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The modulated nonlinear Schrodinger equation (Zhang & Melville 1990), describing 
the evolution of a weakly nonlinear short-gravity-wave train riding on a longer 
finite-amplitude gravity-wave train is used to study the stability of steady envelope 
solutions of the short-wave train. The formulation of the stability problem reduces 
to the solution of a pair of coupled equations for the disturbance amplitude and 
(relative) phase. Approximate analytical solutions and numerical solutions show 
that the conventional sideband (Benjamin-Feir) instability is just the first in a series 
of resonantly unstable regions which increase in number with increasing perturbation 
wavenumber. The first of these new instabilities is the result of a quintet resonance 
between four short waves and one long wave. Subsequent unstable regions correspond 
to sextet or higher-order resonances. The results presented here suggest that steady 
envelope solutions for unforced irrotational short waves on longer irrotational 
gravity waves may be unstable for a wide range of conditions. 

1. Introduction 
In a recent paper we derived a nonlinear Schrodinger equation describing the 

evolution of weakly nonlinear short waves riding on a longer finite-amplitude gravity 
wave (Zhang & Melville 1990; hereinafter referred to as ZM). That work was 
motivated by issues of air-sea interaction and remote sensing described in the 
Introduction of ZM. We found steady solutions (relative to the long-wave profile) of 
the short-wave envelope for wavelength ratios of O( lo+). Recently Zhang (1990, 
1991) rederived the modulated nonlinear Schrodinger equation using a variational 
principle based on the phase-averaged Lagrangian (Whitham 1965, 1974), and 
extended the formulation to include larger wavelength ratios of O( 10-l). Comparisons 
of the steady solutions with those of Longuet-Higgins (1987) for linear short waves 
showed an increase in the modulation of the short wavelength with increasing short- 
wave steepness. However, a t  small wavelength ratios the modulation of the short- 
wave amplitude decreases with increasing short-wave steepness, but may increase at 
larger wavelength ratios. Therefore we expect stronger wave steepness modulation 
for short waves on relatively long waves. 

Many of the models of long-wave-short-wave modulation assume (implicitly if not 
explicitly) that such steady envelope solutions may be realized and that they are 
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stable. As indicated in ZM, one motivation for deriving the modulated nonlinear 
Schrodinger equation was to investigate the stability of the steady envelope 
solutions. It is well known that in the absence of any longer wave a uniform weakly 
nonlinear gravity-wave train is unstable to sideband disturbances (Benjamin & Feir, 
1967). At larger slopes (outside the range of validity of the nonlinear Schrodinger 
equation), other two- and three-dimensional instabilities may occur (see MacKay & 
Saffman 1986, and references therein). Thus in this case we expect that the 
Benjamin-Feir instability will be affected by the longer wave. Further, the long- 
wave-short-wave system may be viewed as a system of coupled oscillators, as has 
been modelled by Henyey et al. (1988). It is well known that such systems may have 
multiple unstable regions. 

Owing to the modulation by the long wave, both the short-wave steepness and 
perturbation wavenumber change along the wave, but a t  quite different rates. Thus 
the ratio of the nonlinearity to dispersion terms in the modulated Schrodinger 
equation changes along the long wave. Consequently, the relative phase between a 
pair of sideband resonant disturbances must change accordingly, whereas in the 
absence of the long wave, the sideband instability is characterized by a constant 
relative phase. Therefore, the resonant growth rate of disturbances along the long 
wave depends on the short-wave steepness as well as the relative phase. 

For the sideband instability with a small perturbation wavenumber (corresponding 
to Benjamin-Feir instability), the relative phase is modulated about a constant 
value. With an increase in the perturbation wavenumber, the relative phase may 
change monotonically along the long wave, and for certain ranges of the wavenumber 
i t  may change by 2Nn (N an integer) in one long wavelength, leading to a periodic 
resonant growth rate, changing sign 2N times in one long wavelength. However, the 
net growth over one long wavelength may still be significant owing to the modulation 
by the long wave. For example, if the magnitude of the resonant growth rate a t  the 
crest is larger than that a t  the trough, and positive at  the crest while negative a t  the 
trough, significant net growth over one long wavelength may be achieved. In  
addition to the conventional sideband instability, multiple resonant bands of 
instability are found both analytically and numerically for the modulated nonlinear 
Schrodinger equation. 

