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We consider the general problem of geostrophic adjustment in a channel in the 
weakly nonlinear and dispersive (non-hydrostatic) limit. Governing equations of 
Boussinesq- type are derived, based on the assumption of weak nonlinear, dispersive 
and rotational effects, both for surface waves on a homogeneous fluid and internal 
waves in a two-layer system. Numerical solutions of the Boussinesq equations are 
presented, giving examples of the geostrophic adjustment in a channel for two 
different kinds of initial disturbances, both with non-zero perturbation potential 
vorticity. The timescales of rotational separation (that is, the separation of the 
Kelvin and Poincar6 waves due to their dispersive properties) and that of nonlinear 
evolution are considered, with particular concern for the resonant interactions of 
nonlinear Kelvin waves and linear Poincar6 waves described by Melville, Tomasson 
& Renouard (1989). A parameter measuring the ratio of the two timescales is used 
to predict when the free and forced Poincar6 waves may be separated in the solution. 
It also distinguishes the cases in which the linear solutions are valid for the rotational 
separation from those requiring the full Boussinesq equations. Finally, solutions for 
the evolution of nonlinear internal waves in a sea strait are presented, and the effects 
of friction on the wavefront curvature of the nonlinear Kelvin waves are briefly 
considered. 

1. Introduction 
Gill (1976) considered the adjustment under gravity of an initial disturbance in a 

rotating channel, in the linear and hydrostatic limit. With these assumptions, the 
motion of a stratified fluid can be separated into normal modes, with the solution for 
each mode being equivalent to the solution for a homogeneous fluid with a free 
surface and a certain equivalent depth. He studied the problem of an initial 
discontinuity in the free surface of a homogeneous fluid, but his method applies to 
arbitrary initial disturbances as well. In the narrow channel limit, W < R ,  rotational 
effects are suppressed and the problem reduces to the non-rotating case, while for a 
very wide channel, W % R, it reduces to the well-known Rossby adjustment problem 
for an infinite ocean. The problem for a finite-width channel, W = O(R), is solved by 
using the conservation of potential vorticity in the fluid, much like the Rossby 
adjustment problem. However, as stressed by Gill (1976), ‘the sidewall boundaries in 
the finite width channel introduce some fundamentally new features, as the Kelvin 
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wave associated with each boundary only propagates in one direction, i.e. with the 
boundary on the right-hand side, when looking in the direction of propagation ’ (in 
the Northern hemisphere). The initial disturbance splits up into different left- and 
right-going disturbances, both made up of a leading Kelvin wave followed by a train 
of Poincar6 waves, the Poincar6 modes trailing due to their lower group speed. 
Behind the outgoing disturbances a boundary current is set up in the channel. The 
current follows the left-hand boundary (looking downstream) to  the position of the 
initial discontinuity (the potential-vorticity front), then crosses the channel and 
continues downstream along the right-hand wall. 

Gill’s (1976) solutions are of importance for internal gravity wave motions in 
oceans and lakes, many of which evolve from the adjustment under gravity of 
localized initial disturbances. However, observations and field measurements 
indicate that nonlinear and dispersive (non-hydrostatic) effects may be important for 
many of these wave motions. Several authors, among them Ziegenbein (1969), 
Lacombe & Richez (1982), Armi & Farmer (1988), Farmer & Armi (1988) and La 
Violette & Arnone (1988), have presented visual observations and measurements of 
nonlinear internal wavetrains in the Strait of Gibraltar. Similar trains of internal 
waves have been measured by Gargett (1976) in the Strait of Georgia, BC, and by 
Farmer & Smith (1978) in Knight Inlet, BC. The waves in the Strait of Gibraltar are 
believed to evolve from an internal lee wave generated by the westward tidal flow 
over bottom topography in the western part of the Strait. As the tide slackens and 
eventually turns, the lee wave evolves into a train of nonlinear internal waves. 

Pierini (1989) studied the evolution of the wave packet as it propagates eastward 
along the Strait and into the Alboran Sea. He solves a Kadomtsev-Petviashvili (KP) 
equation for a two-layer, inviscid fluid, and neglected rotational effects, although he 
noted that they can be important, especially inside the Strait, where the waves 
interact with the lateral boundaries. I n  fact, the measurements by Lacombe & 
Richez (1982) indicate that the eastward-propagating internal waves have a Kelvin 
wave structure, i.e. amplitude decaying away from the southern coast. 

Similar trains of nonlinear internal waves have been observed in long and narrow 
thermally stratified lakes by Thorpe, Hall & Crofts (1972), Hunkins & Fliegel (1973) 
and Farmer (1978). However, the generation mechanism for these waves is quite 
different from that described above for the waves in the Strait of Gibraltar. Rather 
than being generated by tidal flow over bottom topography, their generation has 
typically been related to  forcing by winds blowing along the axis of the lake, pushing 
the warmer water up against the end of the lake, generating a localized disturbance 
to  the equilibrium stratification due to the excess of warm water. Again, rotational 
effects, which are expected to be important for these wave motions, are not included 
in most modelling efforts. 

Maxworthy (1983) and Renouard, Chabert d’Hieres & Zhang (1987) conducted 
experiments on nonlinear and dispersive waves in a rotating channel, observing 
solitary-like Kelvin waves evolving from an initial disturbance in a stratified fluid. 
Most notably, the waves had wavecrests curving backwards away from the right- 
hand wall with their amplitude attenuating as they propagated along the channel. 
Grimshaw (1985) studied these wave motions theoretically, employing a K P  
equation modified to include rotational effects, but was not able to account for the 
wavefront curvature in the absence of viscous effects. Later, Katsis & Akylas (1987) 
solved the modified K P  equation numerically and found their solutions to  agree 
qualitatively with the experimental observations of wavefront curvature and 
amplitude attenuation along the channel. Melville, Tomasson &, Renouard (1989) 
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used a set of coupled evolution equations, which are asymptotically equivalent to the 
modified K P  equation, and utilizing both numerical and approximate analytical 
solutions, explained the backward curvature and amplitude attenuation along the 
channel as being due to resonant interactions between the nonlinear Kelvin waves 
and linear Poincare waves of the channel, with the former being unstable due to 
resonant forcing of the latter. However, as discussed in detail by Grimshaw & 
Melville (1989), the coupled evolution equations, as well as the modified K P  
equation, suffer from certain constraints on their initial data, and are therefore not 
valid as model equations for the geostrophic adjustment of arbitrary initial 
disturbances in a channel, but apply only to specific initial disturbances with zero 
perturbation potential vorticity. 

