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Nonlinear internal waves were measured on the large rotating platform at the Institut de 
Mtcanique de Grenoble (I.M.G. ) . The experimental data complement the results presented in 
Renouard et al. [J. Fluid Mech. 177, 381 (1987)] and support the assumption that the solitary 
Kelvin wave is accompanied by Poincare waves. Based on the assumption of weak nonlinear, 
dispersive, and rotational effects, governing equations of the Boussinesq type are derived to 
model the evolution of an initial disturbance in a two-layer rotating fluid. The numerical study 
is based on these equations which are analogous to the Boussinesq equations of shallow-water 
theory and are not constrained to almost unidirectional propagation. Comparison of numerical 
solutions of the equations and experimental results are very good for moderately nonlinear 
conditions. These results provide supporting evidence for the resonant interaction of nonlinear 
Kelvin waves and linear Poincart waves, as described by Melville et al. [J. Fluid Mech. 206, 1 
(1989)]. 

1. INTRODUCTION 

In the oceans, as well as in large lakes, long internal 
waves are often both nonlinear and influenced by rotation. 
Without rotation, the balance of nonlinearity and disper- 
sion leads to the formation of permanent waves which are 
either cnoidal or solitary waves satisfying the Korteweg-de 
Vries (KdV) equation. Such waves have been extensively 
studied both in homogeneous and stratified fluids. But as 
rotation is introduced some significant differences appear. 
Thus Renouard et al. i studying the properties of internal 
solitary Kelvin waves in a rotating channel (cf. Fig. 1 for 
notations) observed that, along the right-hand side of the 
channel, as well as in any plane parallel to the channel 
walls, the leading wave has a sech’ profile, and that its 
celerity is independent of the distance to the wall, i.e., the 
front appears to be moving as a whole, with a phase speed 
fixed by the amplitude at the right-hand wall. For the ra- 
tios of Rossby radius to channel width, R/W, used in their 
experiments, [O. 150.431, the amplitude decreased exponen- 
tially with distance from the wall, the decay scale being 
k=f/cc= l/R, where f is the Coriolis parameter, and co 
the internal wave phase speed. Moreover, as in 
Maxworthy,’ they noticed a strong curvature of the wave 
front. Although the initial conditions were clearly two di- 
mensional, the wave, which was first generated with a hor- 
izontal crest perpendicular to the walls, changed its shape 
as it propagated along the channel, and, at some distance 
downstream, reached what appeared to be a stable shape, 
characterized by a strong curvature backwards. They sug- 
gested that the cause of the curvature, which appeared to 
be independent of the ratio between the layer thicknesses, 

‘)Present address: Scripps Institution of Oceanography, University of 
California, San Diego, La Jolla, California 92093-0213. 

was likely to be either nonlinear or viscous effects. The 
leading wave was followed by a train of waves of smaller 
amplitude. 

The experimental results suggested several theoretical 
and numerical studies. The first attempt to describe ana- 
lytically such nonlinear waves in a channel was made by 
Grimshaw,3 who distinguished a “strong rotation” case 
(internal Rossby radius, at most, comparable to the wave- 
length), from a “weak rotation” case (internal Rossby ra- 
dius much larger than the wavelength), but he could not 
account for the crest curvature in the absence of dissipa- 
tion, in a channel of finite width. Independently, Germain 
and Renouard4 provided a uniform analytical framework 
for the study of all possible permanent progressive long 
waves in a rotating fluid. 

To model the experiments, Katsis and Akylas5 used an 
informal derivation of the rotation modified Kadomstev- 
Petviashvih (KP) equation first derived by Grimshaw3 for 
the “weak rotation” case, and made some numerical com- 
putations. They were able to qualitatively reproduce most 
of the features appearing in the experiments, including the 
crest curvature, and suggested that, besides the viscous 
damping, the wave curvature was possible because of a 
slow attenuation of the wave as it propagated along the 
channel, but they did not relate such a decay to the small- 
amplitude waves that they observed behind the main 
curved disturbance. Both Grimshaw3 and Katsis and 
Akylas’ mentioned that there is a constraint on the KP 
equation which requires that the “mass” of the solution be 
proportional to exp ( -y/R ) at all times. 