The linear resonance condition (see (3.13) and (3.14)) with respect to the 2Nn 
instability reveals that it is a new type of instability which belongs neither to Class 
I nor Class I1 (see McLean et al. 1981 ; Yuen & Lake 1982). The first multiple resonant 
band (N = 1) results from a quintet resonant interaction, among four short waves 
and one long wave. The second band (N = 2) is due to a sextet resonance, and so on. 
For weakly nonlinear waves the intensity of the resonances decreases as N increases. 
We find that for smaller values of the long- and short-wave slopes, and relatively 
large values of the wavelength ratio, the 2n instability (quintet resonance) is weaker 
than the Benjamin-Feir instability (quartet resonance). As the wave slope increases 
and/or wavelength ratio decreases, its strength increases to become comparable to 
that of the latter. 

Similar to the relationship between the conventional sideband instability and the 
well-known quartet resonance (Phillips 1960 ; Hasselmann 1962), the 2Nn instability 
is related to a new type of resonance for energy transfer among ocean waves. For 
short waves riding on a steep long wave, the energy transfer rate due to this new 
quintet resonance ( N =  1) can be comparable to that of the well-known quartet 
resonance. Hence, this new resonance may be particularly important for the energy 
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transfer among waves with wavelengths much shorter than the peak wavelength of 
the spectrum. 

While the nonlinear Schrodinger equation has been shown to be a useful 
asymptotic evolution equation for weakly nonlinear waves, its limitations are also 
well known and should be mentioned here. It is restricted to describing narrowbanded 
weakly nonlinear waves. Numerical solutions have shown that initial conditions 
satisfying these constraints may evolve to produce strongly nonlinear waves outside 
the region of validity of the equation. There is some evidence of similar difficulties 
in the problem treated here, with the perturbation wavenumbers of the multiple 
resonant bands being rather large for the small values of the perturbation parameters 
at which we expect the modulated nonlinear Schrodinger equation to be most 
accurate. The limitations of the nonlinear Schrodinger equation have, in the past, 
been addressed by going to higher-order formulations using Dysthe’s (1979) equation 
or Zakharov’s (1968) equation or their variants. Numerical solutions of Zakharov’s 
equation (Yuen & Lake 1982) show that good quantitative agreement with the 
stability diagram based on the nonlinear Schradinger equation is achieved for wave 
slopes of O( lop2), but significant quantitative differences occur for wave slopes as 
small as 0.1. Thus we expect that while the formulation and results given here 
describe the essential physics, quantitative results, especially at the larger values of 
the perturbation parameters, must await independent confirmation. 

During the writing of this paper we learned of similar work by our colleagues M. 
Naciri & C. C. Mei (personal communication) who are studying the interaction 
between short waves and long Gerstner waves using a Lagrangian formulation. Their 
results on the stability of the short-wave envelope appear to be similar to those 
presented here, but they have extended the work to consider the evolution of the 
short-wave envelope. 

2. Formulation 
2.1. Modulated nonlinear Schrodinger equation 

A two-dimensional weakly nonlinear short-gravity-wave train is riding on and 
propagating in the same direction as a two-dimensional finite-amplitude periodic 
long wave in deep water. It is assumed that the flow is incompressible and 
irrotational and that the pressure is constant at the surface. The rectilinear 
coordinates (x, z )  move with the long wave at  its phase velocity with z = 0 fixed a t  
the calm water level. The orthogonal curvilinear coordinates (s, n) are related to the 
(z, z )  coordinates by a conformal mapping so that horizontal and vertical lines in the 
(s, n)-plane project onto the streamlines and equipotentials of the long wave (in the 
absence of the short wave) in the (2, z )  plane, with n = 0 corresponding to the long- 
wave surface. The scale factor for the orthogonal coordinates H(s ,  n) is defined by 

(2.1) 

where As, An, Asd and And are increments in s and n in the (5,n)-plane, and their 
projections on the (x, y)-plane, respectively. el and e2 are defined as the steepness of 
the long wave, and the steepness of the short-wave train at  the trough of the long 
wave, respectively. e3 is the ratio of the short wavelength (at the trough of the long 
wave) to the long wavelength. The relationship between these parameters is assumed 
to be 

H ( 5 ,  n) = An/And = As/Asd, 

= O(€i), €3 = O(&. (2.2) 
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The modulated nonlinear Schrodinger equation, describing the evolution of 
short-wave train riding on a long wave, was derived by ZM: 

a 

(2.3) 
where 

is the total derivative with respect to time, describing the rate of change for an 
observer moving at the group velocity of the short-wave train in the moving 
coordinates ; 