Although he only considered the linear problem of geostrophic adjustment in a 
channel, Gill (1976) conjectured that it may only be the first stage in the adjustment 
process, the second stage being the nonlinear evolution on a slower timescale, with 
the associated advection of potential vorticity. Hermann, Rhines & Johnson (1989) 
studied the effects of nonlinear advection on the evolution of the potential vorticity 
front, noting that in the nonlinear problem the potential vorticity is conserved 
following the motion of the fluid elements. They consider the hydrostatic problem 
and assume that the linear adjustment (Gill’s solution) is complete before the 
nonlinear adjustment begins, thus effectively taking the inertial timescale, fl, on 
which the linear adjustment takes place, to be much smaller than the timescale for 
nonlinear advection. They found that owing to the nonlinear advection of potential 
vorticity, the fluid eventually flows downchannel on both boundaries downstream of 
the initial potential vorticity front, rather than just on the right-hand side of the 
channel, as in the linear solution. 

However, as noted above, both nonlinear and dispersive (non-hydrostatic) effects 
are believed to be important for many of the internal waves observed in oceans and 
lakes. Also, it is of interest to consider cases where the timescales of linear 
adjustment and nonlinear evolution are not as clearly separated as Hermann et al. 
(1989) assume. Indeed, from the linear dispersion curves of the channel, together 
with the dispersion curve for a nonlinear Kelvin wave travelling at a constant speed, 
shown in figure 1, it may be seen that for the nonlinear resonances to be possible a t  
longitudinal wavenumbers within the range of interest, the timescales of rotational 
separation (that is, the separation of the linear Kelvin and Poincark models due to 
their dispersive properties) and of nonlinear evolution are required to be of the same 
order of magnitude. This corresponds to weak rotational and nonlinear effects, and 
is indeed the appropriate scaling for many of the internal wave motions observed in 
oceans and lakes. 

In this paper we consider the general problem of geostrophic adjustment of an 
arbitrary initial disturbance in a channel. In $2  a set of Boussinesq equations with 
weak nonlinear, dispersive and rotational effects, are derived for a homogeneous 
fluid. (In Appendix A the corresponding equations for internal waves in a two-layer 
system are derived.) These equations are more general than the K P  equations and 
related evolution equations, and have no constraints on their initial data. A 
numerical scheme to solve these equations is introduced in $3, and described in more 
detail in Appendix B. In $4 we give examples of the nonlinear and dispersive 
geostrophic adjustment in a channel and compare them with the corresponding 
linear solutions. In $5 we consider the timescales of rotational separation and 
nonlinear evolution, introducing a parameter which measures the ratio of the two 
timescales. This permits us to predict the cases for which the linear solution is valid 
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FIGURE 1. The dispersion curves for the linear modes of the channel (-) and the nonlinear Kelvin 
wave (---), showing the possibility of resonant interactions at the longitudinal wavenumbers K ~ ,  

K ~ ,  .. . . Here o is the radian frequency, f is the Coriolis parameter and h is a depth scale. 

for the rotational separation, as well as predicting the cases for which the free and 
forced Poincar6 waves may be separated in the solution. Finally, in $6,  the results of 
the paper are discussed and applications of the numerical model to  the internal waves 
in the Strait of Gibraltar are presented. 

2. Formulation of the problem 
Rather than studying the more complex two-layer problem for a stratified fluid, 

which is the appropriate formulation for most of the nonlinear and dispersive 
internal waves observed in ocean and lakes, we chose to look at the slightly simpler, 
but similar problem of surface waves on a homogeneous fluid in a rotating channel. 
The corresponding derivation for a two-layer fluid with a rigid lid is presented in 
Appendix A and applied by Renouard, Tomasson & Melville (1992) to comparisons 
with laboratory measurements. The details of both derivations are given by 
Tomasson (1991). Notwithstanding the slightly different equations, the important 
dynamics of the problem are the same in both cases. 

2.1. Derivation of Boussinesq equations 

We consider the motion of a homogeneous and inviscid fluid confined to a channel 
rotating on an f-plane, i.e. with constant Coriolis parameter. The x-axis is taken to 
be along the channel, the y-axis across the channel and the z-axis in the vertical 
direction, positive upwards. The channel has constant depth h and width W, with a 
free surface with an equilibrium position at z = 0. 

To derive equations with weak nonlinear, dispersive and rotational effects three 
small parameters are introduced : 

a = a /h ,  (2.1) 

P = (kh)2,  (2.2) 

e = (1/W ( V k L  (2.3) 

representing weak nonlinear, dispersive and rotational effects, respcctively. Here, a 
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is a typical wave amplitude, k-’ and 1-’ are typical lengthscales in the x- and y- 
directions, respectively, and R = co/f is the Rossby radius of deformation, where co 
is the linear phase speed and f is the Coriolis parameter. With the scaling 

(2.4) 

(2.5) a = O(P) + 1, 
i.e. weak nonlinear and dispersive effects, the Euler equations become (dropping the 

u,+yvy+w, = 0, (2.6) primes for convenience) 

u,+auu,+ayvu,+awu,-ev+p, = 0, (2.7) 

(2.8) 

Pwt +P, = O(aP), (2.9) 

I x = k-l x’, y = 1-1 y’, z = hz’, 

u = ac,u’, v = aykov’, w = a&,wf, 

t = (l/kc,)t’, 7 = q’, p = apcip‘, 

where primes denote the non-dimensional variables, and assuming that 

yvt + ayuv, + ay2vv, + aywv, + eu + yp, = 0, 

with the no-flux boundary condition at the bottom 

w = O  a t  z=-1, (2.10) 

the kinematic and dynamic boundary conditions a t  the surface 

w = ~,$+auy,+ayvy, at z = “7, 
p = q  at z=aq ,  

(2.1 1) 

(2.12) 

and the no-flux boundary conditions at  the sidewalls of the channel 

v = O  at  y = O ,  W. (2.13) 

Here we have subtracted the hydrostatic pressure from the total pressure in the fluid, 
thus p is the dynamic pressure only. u, v and w are the fluid velocities in the x-, y- 
and z-directions, respectively. The parameter 

y = l / k  (2.14) 

measures the strength of transverse effects. 
From (2.7)-(2.9), we see that to the lowest order in a and P, u, v and p must be 

independent of depth. This allows us to expand the solutions for these variables in 
the small parameter /3: 

Lo, u, VI  (2, y, z, t )  = [P,  u, vl (z, y, t )  + PI39 c, q (x, y, 2, t ) ,  (2.15) 

with the lowest order solution independent of 2, i.e. hydrostatic. Using this in (2.6), 
integrating in z and substituting into (2.9), using the boundary conditions (2.10) and 

p ( z ,  y,z,t)  = 7 ( x ,  Y,t)+B(u,t+YV,yt) r+z2++1+o(P2). (2.16) (2.12) gives 

Substituting (2.16) into the horizontal momentum equations (2.7) and (2.8) gives 

Ut + aUU, + ay VU, - eV+ 7, + /3Ct - PEG+ PCU,,, + yVXvt) [ tz2 + 21 = 0(B2) ,  
(2.17) 

2 FL.M 241 
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~ ~ + a y U V z + a y 2 V ~ y + + U + y y , + ~ y ~ ~ + + ~ ~ + ~ y ( U z , t  +yQyt)  [+z2+z] = O(pz). 
(2.18) 