Melville et aL6 considered the evolution of weakly non- 
linear dispersive long waves in a rotating channel. They 
showed that weakly nonlinear Kelvin waves may be unsta- 
ble to a direct nonlinear resonance with the linear Poincare 
modes of the channel. Thus the curvature of the wave front 
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as well as the decay of the leading wave amplitude may be 
attributable to the Poincare waves generated by the reso- 
nance. Later Grimshaw and Melville7 reconsidered the 
derivation of the rotation modified KP equation and its 
integral constraints, and showed that, in general, it is not 
permissible to assume that solutions to the rotation modi- 
fied KP equation derived by Grimshaw3 are locally con- 
fined, and that there are Poincare waves radiated behind 
the main part of the solution. More recently, Grimshaw 
and Tang* also showed that any solitarylike wave must be 
accompanied by trailing Poincare waves, so that any local- 
ized initial disturbance will evolve into a solitarylike wave 
with a curved wave front. They found that, as the effect of 
rotation increases, the extent of the wave curvature and the 
amplitude of the trailing Poincare waves both increase. 

While the role of the Poincare waves which are gener- 
ated by nonlinear waves in a rotating system have been 
investigated in a series of theoretical and numerical papers, 
only qualitative comparisons with the available experi- 
mental results have been possible. This has been due in part 
to the fact that asymptotic theories based on the KP equa- 
tion and related equations which represent almost uni- 
directional propagation are unable to adequately model 
arbitrary initial conditions. This is related to the integral 
constraints described above. In this paper we present an 
experimental and numerical study of the evolution of 
an initial disturbance in a two-layer rotating fluid. The 
numerical study is based on the more general formula- 
tion of Tomasson and Melville’ which is analogous to the 
Boussinesq equations of shallow-water theory and is not 
constrained to almost unidirectional propagation. Initial 
conditions which can be reasonably generated in the ex- 
periments are faithfully represented in the numerical 
solutions. 

II. EXPERIMENTAL SETUP 

The experiments were conducted in the Coriolis Lab- 
oratory of the Institut de Mecanique de Grenoble. We used 
a channel, 9 m long, 2 m wide and 0.6 m deep, with a 
lighter upper layer of fresh water, and a denser lower layer 
of salt water. Figure 1 indicates the notation used. All the 
experiments were run with a lower layer 0.26 m thick, an 
upper layer 0.04 m thick, and a fractional density differ- 
ence Ap/p=0(0.01). For this set of experiments, the pe- 
riod of the platform rotation varied between 110 and 1000 
set, to give internal Rossby radii of deformation in the 
range 0.55 mgRG5.51 m, with dimensionless Rossby radii: 
0.27<R/ W~2.78. 

The channel was equipped with a dam at the upstream 
end, so that it was possible to have a thicker upper layer on 
one side of the dam. We denote by Ah the difference in 
thickness of the upper layers across the dam. This was 
usually set to 2 cm. By lifting the dam the light water 
behind the dam was released, and generated a wave train 
which propagated downstream. We chose Ah so that, with- 
out rotation, there would be only one solitary wave. 

The interface height variations with time were re- 
corded by interface followers at various locations. These 

FIG. 1. Sketch of the notations used for the (9 x 2 x 0.6 m) channel built 
on the 14 m  diam rotating platform and equipped with an internal wave 
generator. 

probes are electronically directed to follow the movements 
of a layer of a given conductivity with great accuracy. The 
principle of these recorders is to measure the conductivity 
of a given reference layer, and to compare it with a chosen 
reference conductivity. With such an interface follower, we 
are able to follow the reference layer with an accuracy of 
0.1 mm in height, and a response time of about 0.5 sec. Six 
such interface followers were used in these experiments. 
The probes were always following a layer very close to the 
inflection point of the interface profile. Thus the effects of 
the diffused interface can be minimized in the comparisons 
between the experiments and the computations. 