H ,  = H(s ,  01, (2.6) 

and R, is the phase velocity ratio of t,he long wave to the short wave (at the trough 
of the long wave); b, v, k and gl, represent the potential amplitude, intrinsic 
frequency and wavenumber of the short-wave train, and the effective gravitational 
acceleration?, respectively. The variables along the long-wave surface are normalized 
by their respective values at the trough of the long wave, which are denoted by an 
additional subscript ' 0 ' .  For example, CT, is the intrinsic frequency of the short-wave 
train a t  the trough of the long wave before the normalization, and (T is the normalized 
value. The time t is non-dimensionalized by go. The long wavelength is normalized 
so that the long wavenumber K ,  = 1 and consequently the short wavenumber (at the 
trough of the long wave) k, = (eilHii) - O(eil ) .  

If the long wave is weakly nonlinear and the wavelength ratio is very small (as 
defined in (4.1)), equation (2.3) reduces to the same form as the conventional 
Schrodinger equation but with coefficients which vary periodically along the long 
wave : 

where a(l') is the leading-order first harmonic amplitude of the short wavetrain, 

(R +t)  - - €+J (1 + til - :e; -$+J-$+JE1) 

Q1 = - 1+2s1(1+coss)+4e~(coss+cos2s) '  

( 2 . 8 ~ )  

(2.8b) 

E;(1+2E1-E;) 
@ * S C )  - 8k2k: - 8[ 1 + 2e1 ( 1 + cos s) + 4s: (cos s + cos 2s)I2 ' 

[ 1 + 2e1 ( 1 + cos S) + 4 4  ( cos s + cos 2s)I2. ( 2 . 8 d )  

The steady solution of the short wavetrain can be obtained from (2.3). For detailed 
information about the derivation of (2.3) and its steady solution, see ZM and Zhang 

U Q 

Q, = 

(1990). 

Pjote that our effective gravitational acceleration defined in (A 1) is different from that of 
Longuet-Higgins (1987) by a factor H;' due to the coordinates (8. n) .  
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2.2. Governing equation for sideband instability 
We consider a pair of sideband disturbances superposed on the steady solution of a 
short wavetrain and then investigate their resonant growth. We take the solution of 
(2.3) to be 

where IbJ eig is the steady solution and B represents the superposed disturbances of 
infinitesimal initial amplitude. 

Substituting (2.9) into (2.3), and subtracting the steady solution we obtain the 
equation governing the evolution of the disturbances : 

' {rrb[  dt dt 2kk0 as dt dt as 4k2ki as as 

b"=b( l+B)  = lbleis(l+B), (2.9) 

= - I -  1 dbdB u (abdB -- +-- d b B )  +--- rr2 aBab] 
dB dt 

HiR, a g l d B  HiR, ag,i3B 
2ag1 k,  as dt 8kgl ki as as 

----+---+ 

(2.10) 

The right-hand side of (2.10) describes the rate of change of the disturbances with 
respect to time. Neglecting terms of O(ei )B,  (2.10) reduces to 

(2.11) 

The derivation of (2.11) is given in detail by Zhang (1990). Equation (2.11) will be 
used to study the resonant growth of sideband disturbances superposed on the short- 
wave train. 

3. Resonant growth of disturbances 
3.1. Local resonant growth rate and relative phase 

In anticipation of a changing relative phase between the upper- and lower-band 
disturbances, and following Benjamin & Feir (1967), we let 

(3.1) 
where (p,l and (p21 are the amplitudes of the upper and lower sidebands, respectively, 
and may grow d t h  time; P-yl and p+ y 2  are phase angles, dp/dt = 0 and 
( l / k , )  (ap/as) = is the perturbation wavenumber; (yl + yz )  represent the relative 
phase and may vary along the long wave. 

Substituting (3.1) into (2.11) and neglecting terms of O ( ~ i l p l ) ,  we obtain two 
equations with respect to eiB and ePifl. Splitting these equations into real and 
imaginary parts and adding the imaginary parts, we obtain coupled equations 
describing the resonant growth rate and the variation of the relative phase angle 

B = lpll ei(B-71) + lp21 e-'(BfYz), 

( 3 . 2 ~ )  

( 3 . 2 b )  
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For simplicity we assume that the amplitudes of the upper and lower sideband are 
the same initially. Then (3.2a, b )  and (3.3) may be simplified to 

(3.4) 

(3.5) 