Taking the lowest-order velocities, U and 17, to represent the depth-averaged 
velocities, we get, after averaging (2.17) and (2.18) over the depth of the fluid, 

U t + a U U x + a y V U y - ~ V - ~ ~ ( U z z t + y ~ y t ) + q z  = O(P2), (2.19) 

YK + EYUK + "Y2 VVy + SU- iPYCUzyt + Y Vyyt) + yrly = O(P"). (2.20) 

To get a corresponding continuity equation, substitute (2.15) into the continuity 
equation (2.6) and integrate over the depth of the fluid, using the boundary 
conditions (2.10) and (2.11). This gives 

(2.21) 

The equations (2.19)-(2.21) constitute a set of Boussinesq equations valid for all 

ux + Y Vy + Tt + "[7 v l z  + "Y[T m y  = 0(P2) .  

rotation rates. We now use the assumption of weak rotational effects 

E = O(a, p) 4 1 (2.22) 

to rewrite the dispersive terms, using t,he lowest-order balances in the equations. This 
gives the Boussinesq equations 

U,+YV++r,+"[TU1Z+"Y[rl~Y = 0(PZL (2.23) 

(2.24) 

(2.25) 

u, + auu, + ayvu, - € V - ~ P ( U z x ,  + YU,,,) + y2 = O(P2), 

YK + a Y W z  + "Y2 VV, + EU- iPY ( czt + YVyyt) + Y7y  = 0(PZ)> 

with the boundary conditions at  the side walls 

V = O  at y = O ,  W.  (2.26) 

Here, (2.23) represents conservation of mass, while (2.24) and (2.25) represent 
conservation of momentum in the x- and y-directions, respectively. 

2.2. Properties of the equations 
By assuming the solutions to be locally confined in space, i.e. 

lim (7, U ,  V )  = 0, 
z+*OC 

(2.27) 

or confined to a finite length channel, i.e. 

U = O  a t  x = O , L ,  (2.28) 

the Boussinesq equations may be shown to exactly conserve mass, defined by 

M =  J;Jow7(x,Y,t)dxdY, 

and to conserve the total energy of the solution, defined by 

(2.29) 

to second order in the small parameters. Here, the limits in x are either f c o ,  
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corresponding to (2.27), or (0, L) ,  corresponding to (2.28). The expression for the 
energy consists of the lowest-order kinetic and potential energy, together with 
dispersive and nonlinear corrections. 

The Boussinesq equations may also be shown to conserve potential vorticity, 
defined by 

(2.31) 

to third order in the small parameters. Here, the second-order derivative terms 
represent a dispersive correction to the lowest-order relative vorticity 

5 =  rcv,-u,,. (2.32) 

2.3. Evolution equations 
By considering waves moving in one direction only, a simpler set of coupled 
evolution equations used by Melville et al. (1989) and Tomasson & Melville (1990), 

rt + Tz + krz - m z z t  + b V  - &V = O ( P ) ,  (2.33) 

Y K + E r + Y r y  = W2), (2.34) 

may be derived, as well as the asymptotically equivalent modified K P  equation 
(Grimshaw & Melville 1989). However, as discussed in 5 1, the evolution equations are 
not valid as model equations for arbitrary initial disturbances, but are constrained to 
initial disturbances with zero perturbation potential vorticity, thus limiting their 
applicability considerably. In this paper we will therefore solve the more general 
Boussinesq equations. Solutions of the Boussinesq equations with Kelvin-like initial 
disturbances satisfying the constraint of zero perturbation potential vorticity gave 
results very similar to the corresponding solutions of the evolution equations 
reported by Melville et aZ. (1989). 

3. Numerical scheme 

them, taking a = h, k-’ = h and Z-l = R in (2.4). This gives the equations 
Before solving the Boussinesq equations (2.23)-(2.25) numerically, we rescale 

rt + “1 + r )  V l z + m 1  +r)  vl, = 0, 

ut + Tz + uu, + rvu, - rv-;[u,,, + ruyUti = 0, 

v, + 7, + uv, + mv, + u-gv,,, + m,,t] = 0, 

(3.1) 

(3.2) 

(3.3) 

with the boundary conditions 

Here 
V = O  at y = O , W .  

r = (h/R)’, 

and we have neglected the smaller-order terms on the right-hand side. 
The above equations are solved numerically using a line-by-line iteration scheme 

developed and described in detail by Pedersen & Rygg (1987), Pedersen (1988) and 

2-2 
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Rygg (1988). They developed the scheme for the equations without rotation, but we 
have extended it to include the rotational terms. The numerical scheme, which is 
described in Appendix B, was found to conserve mass and energy to within 0.5% 
accuracy for typical values of the gridspacings and timestep. It was also tested 
against analytical solutions of the linear, non-dispersive problem of geostrophic 
adjustment in a channel (see Gill 1976; Tomasson 1991), and for the propagation of 
the exact solitary wave solutions in the non-rotating problem. Both cases showed 
excellent agreement with the analytical solutions with the error in 7 being less than 
0.5 yo. 

4. Examples of geostrophic adjustment in a channel 
To study the geostrophic adjustment of an arbitrary initial disturbance in a 

channel we solve the Boussinesq equations (3.1)-(3.3) numerically using the scheme 
described above. In  what follows, two examples will be given. In both cases the initial 
disturbance has non-zero perturbation potential vorticity, rendering the coupled 
evolution equations employed by Melville et al. (1989) and others inappropriate as 
model equations. Note that an infinitely long channel is simulated by ensuring that 
no disturbance reaches the endwalls of the channel in the numerical solutions. 

The first example corresponds to an initial localized elevation of the surface 
whereas the second has an initial discontinuity in the surface, with the fluid a t  
different levels on each side. Gill (1976) considered this second example in the linear 
and hydrostatic limit. In  both cases the initial disturbance has no transverse 
variations and no associated flow velocities. An important factor that distinguishes 
these two cases is the amount of potential energy available from the initial 
disturbance, it being finite for the first case but infinite for the second. The two cases 
will be referred to as the ‘step of finite length ’ and the ‘step of semi-infinite length ’. 

4.1. Step of finite length 
The first initial disturbance with non-zero perturbation potential vorticity we 
consider is a localized elevation of the surface, with no transverse variation and no 
associated flow velocities : 

U(X, y, 0) = 0, 

V(:c, y, 0) = 0, 

(4.2) 

(4.3) 

i.e. a rectangularly shaped disturbance with the edges smoothed out by a tanh- 
function. The upper sign is taken for x < xo and the lower sign for x > xo. The length 
of the disturbance is 1 with its centre a t  x = xo, a is the amplitude of the disturbance 
and 1, is a lengthscale of the smoothing functions, with 1, typically much less than 1. 
The initial disturbance is given in figure 2. Note that the potential energy associated 
with this initial disturbance is finite. 