Ill. NUMERICAL MODEL 

We consider the motion of a two-layer fluid confined to 
a channel rotating on an f plane, i.e., with a constant 
Coriolis parameter. The fluid is assumed incompressible 
and inviscid, thus neglecting frictional effects at the chan- 
nel walls, bottom, and at the interface between the two 
fluids. Furthermore, a rigid lid approximation is made, 
neglecting the barotropic surface-wave mode and looking 
only at the evolution of the baroclinic internal wave mode. 
The x axis is taken to be along the channel, the y axis 
across the channel and the z axis in the vertical direction, 
positive upwards. The fluid layers have constant densities 
p1 and p2 and depths hl and h,, with the interface between 
the fluid layers at the equilibrium position z=O. Following 
a derivation similar to that given by Tomasson and 
Melville9 for the corresponding single-layer case (the de- 
tails of both derivations are given by Tomassort”), we ob- 
tain the Boussinesq momentum equations for the upper 
layer: 

U,“‘+aU’l’U’l’+ayV”)U(‘) l 42) L 
x Y -@‘+plp, - 

Pl 
?jx 

-P$ (u~;;+yu;;$=o(p), 
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and those for the lower layer 

U:2’+aU’2’U’2’+ayV’2~~~2)-~~(2)+~~~l)+~ 77 
x Y P2 P2 x 

1 
-0; (ti~~+yu;;~)=o($), (3) 

together with the continuity equation for the upper layer: 

-77t+[(hl--a77)U(‘)lx+Y[(hl-arl)V”)l,=O($) 
(5) 

and that for the lower layer: 

q+ [h+aq) U’2’lx+~[(h2+a~) ~“‘l,=O(P2). 
(6) 

Here U(1P2) and YClP2) are the depth-averaged horizontal 
velocities in each layer, v is the interface displacement, and 
P -(lV2) are the dynamic pressures at the interface, i.e., 

j+‘J2) (x&t) ==p(‘,2) 1 r=av, (7) 

where p is the dynamic pressure in the fluid, i.e., the fluid 
pressure after substracting the hydrostatic pressure. The 
scaling used here is 

x’ = k-lx, (8) 

y’=Py, (9) 

z’ = hg, (10) 

~rmLaco~m), (11) 

V ~u.2),a fiqpa, (12) 

1 

t’=G ty 
(13) 

q’=ahorl, ( 14) 

p’ = ap0&, (15) 

h;,2=hob (16) 

p;,2= POPL21 (17) 

where primes denote the dimensional variables. Here, ho 
= h;h;/( h ; + hi) is an equivalent single-layer depth for 
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the corresponding linear and hydrostatic problem, 
ci= (Ap/p)gho is the linear phase speed of the internal 
waves, Ap = p; - pi is the density difference, and p. is a 
reference density. The parameters we have introduced are 

a=A/ho, (18) 

P= Wo12, (19) 

E=(l/kR)(l/k), (20) 

y= (l/k)2, (21) 

representing nonlinear, dispersive (nonhydrostatic), rota- 
tional, and transverse effects, respectively. Here A is a mea- 
sure of the amplitude of the disturbance, .k- ’ and I- ’ are 
typical length scales in the x and y directions, respectively, 
and R =co/f is the internal Rossby radius of deformation. 
The above equations are based on the assumption of weak 
nonlinear, dispersive, and rotational effects, i.e., 

a=O(fi> =0(e) Q 1, (22) 

which is the appropriate scaling for the experimental re- 
sults presented here. 

To obtain one pair of momentum equations we take 
the difference between the momentum equations in the two 
layers,i.e.,p2* (3)-pI*(l) andp,. (4)-pI*(2). Weas- 
sume that: 

Apip 4% (23) 

which is an appropriate assumption for the experimental 
results presented here, and require that the mass fluxes in 
the two layers balance in the x and y directions indepen- 
dently, which gives 

(hl--aq) (U(‘),Y(*)) = - (h2+aq) ( Uc2),Vc2)), (24) 

which is the case for the lowest-order, linear, and hydro- 
static problem. After using the appropriate matching con- 
ditions at the interface between the two layers, the follow- 
ing set of Boussinesq equations is obtained: 

vt+ ~,+yvy=om, (25) 

1 1 
U,+w--EV+a h,-h, ( 1 [2UUxf-Y( Vpv-~U,l 

-DF (U,,,+yV,,,) =O($), 

yV,+yqy+EU+ay 
( 1 

i--k [ (UV),+2yVV,--rlVtl 
2 1 

-pyF (U,,,+yV,,> =O(B2), (27) 

with the side-wall boundary conditions, 

V=O at y=O, W. (28) 

Here IJ is the interface displacement and U and V are the 
horizontal fluxes in the lower layer: 

(U,V)=(h2+aq)(U(2),V(2)) - (29) 
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or equivalently, from (24), the negative fluxes in the upper 
layer. Equation (25) represents the continuity equation for 
either layer, whereas (26) and (27) come from the differ- 
ence between the momentum equations in the two layers. 
We have also assumed that 

which is generally the case for the experimental results 
presented here. 