Given the perturbation wavenumber r? and the scale parameters E , ,  e2, e3, we may 
solve (3.5) for (yl + y 2 )  by numerical iteration. Because of the coupling between lpll 
and lp21 as shown in ( 3 . 2 ~ )  and (3.2b), lpll and lp21 will eventually equilibrate even if 
initially lpll =k lp21. Cross-multiplying ( 3 . 2 ~ )  and (3.2b) by lpll and Ip21, respectively, 
gives d/dt (Ip,12 - lp2I2) = 0. Hence if (IpJ + Ip21) grows exponentially with time, the 
magnitude of ( lpll - Ip21) decreases exponentially and the disturbance amplitudes 
equilibrate. Hence our assumption that lpll = lpzl does not lack generality. 

3.2. Floquet system and multiple resonant bands 

The coefficients in the coupled ordinary differential equations (3.4) and (3.5) are 
periodic in time and in space. Equations (3.4) and (3.5) thus form a Floquet system 
(Drazin & Reid 1981). It is well known that a Floquet system may have multiple 
resonant regions (Magnus & Winkler 1966; Iooss & Joseph 1980). We found that a 
short-wave train riding on a long wave is unstable to multiple bands of perturbation 
wavenumbers, in contrast to  only a single sideband in the case of an equivalent wave 
train travelling on otherwise calm water. (The sidebands near the higher harmonics 
of the wave train are not to  be confused with the multiple resonant bands described 
here.) We elucidate below the causes of these multiple resonant bands. 

The resonant band (in the neighbourhood of I ? = O )  corresponds to the 
conventional sideband instability, and the relative phase (yl + y 2 )  fluctuates slightly 
around a constant value and is periodic with respect to the long wave. For 
p.erturbation wavenumbers displaying a significant growth rate, solutions of (3.5) 
show that (yl + y 2 )  converges very quickly and depends only on the position a t  the 
long-wave surface, regardless of its initial value. The rapid convergence indicates 
that the phase angle is possibly a steady function of the position on the long wave, 
which is confirmed in the stability analysis of the relative phase presented in 53.4. As 
a result, the growth rate of the disturbances computed from (3.4) is also periodic and 
steady with respect to the long wave. 

With a further increase of I?, (yl + y2) continuously decreases along the long wave 
and hence can no longer be periodic with respect to the long wave. Within certain 
ranges of r?, the decrease of (yl + yz )  may be 2Nx (N a positive integer) after the 
disturbance travels one long wavelength. Hence, the sine and cosine functions of 
(y1+y2)  appearing in (3.4) and (3.5) are periodic and steady with respect to the long 
wave. Consequently, the local resonant growth rate is also periodic and steady. .The 
local resonant growth rate given by (3.4) will change sign 2N times in one long 
wavelength. Without the modulation by the long wave, the resonant growth rate 
simply varies sinusoidally, and hence the net resonant growth of the disturbances is 
zero. With the modulation by the long wave, however, the magnitude of the local 
resonant growth rate becomes larger at the crest and smaller at the trough of the long 
wave. If, for N = 1,  the phase changes along the long-wave surface so that the local 
growth rate is positive near the crest and negative near the trough of the long wave, 
then the net resonant growth of the disturbances may still be significant. Thus a 
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short-wave train riding on a periodic long wave may have multiple regions of 
instability. 

We also expect that more general instabilities may exist. That is, the relative 
phase may decrease 2”7c  after the disturbances travel M long wavelengths, where M 
and iV are integers. The aforementioned 2N7c instabilities can be viewed as a special 
case when iV/M = N .  When N’/M is not an integer, the instabilities are found to be 
insignificant. 

3.3. Global resonant growth - Floquet exponent 
We have shown that the resonant growth rate of a pair of disturbances may change 
along the long-wave surface, in magnitude alone for the conventional sideband 
instability, but in both magnitude and sign for the 2N7c instabilities. Thus a pair of 
disturbances with the maximum resonant growth rate along part of the long-wave 
surface do not necessarily grow fastest nor even have a net growth along the entire 
long-wave surface. To measure their overall resonant growth along the long wave, we 
use the global resonant growth, G, which is defined as the logarithmic resonant 
growth after the disturbances travel one long wavelength (in the moving 
coordinates). This index is known as the Floquet exponent for studying the stability 
of solutions which depend periodically on time (Iooss & Joseph 1980). 