Here we present results for one set of parameters : 

W / R  = 2.0, r= (h/R)2 = 0.01, a = 0.15, x0 = 0, 1 = 20.0, 1, = 2.0, (4.4) 

for both the linear problem, obtained by solving t.he linearized Boussinesq equations, 
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FIQURE 4. Contour plots of the solution of linearized versions of (3.1)-(3.3) for Vat t = 200 for the 
finite length step. (a) The solution over the whole channel. (b) The leading disturbance moving to 
the right. 

and the corresponding nonlinear problem, obtained by solving the full Boussinesq 
equations. Note, that for both cases dispersive effects are included. 

In figures 3 and 4 contour plots of the linear solution for 7 and V at  t = 200 are 
given, both for the whole channel and a more detailed plot of the leading disturbance 
moving to the right. Figures 5 and 6 show the corresponding linear solutions. The 
disturbance splits up into a left- and a right-going disturbance, the two being 
identical (except for a reflection around the centreline of the channel), owing to the 
symmetry of the initial disturbance. The two disturbances are made up of leading 
Kelvin modes, followed by Poincar6 modes, as can be seen quite clearly in the 
solution for V ,  recalling that no transverse velocity is associated with the Kelvin 
modes, and thus the solution for V is made up of Poincar6 modes only. The nonlinear 
evolution is evident in the solution for 7 by the appearance of nonlinear Kelvin waves 
at the leading edge of the disturbance, with the associated wavefront curvature, and 
in the solution for V by the appearance of high-frequency, resonantly generated 
Poincar6 waves at the leading edge of the disturbance. A t  the location of the initial 



Geostrophic adjustment in a channel 33 

2.0 

1.5 

y 1.0 

0.5 

n 
-250 -200 -150 -100 -50 0 50 100 150 200 

X 

2.0 

1.5 

y 1.0 

0.5 

0 
130 140 150 160 170 180 190 200 210 220 230 

FIGURE 5. Contour plots of the nonlinear solution of (3.1)-(3.3) for 7 at t = 200 for the finite length 
step. (a) The solution over the whole channel. ( b )  The leading disturbance moving to the right. 

X 

disturbance, where the perturbation potential vorticity is non-zero, a geostrophic 
eddy is set up, with the flow rotating clockwise in the channel and with an associated 
disturbance of the surface. 

In figure 7 the amplitude of the leading wave is shown against distance down the 
channel for both linear and nonlinear cases. (Values are not available for the smallest 
times because the leading crest is not well defined at  the initial stages of the 
evolution.) The effects of nonlinearities are evident, leading to higher amplitudes and 
an attenuation (although very weak) of the amplitude as the wave propagates down 
the channel. In figure 8 the spectra of the first five transverse modes of V (Poincard 
modes) are plotted at t = 200 for both cases. Again, the effects of nonlinearity are 
evident from the peaks in the spectra of the nonlinear solution, associated with the 
direct resonant forcing of the Poincard modes by the nonlinear Kelvin waves, as 
described by Melville et al. (1989), and explained in figure 1. 

The ratio of the total energy retained by the geostrophic eddy versus that radiated 
away by the Kelvin and Poincarb waves was found to be the same (to our numerical 
accuracy) in the linear and nonlinear solutions. 
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4.2. Step of semi-infinite length 
The second kind of initial disturbance with non-zero perturbation potential vorticity 
we consider is a smooth change in the elevation of the surface with no associated flow 
velocities and no transverse variation, i.e. 
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FIGURE 9. The initial disturbance to the surface used in the step of semi-infinite length. 
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FIGURE 10. Contour plots of the solution of linearized versions of (3.1)-(3.3) for 7 at t = 200 for the 
step of semi-infinite length. (a) The solution over the whole channel. (b) The leading disturbance 
moving to the right. 
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FIQURE 11.  Contour plots of the solution of linearized versions of (3.1)-(3.3) for Vat t = 200 for the 
step of semi-infinite length. (a) The solution over the whole channel. ( b )  The leading disturbance 
moving to the right. 

X 

Here, a is the amplitude of the discontinuity, x = xo is its location and 1, is the 
lengthscale of the smoothing function. The initial disturbance is shown in figure 9. 
This problem corresponds to a dam with still water on both sides that breaks 
instantaneously a t  t = 0. Gill (1976) considered the same problem in the linear and 
hydrostatic limit, except for the smoothing of the discontinuity, which is necessary 
here for the resolution of the numerical scheme. Here, the potential energy available 
from the initial disturbance is infinite (infinitely long channel). Again, we present 
results for one set of parameters only, but for both the linear and the corresponding 
nonlinear problems, with dispersive effects included in both cases. The parameters 
W/R,  r, a, xo and 1, are the same as those given in (4.4). 

In some respects this case is quite different from the one discussed in $4.1. Here, 
as discussed above, the potential energy associated with the initial disturbance is 
unlimited, whereas for the other case it is finite. Secondly, unlike the step of finite 
length, the initial disturbance considered here is not symmetrical with respect to the 
left and right parts of the channel, but rather is antisymmetrical. Thus, the 



38 G .  G .  Tomasson and W .  K .  Melville 

2.0 

1.5 

y 1.0 

0.5 

0 
-250 -200 -150 -100 -50 0 50 100 150 200 

X 

2.0 

1.5 

y 1.0 

0.5 

0 
130 140 150 160 170 180 190 200 210 220 230 

FIGURE 12. Contour plots of the nonlinear solut'ion of (3.1)-(3.3) for q a t  t = 200 for the step of 
semi-infinite length. (a )  The solution over the whole channel. ( b )  The leading disturbance moving 
to the right. 

X 

disturbances propagating to the left and right in the channel will have different signs, 
the one propagating to the left will be negative, whereas the one propagating to the 
right will be positive. This has no significance for the linear problem, but in the 
nonlinear problem the effects of this difference are profound, as only positive 
disturbances may evolve into solitary waves. 

Figures 10-15 correspond to those presented in $4.1. Figures 1&13 show contour 
plots of the linear and nonlinear solutions for 7 and V a t  t = 200, again giving the 
solution for the whole channel as well as a detailed plot of the leading disturbance 
moving to the right. The solution shows a Kelvin front moving in both directions, 
followed by a tail of PoincarB waves. Behind the fronts a boundary current is set up 
in the channel, flowing from left to right. To the left of the discontinuity in the 
potential vorticity the current is trapped against the left-hand wall (when looking in 
the direction of the flow), but crosses over the channel a t  the location of the 
discontinuity and flows along the right-hand wall to the right of it. In the linear 
problem, the left- and right-going disturbances are identical, except for a reflection 
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FIGURE 13. Contour plots of the nonlinear solution of (3.1)-(3.3) for V at t = 200 for the step of 
semi-infinite length. (a) The solution over the whole channel. (b) The leading disturbance moving 
to the right. 

around the centre of the channel and the sign of the disturbance. However, the 
nonlinear solution displays profound differences between the left- and right-going 
disturbances, in accordance with the discussion above. The right-going disturbance 
evolves into non-linear Kelvin waves with wavecrests curving backwards, and 
nonlinear and dispersive effects tending to balance one another, as seen above. 
However in the disturbance moving to the left the nonlinear and dispersive effects 
are not balanced and it evolves into a nonlinear and dispersive wavetrain due to its 
negative amplitude. 

