximum aerodynamic pressure is located near the wave trough. When instability
develops, a critical layer appears in the shear flow. Owing to the critical layer, the
perturbation pressure becomes slightly shifted along the surface downwind as in figure
3. Thus we can associate our pressure forcing acting on the Class 1 solutions with the
perturbation pressure in the Miles mechanism of wave generation.

In realistic conditions we can expect a pressure forcing to be more complex than a
sinusoidal one and possibly even coupled with the wave field itself. Yet a cosine
pressure distribution will be the simplest model to stimulate the effect of moderate wind
on the waves.

In an alternative mechanism of wave generation, through the action of viscous forces
on longer time scales, the wind produces a shear current in the water, which becomes
unstable to surface wave modes (Morland et al. 1991). The physical mechanism of the
instability in this case is similar to Miles’ but now includes the presence of a critical
layer in the water (Shrira 1993). Following the derivations by Shrira (see Appendix B),
one can show that if the current is unstable the maximum perturbation pressure occurs
slightly upwind of the wave crest. (The pre-condition for this analysis is a relatively
weak shear current with no inflection points.) Therefore, the phase of the pressure
forcing for the Class 2 waves is consistent with that for waves generated by a shear flow
instability in the water.

9. Numerical results : 5 and 10 cm waves, Class 1 solutions

In this section we present numerical solutions of (6.4)–(6.13) with (6.15) for the Class
1 waves (associated with Miles’ instability) that describe nonlinear gravity–capillary
waves with forcing and dissipation for different non-dimensional wave amplitudes ak,
or slopes of the longer waves. The parasitic capillary waves are prominent features of
these solutions. The calculations are made for ν¯ 0±01 cm# s−" and T¯ 73 cm$ s−#.
The values of the non-dimensional amplitude of the forcing p are given in table 1. These
value of p are close to, but slightly higher than, the minimum possible values of the
pressure forcing for each ak, while the phase shift Θ varies roughly from ®ππ}7 to
®ππ}4 (cf. (8.17) for the linear model). Further, in §12 we discuss how the changes
in the pressure forcing affect our solutions. It is important that even for larger ak the
pressure forcing remains small (p' ak).

The ratio p}ak lies in the range O(10−$–10−") with the upper limit slightly higher than
the values resulting from Miles’ (1959) calculations for a logarithmic wind profile and
different winds.† However, we expect that larger values of p}ak and, consequently, a
stronger pressure forcing can be provided by a stronger wind.

The elevation of the free surface Y and the wave slope dY}dX for 5 cm waves are
presented in figures 4(a) and 4(b). The figures show how parasitic capillaries appear
and become stronger on the forward face of the dominant waves with increasing wave
amplitude. The number of capillary ripples increases as well. For very large amplitudes
the wave profile becomes multi-valued, resembling overturning breaking waves. (We
use the word multi-valued in the sense that Y expressed as a function of X is multi-
valued. However, both Y¯Y(ζ ) and X¯X(ζ ) remain single-valued functions of ζ). A
sharp corner develops separating the bulging crest and the train of capillary ripples.
Although we neglected the rectified vorticity ωa , it may in fact have some significant

† These values can be obtained from the relation connecting the aerodynamic pressure and the
surface elevation (Miles 1957, equation (2.3)) and the numerical results for different wind speeds
(Miles 1959, figures 4 and 5).
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F 5. Class 1, λ¯ 5 cm; to scale. (a) A solution for ak¯ 0±35. This is a typical asymmetric
gravity–capillary wave with damping. (b) A solution for ak¯ 0±45. This is a multi-valued solution,
describing a wind-forced, damped gravity–capillary wave close to breaking.
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F 6. Class 1, λ¯ 5 cm. Plots showing the horizontal velocity U
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!
at the surface. The flow

accelerates significantly at the troughs of capillary ripples : (a) ak¯ 0±35; (b) ak¯ 0±45. A narrow
loop in the plot corresponds to a multi-valued wave profile.

effect on the waves, including the separation of the flow near the sharp corner. In
figures 5(a) and 5(b) we present the wave profiles for ak¯ 0±35, 0±45 with improved
resolution and no vertical distortion.