Since the resonant growth rate is steady relative to the long-wave surface and the 
disturbances travel at  the group velocity of the short-wave train, then global 
resonant growth is given by 

3.4. Steady relative phase and global resonant growth 
To show that the relative phase of disturbances displaying a global resonant growth 
must be steady relative to the long-wave surface, we assume that the solution for 
(3.5), 7, is disturbed by a time-dependent perturbation 7: 

Substituting (3.7) into (3.5), we obtain 
(YI+YZ) = 7+7. (3.7) 

[cos’y(cos7- 1) -sinYsiny]. 
d7 Ib) 2k4Ht 
dt fT 
- = e i D -  

If 7 4 1, (3.8) may be approximated by 

(3.9) 

Making use of (3.4) and (3.6), an approximate solution for 7 is 

7(27c) = p(0) e-4nG. (3.10) 
For globally growing disturbances, G > 0 and hence I7(27c)l < IP(0)l. That is, the 
phase perturbation decreases after disturbances travel one long wavelength, and 
hence the solution of ( y I + y 2 )  is steady. Conversely, if the solution of ( y l+yz )  is 
steady, then G > 0 according to (3.10), indicating the disturbances experience 
resonant growth after travelling one long wavelength. To search for resonant regions, 
therefore, we only need to search for disturbances whose relative phases are steady 
relative to the long wave. 
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3.5. Linear resonance condition 

By recalling the phase function of thc disturbance defined in (2.9) and (3.1), the sums 
of the wavenumbers and absolute frcyuencies of thc upper- and lower-sideband 
disturbances are given by 

k,+ k, = 2k- a(Y1 + Y A  (3.11) 
as 

a(YI+Yz)  
W,+fr)/ = 2w+ 

at 
(3.12) 

where w is the absolute frequency defined in (4.6), and the subscripts u and &' 
represent the uppcr- and lower-sideband disturbances. 

The linear resonance condition of the W n  instability is derived by averaging (3.11) 
and (3.12) over one long wavelength. Since ( y 1 + y 2 )  decreases by 2hk while the 
disturbances travel one long Wavelength, (3.11) reduces to 

k,+k,+NK, = 2k. (3.13) 

Noticing the relationship between the absolute frequency and the intrinsic frequency 
(see (4.6)) and with the relative phase between the resonant upper- and lower- 
sideband disturbances being steady, with the help of (3.13), equation (3.12) reduces 
to  

a, + at +NO, = 2a, (3.14) 

where IR, is the long-wave frequency in the fixed coordinates. Equations (3.13) and 
(3.14) describe the linear resonance condition for the 2Nn instability. For N = 0, the 
linear resonance condition displays a quartet resonance, or more generally, the class 
I (m = 1)  instability. For N = 1 , 2 , .  . . ,it indicates a quintet, sextet,. . .resonance. 
These resonances are different from class I and I1 instabilities defined by McLean 
et al. (1981). For example, the 2n instability involves five waves, but it is clearly 
different from the Class I1 (m = 1 )  instability. 

It is well known that resonances involving more waves are usually weaker if the 
steepness of the primary wave is not large (McLean et al. 1981 ; Yuen & Lake 1982). 
This trend is also observed in our analytical and numerical results. That is, the 2x 
instability is weaker than the conventional sideband instability, and the 4x 
instability is weaker than the 27t instability, unless the short- and long-wave 
steepnesses are large. 

Using the same approach, we also derive the linear resonance condition for the 
2(N/M)n instability : 

M(k,+k,)+NK, = 2Mk, (3.15) 

M(a,+a,)+NO, = m a .  (3.16) 

For a non-integer N / M ,  the lowest number of wave modes involved in the 2(N/M)n 
instability is nine (M = 2, N = 1) .  Hence, this type of instability is expected to be 
very weak, consistent with the results in $94 and 5. 

4. Approximate analytical solutions 
In  order to  examine and confirm the numerical stability computations, we also 

derive the corresponding analytical solutions. For simplicity, we consider the 
sideband instability of a weakly nonlinear short,-wave train riding on a much longer 
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weakly nonlinear wave. Accordingly, in this section, the range of the scale 
parameters defined in (2.2) is restricted to 

fZ1 = O(E2), E3 = O(Si). (4.1) 

When the long-wave steepness is small, an approximate analytical solution for the 
long-wave velocity field and elevation is used to solve the modulated nonlinear 
Schrodinger equation for the variation of a steady short-wave train along the long 
wave. The relative variation of the short-wave intrinsic frequency along the long 
wave is found to  be O(e!),  much smaller than O(si) as previously shown by Phillips 
(1981). Hence, we may approximate the short-wave intrinsic frequency as a constant 
along the long-wave surface, resulting in a great simplification in the analytical 
solution. We then use (3.4) and (3.5) to obtain the analytical solution for the 
conventional sideband, 2N7C and 2(N/M)x, instabilities. 