The amplitude of the leading wave moving to the right is shown in figure 14. The 
nonlinear effects lead to larger amplitudes, with the amplitude fluctuating rather 
than attenuating as the wave moves down the channel. Another interesting feature 
of the disturbance moving to the right is the apparently much richer structure in the 
tail of the leading wave, when compared with that from the step of finite length. This 
is also seen quite clearly in the spectra of the transverse modes of V (PoincarB modes), 
given in figure 15 at t = 200 for both the linear and nonlinear cases. Rather than 
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FIGURE 14. The amplitude of the leading wave moving to the right us. distance down the 
channel for the step of semi-infinite length : -, nonlinear ; . . . . ., linear. 

seeing the peaks in the spectra of the Poincare' modes decreasing significantly in 
strength with increasing mode number, as was the case for the step of finite length, the 
peaks here are about the same strength for the first five modes shown in the figure, and 
in fact were found to be about the same strength all the way up to  mode nine or ten. 
Also, the peaks are not as well tuned into the resonant wavenumbers, with some of 
the modes displaying double peaks around the resonant wavenumber. The reason for 
this difference may be the stronger forcing due to  the unlimited source of potential 
energy, or the appearance of more than one nonlinear Kelvin wave, travelling a t  
slightly different speeds. 

5. Timescales of rotational separation and nonlinear evolution 
I n  $01 and 2 we discussed how the coupled evolution equations may be employed 

as model equations for the evolution of an initial disturbance in a channel if the 
associated perturbation potential vorticity is zero. The simplest way to satisfy this 
requirement is for the transverse structure to be that of a linear Kelvin wave, i.e. 
exponentially decaying in the transverse direction, with the transverse velocity 
vanishing identically, as was done by Melville et al. (1989). Also, owing to the 
properties of the linear dispersion relationships, the Kelvin modes have greater group 
speeds than the Poincare' modes. Thus, as the disturbance evolves in time, the Kelvin 
modes will lead the Poincark mode transients and eventually separate from them in 
space. However, these transient Poincarc! waves may not be the only ones present in 
the solution. In Melville et al. (1989) and in $ 4  we have seen how the nonlinear Kelvin 
waves may generate Poincare' waves through nonlinear resonances. Consequently, we 
may see Poincare' waves of two different origins in the solution, the transients 
evolving from the initial disturbance and the resonantly generated waves. 

In  view of the above, it is of interest to test Gill's conjecture by comparing the 
timescale of rotational separation, i.e. the separation of the Kelvin and Poincark 
modes, and the timescale of the nonlinear evolution. For those situations where the 
rotational separation takes place before nonlinear effects become important, the 
Poincare waves of different origins can be separated. Also, these cases may be 
modelled by first solving the linear problem for the initial evolution, using Gill's 
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~, n =  1 ;  . . . . . . n = 2 .  _ _ _ _ _ _  n = 3 . - . - . -  n = 4 . - - -  , , n = 5 .  

(1  976) classical analytical solution, and subsequently solving the coupled evolution 
equations for the nonlinear evolution of leading Kelvin wave disturbance. Otherwise, 
the Poincar6 waves of different origin cannot be separated. 

The simplest way to obtain a quantitative measure of these two effects is to 
directly compare their timescales. The timescale for rotational separation, TR, is 
given by (see Appendix C for details of the derivation) 

TR = O(I%R)~, (5.1) 

where we have assumed W / R  = O(1).  The timescale for nonlinear effects, TN, is given 
by 

TN = O(l /a) .  (5 .2)  
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Run W l h  u'l r a,lh 17 
I 10 1 .o 0.01 0 . 1  
I1 10 1 .o 0.1 1 .0 
111 10 4.0 0.01 0.006 
IV 10 4.0 0.1 0.06 
V 40 1 .o 0.01 1.6 
VT 40 1 .o 0. I 16 

TABLE 1. The parameters used in the runs for the timesvales of rotational separation and 
nonlinear evolution. 

The ratio of the two timescales, n, is given by 

IZ = a( kR)2. (5.3) 

(This parameter is similar to the Urscll number, which measures the ratio of the 
timescales of nonlinear and dispersive effects.) Note that although we refer to the 
separation as being due to rotation alone, it is also due to three-dimensional effects, 
measured by W instead of R (see Appendix C). In fact, the smaller of W and R will 
be the dominant one in the expression for the timescale of separation (replacing R in 
(5.1)). Although (5.1) is formally valid for W / R  = O ( l ) ,  the magnitude of the 
parameter is very sensitive to changes in W and R owing to the second power 
involved. Therefore, in all the results presented here, R is taken to be smaller than 
or equal to W to ensure that (5.1) is a true estimate of the timescale of separation. 
Also note that the assumption of weak rotation in the derivation of the Boussinesq 
equations, together with the assumption of weak nonlinear effects, give 17 2 O(1). 
However, the assumption of weak rotation was only necessary to rewrite the 
highest-order, dispersive terms in the equations. The rotational and nonlinear 
terms are not affected by this assumption, and those terms in the equations are valid 
for strong rotation as well. This justifies looking at  cases with L' < O(1)  as well as 

The magnitude of the parameter IZ leads to the following interpretations : 

n 2 O(1).  

17-g 1 :  

rz9 1 :  

n= O(1) :  

TR is much smaller than l h  with the Kelvin waves separating from the 
Poincare' waves before nonlinear effects become important. 
TR is much larger than 5'; with the nonlinear evolution taking place 
before the Kelvin waves separate from the Poincare' waves. The 
resonantly generated Poincark waves cannot be separated from the 
transient Poincare' waves. 
the two timescales are comparable and the nonlinear evolution and 
rotational separation take place simultaneously. The resonantly gen- 
erated Poincard waves cannot be clearly separated from the transient 
Poincare' waves, 

In  the following we will give several examples of solutions with different values of IZ. 
In  all of these examples the initial disturbance is a step of finite length like that used 
in $4.1, but with different arnplitudcs. The lengthscale, k-' in (5.3). is taken to 
correspond to the first zero crossing in the spectra of the initial disturbance, i.e. 

k-' = l / R .  (5.4) 
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FIGURE 16. Run T (IZ = 0.1) at t = 150. (a) The Kelvin mode, ( b )  the first Poincarci mode, (c) the  
difference between the nonlinear and linear solution for the Kelvin mode, ( d )  the difference between 
the nonlinear and linear solution for the  first Poincar6 mode. K ,  E, FP and R P  indicate the 
approximate regimes of the leading Kelvin wave, the geostrophic eddy and the free and resonantly 
forced Poincare' waves, respectively. 

X 

where 1 is the length of the disturbance. This choice is sufficiently accurate as the 
expressions for the timescales are order of magnitude only. 