To show the velocity field around the capillary ripples, we present several plots of
dimensionless horizontal velocity U

h
}c

!
at the surface as a function of the horizontal

coordinate (figure 6). Clearly, the flow accelerates at the troughs of the capillary
ripples, leading to a significant difference between the flow velocity and the linear phase
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F 7. A plot showing local centripetal acceleration at the surface as a function of the horizontal
coordinate for ak¯ 0±35. The acceleration is non-dimensionalized by the acceleration due to
gravity. The minus sign corresponds to the outward direction from the water. Note the very high
values of acceleration at the troughs of capillaries.

speed. A narrow loop in the plot for ak¯ 0±45 is consistent with a multi-valued wave
profile. Note that in this case the horizontal velocity reaches zero twice, which
corresponds to the limiting points of the wave profile where the fluid particles move
vertically.

Although the flow velocity at the surface remains comparable with c
!
, the radius of

curvature in the troughs of capillary ripples may become very small (of order
10−" mm). As a result, in the troughs of capillaries the centripetal acceleration of the
flow, U #}R, may exceed the acceleration due to gravity by many times (an example for
ak¯ 0±35 is shown in figure 7). Importantly, despite the high local curvature, the
profile remains smooth with no kinks or cusps, so that a truncated Stokes expansion
still provides an adequate description of the surface. The smoothness of the profile is
ensured by the dissipative terms, since any infinite curvature would create an infinite
vorticity flux near the surface.

The most important parameters relevant for the computed surface waves are
presented in figure 8 and include the dimensionless phase speed c}c

!
, the ratio of

potential energy due to surface tension and that due to gravity (relative potential
energy) α, and the dissipation rate β. First, notice a slight increase in the phase speed
when compared with linear waves. This increase is due to the effect of the nonlinear
Stokes correction, partially counterbalanced by the effect of external forcing (see §8).
The relative potential energy, α, rises with ak, but then experiences a significant
decrease as soon as the wave profile becomes multi-valued. This drop is due to an
increase in the absolute value of the gravitational potential energy and, to a lesser
extent, to a decrease in the surface tension potential energy.

The dissipation rate β grows very rapidly with the wave amplitude and may exceed
the values given by classical linear theory for the longer wave by two orders of
magnitude. It is a strongly nonlinear function of the amplitude.

Now we proceed to our calculations for 10 cm waves. The values of the non-
dimensional wave amplitude (or slope) ak and the amplitude of the forcing p are given
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ak p ak p

0±275 0±0005 0±35 0±0094
0±30 0±0006 0±375 0±0187
0±325 0±0025 0±40 0±0324

T 2. The non-dimensional values of wave amplitude ak and amplitude of the forcing p in the
numerical simulations of 10 cm waves.

in table 2. For these solutions the phase shift Θ varies roughly from ®ππ}9 to
®ππ}25. The surface elevation and slope are presented in figures 9(a) and 9(b).
There are several differences in the properties of parasitic capillaries when compared
with the 5 cm waves. The wave profiles for ak¯ 0±35, 0±40, with improved resolution
and no vertical distortion, are shown in figures 10(a) and 10(b). Clearly, the capillary
waves appear for higher amplitudes of the dominant waves. The capillaries are shorter,
and more ripples develop. Another difference is the lack of capillary waves in the
troughs of the longer waves.

Pertinent wave parameters are combined in figure 11, including the phase speed c}c
!
,

the relative potential energy α, and the dissipation rate β. Again, there is a slight
departure from the linear phase speed, and a large increase in dissipation rates. Like
the 5 cm waves, the relative potential energy rises, but with the transition to multi-
valued profiles α decreases.



26 A. V. Fedoro� and W. K. Mel�ille

ak = 0.275 ak = 0.35

ak = 0.30 ak = 0.375

ak = 0.325 ak = 0.40

(a)

1

–1

0Y
(cm)

–1

0

1

Y
(cm)

–1

0

1

Y
(cm)

0 2 4 6 8 10 0 2 4 6 8 10

X (cm)X (cm)

F 9(a). For caption see facing page.

To conclude this section, several important remarks are in order. With the increase
of the wave amplitude and transition to a ‘multi-valued’ profile, the absolute slope
dY}dX formally approaches infinity at several points of the profile, yet the functions
Y¯Y(ζ ) and X¯X(ζ ) used in the derivations of the boundary layer relations remain
well-behaved and confined. This implies that the relative slope of the wave ε, defined
as in (2.26)–(2.27), remains small (definitely smaller than 0±5, which can be seen in
figures 5 or 10). This formally justifies the use of a weakly nonlinear approximation for
damping terms (and only damping terms).