In dimensional units these equations are 

71t+ u,+ vy=o, 

with the side-wall boundary conditions 

I 0.2 
% 

0.4 
I- 

0.6 

0.8 - 
IT *. 
* I 1.21- 

1.4 1 

1.6 

f 1.8! 

R/W=0275 

(32) 

*I 
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t 
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\ 
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FIG. 2. Amplitude variations (v/A) vs (Y/R), in a plane perpendicular 
to the channel sides (0), and along the crest (*), for 6 m<x(8 m. Thk 
solid line plots exp( --y/R), the dotted lines, the decay scales computed 
from the data. 

V=O at y=O, W, (34) 

where, from now on, we have dropped the primes for con- 
venience. Although slightly different from the correspond- 
ing single-layer equations derived by Tomasson and 

50 60 70 80 90 100 110 120 130 140 

(0) TIME [sl 

FIG. 3. Contour of interfacial displacement at x=5 m  computed from the measured time series at four stations across the channel; R/W=0.275 (a), 
0.5 (b), 1.0 (c), and 2.75 (d). 
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(4 

-I 
120 

I 

(b) 

Melville,g the important dynamics are the same. These 
equations are solved numerically using the scheme de- 
scribed by Tomasson and Melville.’ 

IV. EXPERIMENTAL RESULTS 

We define k, the characteristic wavelength of the 
leading wave in the x direction as k=== (l/A) 
X J$v(x--cCt)d(x-ct), by using only the forward portion 
of the wave, in a method similar to that used by Koop and 
Butler.” For the experiments presented here, the ratio 
2k/R was in the range [0.11,1.05] so that the conditions 
ranged from weak to strong rotation. 

The downstream part of the leading wave is accurately 
described by the sech’ profile. Having a large range of 
variation for R/W enabled us to obtain more accurate 
values for the decay scales across the channel. At x= 5 m, 
the trace of the leading wave in a vertical plane perpendic- 
ular to the sides and passing through the maximum ampli- 
tude at the right-hand wall, A, is given by A,=A 
X exp ( - 0.82y/R), and the projection of the same crest on 
the same plane is described by A,=4 exp( - 1.67y/R) 
[Fig. 2); the coefficients -0.82 and - 1.67 being obtained 
by linear regression from the experimental data. 

Because of the initial condition, the leading wave al- 
ways starts with a wave front aligned with they axis, but it 
immediately evolves toward a three-dimensional form. The 
increase of the phase shift across the channel with decreas- 
ing R/W is shown by contour plots generated from the 

1.6 

k !I 1.8 

40 50 60 70 80 90 1W 110 I?0 

(c) =IME IS1 

FIG. 4. Contour of the interfacial displacement computed from the mea- 
sured time series at x= 5 m, for three different initial conditions: Ak=0.5 
cm (a), 1 cm (b), and 2 cm (c). 

time series taken at four stations across the channel at x = 5 
m. These contour plots [Figs. 3(a)-3 (d)] provide a space- 
time view of the disturbance. When the time delay is con- 
verted to a spatial phase shift based on the speed of prop- 
agation at the right-hand wall, we see that the spatial phase 
shift across the channel for small R/W may be as much as 
a meter. Looking at the evolution of the leading wave am- 
plitude along the right-hand wall, we notice that it tends 
either to remain constant or even to increase along the first 
few meters and then decrease. 

If we vary the initial layer thickness difference, from 
Ah=0.5cmto2cm,butkeepR/W=l,wecanseeatx=5 

TABLE I. The parameters of the runs. 