To quantify the rotational separation we introduce the new variables 

These variables were used by Gill (1982) in the analytical solution to the linear, 
hydrostatic problem. Their advantage is that the Kelvin waves moving to the left 
and right are separated with q containing only the Kelvin wave moving to the right 
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FIGURE 17. As in figure 16, except I7 = 1.0 (Run 11). 
X 

and r containing only the Kelvin wavc moving to the left. Although the above only 
holds for the linear, hydrostatic case, the variables are useful here as well, owing to 
the weakness of the nonlinear and dispersive effects. The variables can be expanded 
in the transverse direction into a set comprised of a Kelvin mode and Poincark 
modes : 

where the zero mode is the Kelvin mode and n = 1, 2 ,  ... are the Poinear6 modes. 
These transverse modal functions form a complete and an orthogonal set and may 
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FIQURE 18. As in figure 16, except I7 = 0.006 (Run 111). 

be used to describe arbitrary transverse variations. Comparing the solution for the 
Kelvin mode and the Poincar6 modes gives a measure of the separation of the two. 
To quantify the effects of nonlinearity, the linear solution for each mode is 
subtracted from the corresponding nonlinear one and the difference scaled by the 
maximum initial amplitude of the mode in question. 

We present results from six runs with n ranging from 0.006 to 16. The relevant 
parameters of the runs are listed in table 1. In  figures 16-21 we show plots of the 
results for all six runs. For each run we have plotted the solutions for the Kelvin and 
first Poincare' mode of q a t  t = 150 (showing the rotational separation), and the scaled 
difference between the nonlinear and linear solutions for the same two modes 
(showing the strength of the nonlinear effects). It proved enough to compare the 
Kelvin mode of q to the Poincare' modes of q, as the Poincare modes of r are not 
significant in the leading disturbance moving to the right. Also, recall from $4.1, that 
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X 

for these initial conditions, the disturbances moving to the left and right are basically 
identical. Note that runs I and I1 have exactly the same parameters except for the 
strength of the nonlinearity, it being ten times stronger for the second run than for 
the first. The same applies to runs I11 and IV and runs V and VI. The time chosen 
for the output ( t  = 150) is of the same order of magnitude as the nonlinear timescale 
for the runs with stronger nonlinearity (runs 11, IV and VI),  but consequently much 
smaller than the corresponding nonlinear timescale for the runs with weaker 
nonlinearity (runs I, I11 and V). 

Runs I ,  111 and IV  all have I7 < 1.  I n  runs I and 111 (figures 16 and 18) nonlinear 
effects are negligible, whereas the rotational separation is quite clear, with the 
leading Kelvin wave (K) separated from the trailing free Yoincar6 waves (FP). In run 
IV (figure 19) the nonlinear evolution is evident, with the difference between the 
nonlinear and linear solutions being of O(1) for both modes. However, the relatively 
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47 

clear separation of the Poincar6 modes of different origin, with the approximately 
single-frequency leading waves being the resonantly generated Poincar6 waves (RP), 
followed by the transient Poincar6 waves (FP), indicates that the rotational 
separation has taken place before the nonlinear effects become significant, as the 
magnitude of 17 indicates. Runs I1 and V both have l7 = O(1). In run V (figure 20) 
neither the rotational separation nor the nonlinear evolution have taken place. On 
the other hand, in run I1 (figure 17) these two effects did take place approximately 
on the same timescale, which is indicated by the Poincar6 waves of different origin 
not being as clearly separable as before. Finally, run VI (figure 21) has 17 >> 1, with 
the nonlinear evolution being evident whereas the rotational separation has not 
taken place and the Poincare' waves of different origin can certainly not be simply 
separated. 
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FIGURE 21. As in figure 16, except I7 = 16 (Run VI). 

In summary, the above results show the usefulness of the parameter 27 to predict 
the importance of nonlinear and rotational effects. For small values of Z7, the 
rotational separation can be modelled with the linear equations, followed by solving 
the nonlinear evolution of the leading Kelvin wave disturbance with the coupled 
evolution equations. In this case, the Poincar6 waves of different origin can be clearly 
separated. For 17 2 0(1),  this separation is not as clear and the full Boussinesq 
equations have to be employed for the rotational separation. 

6. Discussion 
In this paper we have studied the general problem of geostrophic adjustment in a 

channel, with weak nonlinear and dispersive effects, which is the appropriate 
formulation for many internal wave disturbances observed in the oceans and lakes. 
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FIGURE 22. The initial disturbance to the interface ( v ) ,  used in the computation of nonlinear 

internal waves in a sea strait. 

Our main emphasis has been on the Kelvin and Poincar6 waves that evolve from the 
initial disturbance and their possible interactions, with less attention being paid to 
the associated advection of the perturbation potential vorticity, which has been 
studied by Hermann et al. (1989). In  a separate paper (Renouard et al. 1992), 
numerical solutions based on the Boussinesq equations for a two-layer fluid are 
compared with experimental measurements. The agreement is very good for 
moderate nonlinearities, thus confirming the validity of the Boussinesq equations as 
model equations for this problem. 

The two-layer numerical model can be applied to stimulate some of the internal 
wave motions observed in the field and described in 5 1 .  Here we present solutions 
based on the observations in the Strait of Gibraltar. While the parameters are chosen 
to  match those observed in the natural situation, it should be kept in mind that our 
formulation is based on certain simplifications, including the assumption of two- 
layer stratification, a channel of constant width and depth, a simplified initial 
disturbance, and neglect of tidal currents in the strait. Our purpose here is not to  find 
an exact agreement with incomplete observations, but rather to  determine whether 
the specific features associated with the evolution of nonlinear Kelvin waves in a 
channel, such as the wavefront curvature due to the nonlinear resonances, are 
significant in a typical natural situation. 

To model the nonlinear internal waves in the Strait, we solve the two-layer 
Boussinesq equations (Appendix A) with initial conditions similar to  those used by 
Pierini (1989), i.e. a bulge-like depression of the interface, given by 

with no transverse variation and no associated flow velocities. The initial disturbance 
is shown in figure 22. The parameters of the model, listed in table 2, are chosen to  be 
representative of the Strait. Note that the lengthscale of the initial disturbance is 
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FIGURE 23. Contour plots a t  t = 10.9 hours of the  solution for nonlinear internal waves in a sea 
strait. (a )  7 (m). ( b )  V (m'/s). 

x (km) 

Upper-layer depth 
Loner-layer depth 
Linear wave speed 
Rossby radius 
IVidth of channel 
Amplitude of initial disturbance 
Parameter of initial disturbance 
Parameter of initial disturbance 
Parameter in $ 5  

Jll 150 m 
h,  350 m 
c, 1.25 m/s 
H 12.5 km 
R' 20 km 
a, 31.5m 
X I  1.8 km 
x2 10 km 
n 1.75 

TABLE 2. The parameters of the two-layer model used in the computation of nonlinear internal 
waves in a sea strait 

about half that used by Pierini (1989). This shorter disturbance is in accord with 
Maxworthy (1979), who found the lee wave generated by flow over an obstacle to 
have a lengthscale comparable to that of the obstacle. We also use smaller 
amplitudes than Pierini in order to satisfy the assumption of weak non1inearity.t 
Note that any effects of the tidal currents in the Strait, which may be important for 
the periods and lengthscales of the measured waves, are neglected here. 