Where our approximation can break down is in the steepest troughs of capillary
waves for higher amplitudes of the dominant wave. We could choose the parameter
r1U

h
}c

!
r to describe local nonlinearity in the problem. For the linear problem it is

much smaller than unity, as long as U
h
E®c

!
. For the nonlinear problem one can

notice (figure 6) that, although this parameter remains relatively small along most of
the wave profile, it may reach and even exceed unity in the steepest capillary troughs.
The ratio of the boundary layer thickness to the radius of curvature of the surface, δ}R,
which has been assumed to be small, may also reach unity. Thus higher-order nonlinear
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F 9. Class 1, λ¯ 10 cm. (a) Surface elevations Y for different non-dimensional amplitudes ak
of the longer wave. Capillary ripples are clearly seen on the forward face of the surface wave. For
ak¯ 0±40 the wave profile is multi-valued, resembling waves near breaking. (b) Surface slope dY}dX
for different ak for 10 cm waves. The spikes in the plot for ak¯ 0±45 correspond to a multi-valued
solution.

dissipative terms could become important, and this may limit the applicability of our
results for greater amplitudes.

10. Spectral properties of computed gravity–capillary waves:
Class 1 solutions

The most convenient spectral characteristics of the solutions computed in §9 can
be obtained in terms of the Stokes coefficients a

m
. First notice that the slope of the free

surface is described by the function Zζ and to leading order in γ

kZζ®1¯ 3
¢

m="

ma
m

e−imζ. (10.1)
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F 10. Class 1, λ¯ 10 cm. (a) A solution for ak¯ 0±35, to scale. This is a typical asymmetric
gravity–capillary wave with damping. (b) A solution for ak¯ 0±40, to scale. This is a multi-valued
solution, describing a wind-forced gravity–capillary wave with damping close to breaking.

Now it is natural to introduce spectral energy coefficients µ
m

associated with (10±1)

µ
m

¯m#a$
m

a
m
. (10.2)

The plots of µ
m

as a function of wavenumber mk are presented in figure 12(a, b) for
5 and 10 cm waves with different non-dimensional wave amplitudes ak (again for
minimum pressure forcing, cf. §8). The lower-wavenumber region with a relatively slow
decay of the coefficients corresponds to the first few harmonics of the gravity–capillary
wave which are slightly affected by the pressure forcing. The first local maximum
corresponds to the observed parasitic capillary waves. One can check that other local
maxima are associated with the higher harmonics of the capillary maximum. The
magnitude of each of these local maxima is significantly weaker than that of the first.

A sharp decrease develops after the first local maximum with µ
m

abruptly decreasing
by 2 to 8 orders of magnitude (figures 12 and 13). This rapid decrease appears to be
similar to the cut-off observed in the measurements of wind-wave spectra by Ja$ hne &
Riemer (1990), Klinke & Ja$ hne (1995, 1997). Combining the results of measurements
in the sea and numerous experiments in several wind-wave channels they show that the
observed cut-off wavenumbers range from 800 to 1400 rad m−" (Klinke & Ja$ hne 1997;
Klinke 1996). The most typical cut-off wavenumber is 1000 rad m−", which corresponds
to a wavelength of about 6 mm.

There is a difference between their measurements and our model. Instead of a
discrete spectrum determined by the fundamental wave and its harmonics, wind waves
have a continuous spectrum. Thus instead of one fundamental wave we may have a
continuous distribution of ‘ fundamental waves ’. Nevertheless, the cut-off appears to
be similar in these cases.
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For our model we see that for 5 cm waves and moderate wave amplitudes, the cut-
off occurs at approximately 1200–1300 rad m−" (10th Stokes harmonic, figure 12a),
which is in the range given by Klinke (1996). The cut-off wavenumbers increase a little
for greater wave amplitudes. For 10 cm waves the cut-off wavenumbers are around
2500 rad m−" (40th harmonic, figure 12b), somewhat larger than the laboratory and
field measurements. The best agreement with the data of Klinke & Ja$ hne is achieved
for 4 cm waves and moderate wave amplitudes as can be seen from figure 13. The cut-
off wavenumber is approximately 1000 rad m−" (6th harmonic).