Fixed parameters 

Upper layer depth h 4 cm 
Lower layer depth h, 26 cm 
Density difference AP/P 0.013 
Coriolis parameter f 0.0331 xc- 
Linear wave speed CO 6.65 cldsec 
Rossby radius R 2.0 m  
Channel width w * 2.0 m  

Variable parameters 

run1 run II run III run IV 

Initial amplitude a0 (cm) -0.5 -1.0 - 1.5 -2.0 
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FIG. 5. Contour plots of the solution of Eqs. (31)-(33) for 7) at t=65 set, corresponding approximately to the time the leading disturbance propagates 
past the stations at which time series are taken. (a) Run I, (b) run II, (c) run III, (d) run IV. Compare with Fig. 4. 

m that for the smallest Ah, the leading crest is almost 
straight across the channel, while for Ah>1 cm there is a 
significant phase shift (Fig. 4). Also, as expected, the ce- 
lerity of the wave increases with increasing amplitude, i.e., 
for increasing Ah. 

V. NUMERICAL RESULTS 

The numerical model is used to compare with experi- 
mental data from four different runs, referred to here as 
runs I-IV. With the exception of the amplitudes of the 
initial disturbances, the parameters are the same for all the 
runs, and are listed in Table I. The initial disturbance in 
the numerical solution is chosen to simulate that of the 
experiments, i.e., a rectangular-shaped depression of the 
interface at the left (upstream) end of the channel with no 
associated flow velocity. The disturbance has no transverse 
variations and the sharp gradients are smoothed out by a 
tanh function. 

In Fig. 5 a contour plot of the solution for r~ is given 
for all four runs at t=65 set, which is approximately the 
time at which the leading disturbance propagates past the 
stations at which the time series are taken (see below). In 
all four runs, the leading disturbance is a Kelvin wave 
depression of the interface, followed by a tail of Poincare 
waves. In run I very little nonlinear influence is visible. In 
the other three runs the effects of nonlinear evolution are 
clearly visible, with the crest of the leading wave curving 
backwards and the steepness and the speed of the waves 
increasing with increasing strength of the nonlinearities. 
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Also of interest is the appearance of a second wave behind 
the first, this second wave curving even further backwards 
and becoming stronger as the nonlinear effects become 
stronger. 

A. Direct comparison of time series data 

To compare directly with the experimental data, nu- 
merical and experimental time series of r] taken at 5 m 
down the channel and at four stations across the channel, 
y=2, y=50, y= 125, and y=198 cm, referred to here as 
stations l-4, respectively, are compared. In Figs. 6-9 the 
numerical and experimental time series at the four stations 
are compared for all four runs. The time delay between the 
start of the data acquisition and the release of the initial 
disturbance in the experiments was not measured. Conse- 
quently, no time reference is available for the time series 
measurements, and a reference point in time had to be 
chosen for the numerical solutions. The reference point for 
the numerical solution is chosen such that the phase of the 
leading wave at station 1 (right-hand wall) matches that of 
the experimental wave for each of the runs. 

Looking at the time series we see quite good agreement 
with the experimental data, particularly for runs II and III. 
The reason for the poorer agreement for run I may be the 
relatively small amplitudes of the waves, with the accuracy 
of the experimental measurements becoming an important 
factor, as can be clearly seen by the relatively small signal- 
to-noise ratio in Fig. 6. On the other hand, the reason for 
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‘Pi;: [s] 
125 150 175 7.00 

FIG. 6. The numerical and experimental time series for run I. (a) Station 1 (x=5 m,y=2 cm), (b) station 2 (x=5 m,y=50 cm), (c) station 3 (x=5 
m, y= 125 cm), and (d) station 4 (x=5 m, y= 198 cm). 

the poorer agreement for run IV may be the large ampli- 
tudes of the waves and consequently stronger nonlinearity, 
recalling that the Boussinesq equations are based on the 
assumption of weak nonlinearity. For these reasons, the 
following discussion will be largely based on runs II and 
III, i.e., the moderately nonlinear runs. 