In  figure 23 contour plots of the solution for 7 and V (the interface displacement 
and the transverse horizontal flux in the lower layer) are given a t  t = 10.9 hours. At 
this time the disturbance has travelled about 50 km, which corresponds approxi- 

t Pierini (1989) used a larger water depth as his main interest were the waves in the Alboran Sea, 
whirh is ronsiderably deeper than the Strait of Gibraltar. Thus, although computing larger wave 
amplitudes. his nonlinear effects are of comparable strength to those in our computations. 
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mately to the length of the strait. Figure 24 shows time series of the interface 
displacement at a distance of 46.8 km along the Strait from the location of the initial 
disturbance (x = 0) and at two stations across the Strait, y = 0 and y = !jW. 

The computed solutions show a train of nonlinear Kelvin waves evolving from the 
initial disturbance as it propagates along the strait, in qualitative agreement with 
the measurements. The transverse Kelvin wave structure and the backward 
curvature of the wavecrests are clearly visible in the computed solution, with the 
associated phase shift of the leading wave across the strait being about 700 m. The 
maximum amplitude of the computed waves of about 35 m at the right-hand coast, 
which is considerably less than the largest amplitudes observed, is due to our choice 
of the amplitude of the initial disturbance which was constrained by the assumption 
of weak nonlinearity in the Boussinesq equations. A typical period of the computed 
waves is about 30 minutes, corresponding to wavelengths of about 2000m. This 
period is considerably larger than the measured one of about 15 minutes. The reason 
for this discrepancy may be the effect of the strong tidal currents in the strait, which 
are neglected in the numerical solution, or possibly the smaller amplitudes in the 
computed solutions, as the timescale of the nonlinear solitary waves decreases with 
increasing amplitude. A run with initial amplitudes twice as large gave waves with 
amplitudes at the coast of around 70m and periods of about 20-25minutes. 
However, as noted above, the assumption of weak nonlinear effects is questionable 
for this run. 

It is of interest to consider the effect of friction on the wavefront curvature of the 
nonlinear Kelvin waves. From linear theory, friction is known to tilt the crests of 
periodic Kelvin waves backward away from the normal to the coast (Martinsen & 
Weber 1981). Several authors, among them Grimshaw (1985) and Renouard et al. 
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FIGURE 25. The solution for internal waves in a sea strait with frictional effects. (a) A contour plot 
of the solution for 71 (m) at 1 = 10.9 hours (compare to figure 23a). (b)  Timeseries of 71 at 46.8 km 
along the strait and at y = 0 (compare to figure 24a). 

(1987), have suggested that this might, at  least partly, explain the observed 
backward curvature of nonlinear Kelvin waves. To study this, we repeated the above 
run with simple linear friction terms included in the two-layer Boussinesq equations 
(see Appendix A). The strength of the friction was chosen to given an e-folding time 
of about 18 hours, which is consistent with the measurements of Wesson & Gregg 
(1988), who estimated the lifetime of a typical wave packet in the Strait to be around 
1 day. In figure 25 we show a contour plot of the solution for 7 a t  t = 10.9 hours and 
a time series of 77 at 46.8 km along the channel and at y = 0. These figures correspond 
to figures 23(a)  and 24(a) for the solution without friction. In both figures we see a 
considerable attenuation of the wave amplitude with time, due to frictional losses. 
(These effects may be overestimated due to the neglect of currents in the Strait, as 
these waves tend to ride with the current along the Strait and thus take less time to 
propagate along its length.) However, rather than seeing an increased curvature due 
to frictional effects, as may be expected from linear theory, the curvature is 
considerably less than that without frictional effects, with the phase shift of the 
leading wave across the Strait about 350 m, compared to  700 m in the solution 
without frictional effects. This difference is due to weaker nonlinear resonant effects 
as the amplitude of the leading wave is smaller. Otherwise, no direct effects of friction 
on the curvature of the waves or the decay rate across the channel are visible. 

This work was supported by the Office of Naval Research (Coastal Sciences). Some 
of the calculations in this paper were performed on the MIT Supercomputer Facility 
CRAY-2. 
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Appendix A. Derivation of governing equations for a two-layer fluid 
We consider the motion of a two-layer fluid confined to a channel rotating on an 

f-plane. For now, the fluid is assumed to be incompressible and inviscid, and 
frictional effects at  the channel walls, bottom and a t  the interface between the two 
fluids are neglected. Furthermore, a rigid-lid approximation is made, neglecting the 
barotropic surface wave mode and looking only at  the evolution of the baroclinic 
internal wave mode. Again, the z-axis is taken to be along the channel, the y-axis 
across the channel and the z-axis in the vertical direction, positive upwards. The fluid 
layers have constant densities p1 and p2 and depths h, and h,, with the interface 
between the fluid layers at the equilibrium position z = 0. Following a derivation 
exactly like that given in $2 for the corresponding single-layer case (the details of 
both derivations are given by Tomasson 1991), we get the Boussinesq momentum 
equations for the upper layer 

(A 4) 

(A 5 )  

(A 6) 

together with the continuity equation for the upper layer 

- 71t + [(h,  -all) @ l ) I x  + m 1 -  a3) W Y  = O(PL 

3t + [ (h,  + a31 u(2’lx +Y[(h2 + a3) v(2)1Y = W2). 
and that for the lower layer 

Here, U(lp2) and W 2 )  are the depth-averaged horizontal velocities in each layer, 7 is 
the interface displacement, and p(lv2) are the dynamic pressures at the interface, i.e. 

p q z ,  y, t )  = p(1,Z) I z-a7’ (A 7 )  

where p is the dynamic pressure in the fluid, i.e. the fluid pressure after subtracting 
the hydrostatic pressure. The scaling used here is 

= k-lx,  y’ = l-ly, z’ = hoz, ,TJ’(l,Z) = ac u(1.Z) v(1.2) = v(1.2), 
0 ] (A81 

’ 1  t = - t ,  7’ = aho% p’ = apoc~p,  hi,2 = hohl,2, pil ,2) = PO PI,^, 
kc0 

where primes denote the dimensional variables. Here, ho = hi h’,/(hi + h i )  is an 
equivalent single-layer depth for the corresponding linear and hydrostatic problem, 
ci = (Ap/po) gho is the linear phase speed of the internal waves, Ap = plZ -pi  is the 
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density difference and po is a reference density. The parameters we have introduced 
are 

a = a / h o ,  (A 9) 

B = (kh,)2,  (A 10) 

1 
E = - (Z/k),  

kR 

y = ( l / k ) 2 ,  (A 12) 
representing nonlinear, dispersive, rotational and transverse effects, respectively, 
The parameter a is a measure of the amplitude of the disturbance, L-’ and 1-’ are 
typical lengthscales in the x- and y-directions, respectively, and R = co/f is the 
internal Rossby radius of deformation. The above equations are based on the 
assumption of weak nonlinear, dispersive and rotational effects, i.e. 