11. Numerical results : 5 cm waves, Class 2 solutions

As we mentioned above, the Class 1 and Class 2 gravity–capillary waves are very
similar, differing mainly in the phase of the pressure forcing. As long as the pressure
is relatively small, the main effect of the forcing is to do work on the wave to balance
the dissipation. The forcing simply remains too weak to significantly influence other
properties of the waves. Nonetheless, with the increase of the forcing amplitude several
major differences emerge. In this section we briefly compare the Class 1 and Class 2
solutions for the minimum pressure forcing. Additional comparisons will be given in
the next section, where we show that the effect of increased pressure will be
qualitatively different for the two classes of waves.

As in §9, in figure 14 we show the elevation of the free surface for different wave
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as a function of the
harmonic m for different ak. The first local maximum corresponds to parasitic capillary waves. A
sharp drop (cut-off) in the magnitude of µ

m
occurs after this maximum.

heights for both classes of waves. The amplitudes of the pressure forcing are the same
as in table 1.† A more detailed comparison is given in figure 15. The main difference
develops for larger wave heights, which correspond to stronger pressure forcing.
Nevertheless, our solutions remain qualitatively very similar. Several pertinent wave
parameters (phase speed, relative potential energy and dissipation rate) are presented
in figure 16 for the Class 2 waves. Again, their behaviour is very similar to that of the

† The minimum forcing amplitudes necessary for steady solutions to exist are slightly different for
the Class 1 and Class 2 waves. That is why some of the pressure amplitudes given in table 1 were
chosen slightly higher than the actual minimum values.
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Class 1 waves. An important difference is that now the deviation of the phase speed
from the linear speed is significant, since both nonlinearity and the pressure forcing act
to increase the phase speed.

12. The influence of increased pressure forcing on parasitic capillaries

In the previous section we used the minimum possible amplitudes of the forcing for
each value of ak. From tables 1 and 2 and figures 4 and 9 it is easy to see that the
increase in the pressure forcing accompanied by the increase in the amplitude of the
longer wave necessarily leads to stronger parasitic capillaries (excluding multi-valued
solutions). A question arises as to what happens if we increase the external pressure,
while keeping the wave amplitude ak fixed. The answer will be quite different for the
Class 1 and Class 2 waves. This is clearly seen from an example in figure 17, where we
present 5 cm gravity–capillary waves with ak¯ 0±25 for different non-dimensional
amplitudes of the forcing p.

Let us first consider the Class 1 waves. With an increase in the forcing, the capillary
ripples become longer, and grow in amplitude (figure 17a). However, the situation is
reversed for the Class 2 waves (figures 17b). The parasitic capillary waves shorten and
become smaller, then almost disappear. The reason for this different type of behaviour
is as follows. As we mentioned in §8, one of the effects of the pressure forcing is to
reduce the phase speed of the Class 1 waves and increase it for the Class 2 waves. In
figure 18 we give an example of how the phase speed c changes with an increase in p.
Larger pressure amplitudes correspond to larger phase speeds for the Class 2 waves
and smaller phase speeds for the Class 1 waves.

The capillary ripples appear due to the resonant magnification of higher harmonics
of the fundamental wave. With any decrease of the phase speed of the dominant waves
the resonant condition shifts towards longer and larger capillary waves (as for Class 1
waves), since longer capillary waves travel more slowly. Note that the Class 1 waves
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F 14. Class 2, λ¯ 5 cm. Surface elevations Y for different non-dimensional amplitudes of the
longer gravity wave ak. Solid line, Class 2; dashed line, Class 1. The results are qualitatively very
similar with the main difference appearing for higher wave amplitudes.

may even become subcritical. For the Class 2 waves the effect is reversed, and the phase
speed increases with p, resulting in shorter capillary ripples. Shorter capillaries resonate
with harmonics of a higher order, resulting in weaker capillary waves.

Finally, we found that there are no steady solutions of Class 1 for pressure
amplitudes higher than some limiting value (in this particular case it is about 6±5 times
greater than the minimum forcing amplitude). However, steady solutions of Class 2
still exist even for much stronger forcing. Nevertheless, both classes of waves appear
to be relatively insensitive to changes of the pressure forcing, and a several-fold
increase in p is needed for a qualitative change in the wave pattern.

13. Comparison with experiments

To test whether steady solutions obtained here are relevant to observations of quasi-
steady gravity–capillary waves we conducted a short series of laboratory experiments.
Here we present data from one experiment. A full account of our experimental work
will be given in Fedorov, Melville & Rozenberg (1997). Measurements of mechanically
generated gravity–capillary waves were made in a wave channel at the Hydraulics
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F 15. A detailed comparison of the Class 1 (dashed line) and Class 2 (solid line) solutions
for λ¯ 5 cm. The difference is small for ak¯ 0±25, but significant for ak¯ 0±35.