In general, the agreement for these two runs is very 
good, given the approximate nature of the equations and 

their numerical solutions. The agreement in the phase of 
the leading wave at all stations is very good, meaning that 
the backward curvature of the crest, which is clearly visible 
in the time series, is well predicted by the numerical solu- 
tions. The good agreement in the tail of the leading wave is 
also striking, with the phase and frequency of the oscilla- 
tions generally agreeing very well. Detailed analysis by To- 
masson and Melville’ of similar trailing oscillations in the 
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FIG. 7. The numerical and experimental time series for run II. (a) Station 1, (b) station 2, (c) station 3, and (d) station 4. 

single-layer case have shown that they are partially due to 
resonantly generated PoincarC waves. The poorer agree- 
ment in the amplitude of the disturbances, especially in the 
stronger nonlinear cases, is most likely due to the neglect of 
frictional effects in the numerical model, with the numer- 
ical solutions consistently overpredicting the amplitudes. 

B. Origin of the second wave 

It is of some interest to try to understand the origin of 
the second wave appearing behind the leading wave. The 

1408 Phys. Fluids A, Vol. 5, No. 6, June 1993 

wave is quite clear both in the contour plots of the solution 
for rl and in the time series of v. To investigate this, the 
numerical model was run with exactly the same parame- 
tersas in run III above, with the exception that the initial 
disturbance was moved away from the upstream end wall 
of the channel, as is shown in Fig. 10. Figure 11 shows a 
contour plot of the solution for 7 at t=65 set [to be com- 
pared with Fig. 5(c) for run III], and Fig. 12 shows the 
time series of q at station 1, corresponding to Fig. 8(a) for 
run III. It is clear from these figures that the origin of the 
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FIO. 8. The numerical and experimental time series for run III. (a) Station 1, (b) station 2, (c) station 3, and (d) station 4. 

second wave is the adjustment and reflection of the initial 
disturbance from the upstream end wall. With the initial 
disturbance moved away from the upstream wall, the so- 
lution shows two well separated, but very similar waves, 
the second one resulting from the disturbance that travels 
down the channel to the left until reaching the upstream 
end wall and reflecting to follow the leading disturbance 
along the channel to the right. However, the second wave 
is contaminated by Poincare waves generated by the lead- 

ing wave, and thus has a slightly different structure. Also 
note that the leading wave is of smaller amplitude than 
before. 

VI. DISCUSSION 

In the experiments presented here the ratio of the char- 
acteristic wavelength to the Rossby radius was in the range 
[O. 11,1.05] so that the rotation ranged from weak to strong. 
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FIG. 9. The numerical and experimental time series for run IV. (a) Station 1, (b) station 2, (c) station 3, and (d) station 4. 

The comparison between the experimental results and the 
numerical solutions based on the Boussinesq model is best 

mum amplitude) in Figs. 7 and 8. These comparisons show 

for weak rotation, so we will restrict our conclusions to 
that the Boussinesq model is able to accurately predict the 

those cases. The basis of the quantitative comparison be- 
evolution of nonlinear waves from initial data at rest; this 
has not been possible with previous formulations based on 

tween the numerical and experimental results resides in 
Figs. 6-9. Given the difficulty of the experimental measure- 

unidirectional propagation. This agreement supports the 
physical interpretation of the evolution of the disturbance 

ments, and the fact that the interface thickness is not equal 
to zero, it is remarkable that these comparisons show dif- 

based on the Boussinesq equations, and asymptotically on 

ferences of less than 1 mm (or 10% based on the maxi- 
the simpler evolution equations. The primary conclusion is 
that the principal effects of weak rotation on the evolution 
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FIG. 10. The initial disturbance for 7 used to investigate the origin of the 
second wave. The upstream end of the channel is at x=0. 

of weakly nonlinear long waves, which were first observed 
experimentally,2*1 and subsequently numerically,5 are due 
to the resonant generation of PoincarC waves as initially 
described by Melville et al. ,6 and more recently by Tomas- 
son and Melville.’ The experimental results also support 
the use of the Boussinesq equations for studies of geo- 
strophic adjustment. 

A secondary conclusion of the experimental and nu- 
merical results is that the second wave observed in many 
experiments may be due to the reflection of the leading 
wave which propagates toward the upstream end of the 
channel. 
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FIG. 11. A contour plot of the numerical solution of Eqs. (31)-(33) for 
7 at t=65 set from the run with the initial disturbance separated from the 
upstream end wall. 
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FIG. 12. Time series of 77 from the numerical solution for the initial 
disturbance ieparated from the upstream end wall. 
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