01 = O(P)  = O(E) < 1. (A 13) 

To obtain one pair of momentum equations we take the difference between the 
momentum equations in the two layers, i.e. p2 x (A 3 )  - p l  x (A 1) and p2 x (A 4) - 
p 1  x (A 2). Assuming 

which is an appropriate assumption for the cases considered here, and requiring that 
the mass fluxes in the two layers balance in the x- and y-directions independently, 
i.e. 

which is the case for the lowest-order linear and hydrostatic problem, we get after 
using the appropriate matching conditions a t  the interface between the two layers, 
the following set of Boussinesq equations : 

APIPO + O(P), (A 14) 

(h1- aq) (U‘’), V‘”)  = - (h2 + a ~ )  (U“), V2’) ,  (A 15) 

l;lt + Ux + Yv, = W’), 

ut +r , - - sV+~ --- ( 2 u U x + Y ( V U ) , - Y u t ) - ~ P h l  h2(UX,, +Yq/,,) = 0(P2), 

YVt + Y V y  + d+ aY --- ( ( U V ,  + 2Y VV, - 17K) -@h,  h,( L t  + YVy2/t) = 0(P2) ,  

(A 16) 

(A 17) 
[ I t ,  d 
k2 tl 

(A 18) 

V = O  at y=O,W. (A 19) 

with the sidewall boundary conditions, 

Here, q is the interface displacement and U and V are the horizontal fluxes in the 
lower layer 

or equivalently, from (A 15), the negative fluxes in the upper layer. Equation (A 16) 
represents the continuity equation for either layer, whereas (A 17) and (A 18) come 
from the difference between the momentum equations in the two layers. We have 
also assumed that 

(U,  V )  = ( h 2 + a q )  (U”, P2)), (A 20) 

“-4 = 0(1), 
h2 hl 

which is generally true for the cases considered here. 
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For the solutions with frictional effects presented in $6, we include simple linear 
friction terms (see for example Martinsen & Weber 1981) to represent the friction at  
the bottom and at the interface between the fluid layers. This gives the equations 

rt+u,+rv, = O(P"3 (A 22) 

Ut + vz - sV+ tc - -- (2UU, + Y( VU),  - 7Ut) -#h, hz( UzZt + 7 U,,,) + hU = O(pZ), 

(A 23) 
[iz iJ 

Y v t  + 77, + SU+ "Y --- ((uv), + 2Y VV, - 7 6 )  -&h, hdvzzt +YV,,t) + 7hV 

= O(P2), (A 24) 
(A 25) 

Lz d 
where 

and K is the dimensional friction coefficient. 

h = ( l /kc , )K,  

Appendix B. Numerical scheme 
The Boussinesq equations (3.1)-( 3.3) are solved numerically using a line-by-line 

iteration scheme developed and described in detail by Pedersen & Rygg (1987), 
Pedersen (1988) and Rygg (1988). They developed the scheme for the equations 
without rotation, but we have extended it to include the rotational terms. To assist 
in presenting the scheme, we define a difference operator in the x-direction 

1 
(B 1) 4 3 ; , q  = (F;+;,q-F;-&q)? 

(w;,g = w;+;,q +F;-;,q)> 

and an average operator in the x-direction 

(B 2) 
with corresponding operators defined for the y-direction and time, t. Here, F;,q is the 
discrete approximation to a quantity F at the gridpoint with coordinates ( p  Ax, q Ay, 
n At), where Ax, Ay and At are the space and time increments, respectively. The space 
and time discretizations are done on a staggered grid. In the discrete coordinates, Lhe 
variables to be solved for are 

where U and V are the horizontal tluid accelerations. 
The scheme consists of three separate steps : a predictor-corrector step to solve for 

the surface displacement (7) from a discrete version of the continuity equation (3.1), 

an alternating direction implicit (ADI) iteration scheme to solve for the fluid 
accelerations (0 and v)  from discrete versions of the momentum equations (3.2) and 
(3.3), 

[a, 7 + 8, {( 1 + .II") u> + rs, {( 1 + iq vl:~.q+: = 0 ; (B 4) 

2-2 [a+ 8 , ~  +&.((Un-f)z + A t 3  ( U )  ) 
.s + q Y " f Y  + ;At(2') a,( 3" + &At( U )  ) 

-W 7 . W  
- q V n - ;  +iAt(V) )-:(&$+Z33?)];,,+; = 0, ( B 5 )  

[f7+6,7+ ( ~ z , + ~ A ~ ~ ~ ' ) ~ , ( v 8 _ : 2 + ~ A t ~ )  

r .Y + - S,( (-)z + At-( v) ) 
2 
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where the double overbars indicate averaging in both x and y, and a simple 
timestepping by a midpoint rule to solve for the velocities (U and V )  from discrete 
versions of the kinematic conditions : 

[SJ- Q;,*+; = 0, 

[S,V- vl;+;,o = 0. 

(B 7 )  

(B 8) 

The typical number of iterations needed in the AD1 scheme were between two and 
four with typical gridspacings and timestep of Ax = 0.15, Ay = 0.1 and At = 0.1. 

Appendix C. The timescale of rotational separation 

(2.23)-(2.25), is 

and for the Poincar6 modes 

The linear dispersion relationship for the Kelvin mode of the Boussinesq equations, 

W 2  = K 2 ,  (C 1 )  

w2 = ~ ~ + ~ [ i + ( n n / W ) ~ ] ,  n = l , 2 ,  ... (C 2) 

The dispersive effects are not of importance for this analysis, thus we have set /3 = 0. 
We have also taken the lengthscale in the y-direction to the Rossby radius, thus 

y = E = ( m - 2 .  (C 3) 

Otherwise, the scaling is that given by (2.4). In this scaling, distances in the 
x-direction are scaled by a typical wavelength and time is scaled by a typical wave 
period; thus w and K are O(1). From the dispersion relationships we get the group 
speed of the Kelvin wave moving to the right : 

cglz  = aw/aK = i ,  (C 4) 

and the group speed of the Poincar6 modes moving to the right: 

The difference in the group speed is 

n = 1,2, ... 

+O(E2), 
K 1 + (nn/W)Z 

1 = $5 Acg lz = 1 - 
{ K ~  + E [  1 + (nn/ W)']}E K 2  

where we have used the assumption of weak rotational effects, i.e. 6 < 1 .  Assuming 
that the width of the channel is of the order of a Rossby radius, i.e. 0(1 )  in this 
scaling, we get the time for the waves to separate one wavelength in space 

T, = O(E-') = O(kR)'. (C 7 )  

Note that this analysis also holds for E = O( l ) ,  as the difference in group speed is then 
Acg Iz = O( 1 )  and consequently TR = O( 1). 
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