Laboratory of Scripps Institution of Oceanography. The glass wave channel is 30 m
long, 0±5 m wide and 0±6 m deep and is equipped with a wave maker (a wedge-shaped
plunger). Data were taken at fetches greater than 1 m away from the wave generator.
Measurements of the surface slope were made with a fixed laser slope gauge (LSG).
This device uses the refraction of a laser beam by the water surface to measure the slope
of the surface. To remove contaminants the surface of the channel was cleaned
periodically by blowing wind and skimming the surface at the downwind end of the
channel.

An example of a time series of surface slopes is shown in figure 19(a). The frequency
of the dominant waves is 6 Hz, corresponding to a wavelength of approximately 5 cm.
The wave pattern is almost periodic, which suggests local temporal stability ; however,
for time series greater than O(1) second temporal unsteadiness becomes evident.

A fit with a solution obtained from our model is shown in figure 19(b). The
calculations are made for λ¯ 5±2 cm, ak¯ 0±20 and p¯ 0±0015 (the Class 1 solutions,
cf. figure 4b) and λ¯ 5±1 cm, ak¯ 0±21 and p¯ 0±0076 (the Class 2 solutions).
Although we have achieved good agreement, there are some parameters in the
experiments that we can only partially control (such as exact dissipation rates). Also
note that the energy is transferred to the waves through the work of a wave generator,
rather than through a pressure distribution at the surface. Consequently, the waves in
the channel slowly decay, so that we can treat them as only quasi-periodic in space.
This would lead to differences between the experimental measurements and the theory.
On the other hand, the errors in the measurements are estimated to be in the range of
5–10%, which is comparable to the differences between the observations and the
numerical solutions.
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It is noteworthy that the number of capillary ripples for this case (9 ripples) can be
calculated almost exactly from the kinematics by applying the resonant condition and
the linear dispersion relation. Since the linear phase speed is given by

c#
!
¯ g}kTk, (13.1)

we obtain
Tk#®c#

!
kg¯ 0, (13.2)

which is a quadratic equation for k with two roots. The first one yields the dominant
wave and the second one gives the capillary wave. Thus the characteristic wavenumber
k
c
for the capillary waves can be calculated as

k
c
¯

c#
!
(c%

!
®4gT)"/#

2T
, (13.3)

while the second root of (13.2) corresponds to the dominant wave. If these two roots
are sufficiently separated (13.3) reduces to

k
c
¯

λ

2π

g

T
(13.4)

or

λ
c
¯

4π#

λ

T

g
, (13.5)

where λ
c
is the characteristic wavelength of the capillaries. The number of ripples M

c

is

M
c
E

λ

λ
c

. (13.6)
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F 17. (a) Class 1, λ¯ 5 cm. Surface elevation for different pressure forcing for ak¯ 0±25. The
amplitude of the forcing p varies from p

m
to 6±5p

m
, where p

m
E 0±0069 is the minimum forcing

amplitude for ak¯ 0±25. See table 1. The parasitic capillary waves become stronger and a little longer
with increased forcing. (b) As for (a) but Class 2. The parasitic capillary waves become much weaker
and a little shorter with increased forcing. The ripples almost disappear for larger amplitudes of the
forcing.

Substituting the value of the linear phase velocity based on the wavelength used in the
model gives M

c
¯ 8±85E 9. Such good agreement suggests that for these parameters

we are still within the range of the weakly nonlinear theory.

14. Conclusions

We have developed a theory of nonlinear gravity–capillary waves with forcing and
dissipation. The theory is based on a boundary layer approximation and includes
energy damping balanced by external pressure forcing. The approach reduces the
problem of finding steady gravity–capillary waves to solving a set of algebraic
equations via Newton’s method. A prominent feature of the solutions is parasitic
capillary ripples riding on the forward face of gravity–capillary waves.

Provided the pressure forcing is weak, there are two main classes of solutions. The
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F 19. (a) Experimental measurements of the slope of mechanically generated 6 Hz waves in a
channel. The measurements are taken as a function of time at a fixed point in space. (b) One period
of the same time series compared with numerical solutions : λ¯ 5±2 cm, ak¯ 0±20 and p¯ 0±0015
(the Class 1 solutions, dashed line, cf. figure 4b), and λ¯ 5±1 cm, ak¯ 0±21 and p¯ 0±0076 (the Class
2 solutions, dot-dashed line).
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major difference between them is that for the Class 1 waves the maximum surface
pressure occurs near the wave trough, while for Class 2 it is near the wave crest. The
Class 1 waves can be associated with Miles’ mechanism of wind-wave generation due
to a shear instability of the air flow above the water surface. The Class 2 waves are
related to surface wave generation due to the instability of a shear current below the
surface. Both classes of waves describe nonlinear gravity–capillary waves with weak
forcing and dissipation and have a great degree of similarity. The properties of these
solutions can be summarized as follows.

(i) Parasitic capillary waves appear on the forward face of the dominant waves, as
long as the amplitude of the longer wave is sufficiently large. They rapidly become
nonlinear. With the further increase of the amplitude of the longer wave the energy of
capillary waves reaches a maximum, and, following the transition to a multi-valued
profile, decreases.

(ii) Parasitic capillaries enhance the energy dissipation of the longer waves by 1–2
orders of magnitude, which conforms with previous conclusions of increased
dissipation (Longuet-Higgins 1963; Ruvinsky et al. 1991), but the values given here are
somewhat larger.

(iii) There is a cut-off (an abrupt decrease by several orders in magnitude) in the
spectral energy density after the first local maximum corresponding to capillary ripples.
The cut-off wavenumber for 4 cm dominant waves matches the most typical cut-off
wavenumber measured by Ja$ hne & Riemer (1990), Klinke & Ja$ hne (1995, 1997).

(iv) There may be a significant change in the wave phase speed when compared to
linear gravity–capillary waves. This deviation will be larger for the Class 2 waves and
may reach as much as 20%. This may have important implications for the
interpretation of microwave remote sensing of the oceans, which is commonly based
on the kinematic properties of linear gravity–capillary waves.

(v) For a dominant wave of fixed height, the effect of the increased pressure forcing
is to strengthen}weaken the capillary ripples for the Class 1}Class 2 waves.

(vi) When extended to very high wave amplitudes, the model produces multi-valued
profiles, with a bulging-forward crest and a sharp corner in the wave profile which
separates the crest and the train of parasitic capillaries. These solutions resemble
gravity–capillary waves near breaking, but may be outside the region of the assumption
of linear dissipation.

Finally, there is at least one other class of solutions (see Appendix A), which exists
only with a strong pressure forcing (pC ak). The wave pattern for these Class 3
solutions consists of relatively flat surfaces separated by single ripples. This class of
waves is physically different from the Class 1 or Class 2 solutions and is not
topologically connected with either of them. An extensive analysis of this class of
solutions will be given elsewhere.

Throughout this paper we have considered only two-dimensional waves ; however,
both laboratory and field data show that three-dimensional effects may become
important (Zhang & Melville 1987). For example, both two- and three-dimensional
modulational instabilities may render the pattern of capillary ripples unsteady,
especially for greater wavelengths and wave amplitudes (Fedorov et al. 1997). Also, the
waves could develop streamwise vortices, seen as streaks on the rear parts of the wave
(Ebuchi et al. 1987). They may be related to a centrifugal instability caused by strong
centripetal accelerations near the free surface.

Even in two dimensions, as the pressure forcing is increased, unsteady solutions may
play an important role. For instance, steady solutions, especially those with
overhanging wave crests, may develop instabilities. Also there may exist unsteady



38 A. V. Fedoro� and W. K. Mel�ille

2

–4
0 5 10 15

Time (s)

(b)

–2

0

2

–4
0 5 10 15

Time (s)

(a)

–2

0

Y
(cm)

Y
(cm)

F 20. λ¯ 5 cm and pE 0±19. Strongly forced surface waves. The wave pattern consists of
relatively flat surfaces separated by single capillary ripples. Several wave periods are shown with no
distortion of the vertical scale. (a) ak¯ 0±37, (b) ak¯ 0±40.

solutions in the parameter range where no steady solutions can be found. These are
subjects for future study.
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Appendix A. Strongly forced solutions

As we mentioned above, there exist solutions additional to the Class 1 and Class 2
waves (say Class 3 waves). They appear only for relatively strong pressure forcing
(pC ak). Without pursuing an extensive search for all possible solutions, we have
found at least one completely different class of forced waves. This class is not
topologically connected with the Class 1 or Class 2 solutions, and has rather different
properties.

Here, we would like to demonstrate only two examples, shown in figure 20(a, b). In
the first case the pattern consists of relatively flat surfaces separated by small single
ripples, which locally resemble capillary solitons (Longuet-Higgins 1989; Zhang 1995).
These ripples are likely to dissipate the main bulk of the energy supplied by the pressure
forcing. In the second example with slightly larger wave amplitude (figure 20b), the
capillary ripples look more like small capillary ‘bumps’, separating longer waves.
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For both solutions the maximum pressure forcing occurs in the wave troughs. The
phase speed of the waves reaches only about two thirds of the linear phase speed of the
free gravity–capillary waves of the same length, which is due to the effect of the
pressure forcing on the phase speed. The dissipation rate remains relatively high
(20–30% per period).

Appendix B. Perturbation pressure due to a subsurface shear current

Shrira (1993) considered small-amplitude gravity–capillary waves on subsurface
shear currents. The problem is easily reduced to Rayleigh’s equation with the
appropriate boundary conditions. All the equations are linear and allow for
monochromatic solutions. That is, the pressure P, the vertical velocity W, the elevation
of the free surface η and other variables can be written as

0P

W1¯ 0Pq
Wq 1 ei(kx−σt) (B 1)

and
η¯ ηW ei(kx−σt), (B 2)

where Pq and Wq are functions of the vertical coordinate y, and η# is a constant. As usual
in such problems, taking the real part of complex variables is implicitly required.

If the shear in the current is relatively weak in the sense given by (3.16}S) (hereafter
S refers to Shrira 1993) and there are no inflection points in its profile, one can apply
a formal perturbation method, expanding pertinent variables as follows:

Pq ¯Pq
!
Pq

"
… , Wq ¯Wq

!
Wq

"
… , ηW ¯ ηW

!
ηW

"
… , (B 3)

cW ¯ cW
!
cW

"
… , (B 4)

where cW is the complex wave phase speed. The zeroth-order terms in (B 3) and (B 4)
describe a free surface wave carried by a uniform current, while the first-order
corrections are due to the shear in the current. We assume that cW

"
has an imaginary

part, which corresponds to unstable waves.
Using boundary conditions at the surface (equation (2.2}S)), we obtain several

useful relations, including

ηW
!
¯

Wq s

!

ik(U s®cW
!
)

(B 5)

and

Pq
"
¯ ρc#

!

Wq s

"

i(U s®cW
!
)
, (B 6)

where U¯U(y) is the undisturbed profile of the current, and the superscript s indicates
values calculated at the surface. Note that for unstable waves (Shrira 1993)

cW
!
EU s®U s

y
}2k®c

!
. (B 7)

The zeroth-order solution that conforms with (B 5) and (4.1}S) can be taken as

Wq
!
¯ eky, ηW

!
¯

1

ik(U s®cW
!
)
. (B 8)

For Wq s

"
, applying (3.4}S) and (3.5}S), we obtain

Wq s

"
¯

1

2k&
!

−¢

U
yy

U®cW
e#kydy (B 9)
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Using a conventional approach (Lin 1955; Miles 1957; Shrira 1993) that is valid if cW has
a small imaginary part gives

Wq s

"
¯

1

2k 0PV&!

−¢

U
yy

U®cW
!

e#kydyπi
U c

yy

U c
y

e#kyc1 , (B 10)

where PV stands for the principal value of the integral, and the index c shows the values
calculated at the critical level, which is determined by U(y

c
)¯ cW

!
.

Now combining (B 6), (B 8) and (B 10) yields

Pq
"
¯ (αW iβW ) ρc#

!
kηW

!
(B 11)

where
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and
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πi

2k

U c
yy
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y

e#kyc. (B 13)

Equation (B 11) is analogous to Miles’ (1957) expression for the aerodynamic pressure
above a wavy water surface. Note that the actual wave growth rate equals βW c

!
}cW

!
.

In the short-wave range α# can be estimated as

αW E
U s

yy

4k#(U s®cW
!
)

(B 14)

By Howard’s semicircle theorem for unstable waves U s" cW
!
(Yih 1972; Morland et al.

1991). Hence, α# is positive, so that (B 2) and (B 11) imply that the maximum
perturbation pressure occurs near the wave crest. In turn, positive β# implies that the
maximum is displaced slightly upwind of the wave crest. Nevertheless, more study is
necessary to establish a direct connection between the Class 2 waves and shear flow
instabilities.
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