4.1. Approximate solution for undisturbed long wave 

In the coordinates moving with its phase velocity C ,  the long wave is steady. The 
function mapping the (s, n)-coordinates to the (2, y)-coordinates is given ap- 
proximately by 

1 (4.2) 
x = s +el en sins + ei e2n sin 2s + O(E!) ,  

z = n-+i+s,encoss+s;e2ncos2s+O(s!). J 
where s and n are related to the potential @ and stream function Y of the long wave 
through s = -@/lCl, n = - Y//lCl. The scale factor of the orthogonal curvilinear 
coordinates is equal to the ratio of the particle velocity U(s,n) of the long wave to 
its phase velocity C (Zhang 1990): 

~ ( s ,  n) = U ( S ,  n)/C = [I + 2e1 en cos s + 6: e2n + 4s; eZn cos 2sl-t. 

H ,  = [ 1 + 2s1( 1 + cos s) + 46; (cos s + cos 2s)]-:. 

(4.3) 

(4.4) 

Thus the normalized H,(s) is given by 

4.2. Steady solution for modulated short wave 

The linear dispersion relation between the intrinsic frequency and the wavenumber 
is given by 

The absolute frequency of the short wave riding on the long-wave surface is equal to 
the sum of the intrinsic frequency and the Doppler frequency shift due to the 
advection by the long-wave particle velocity : 

c2 = H i g l k .  (4.5) 

w = u+H:Ck.  (4.6) 

The fractional derivatives of g1 and cr along the long-wave surface are 

and 

-- I agl w O(s;) ,  
91 as 

i an i ag, 
N -- - O(S?). 

g a s  2g, as 
_ _  N 

(4.7) 

The derivation of (4.7) and (4.8) is given in Appendix A. We may approximate both 
g, and u by unity along the long wave to the same order of accuracy as the mapping 
function. The small variation of g1 is due to its definition in the orthogonal 

3 FLM 243 
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curvilinear coordinates (A l),  whereas the small modulation of the short-wave 
intrinsic frequency is independent of the coordinates. However, this result may not 
be valid when the water depth is not large compared with the long wavelength. 

According to the linear dispersion relationship (4.5), the normalized wavenumber 
is given by 

k = Hi2 = 1 + 2s1( 1 + cos S) + 4 4  (COS s + cos 2s) + O(S:).  (4.9) 

Splitting the nonlinear Schrodinger equation (2.3) into real and imaginary parts, 
which represent the wave-action conservation and nonlinear dispersion relationship, 
respectively, and solving these two simultaneous equations, we find that the 
normalized (potential) amplitude lbl is given by 

(4.10) Ibl = 1 + O(& El €;). 

According to (2.8a),  the short-wave steepness is given by 

la(")l k = i+2s , ( i+coss )+4s~(coss+cos2s )+o( s~ , s~~~) .  (4.11) 

These approximate solutions are consistent with the numerical results of ZM. 

4.3. Instabilities 

Making use of (2 .8a) ,  (4.5) and (4.8) and neglecting the higher-order terms, we 
simplify (3.4) and (3.5) to 

(4.12) 

(4.13) 

In solving (4.13), the following equations and approximations are used. 
(a) For a pair of resonant disturbances the relative phase (y1+y2) is represented 

m 
by 

(71 + y2 ) = yo + ( N / W  s + E [Cn sin ( n / M )  s + dn cos (n/M) 81 9 (4.14) 

where yo is a constant ; n, N and M are integers ; cn and dn are Fourier coefficients and 
assumed to be small. When N = 0 ,  the relative phase fluctuates around yo and is 
periodic with respect to the long wave, corresponding to the conventional sideband 
instability. With N 9 0 and M = 1, the decrease in the phase is 2Nn after the 
disturbances travel one long wavelength, corresponding to the W n  instability. When 
N =I= 0 ,  M =I= 1 and N/M is a non-integer number, the decrease in the phase is 2Nn after 
the disturbances travel M long wavelengths, corresponding to a 2(N/M)x instability. 

(b) It is shown in $3.4 that the relative phase, (yl+yz), of a pair of resonant 
disturbances is steady relative to the long wave. Thus, 

n-1 

(4.15) 

( c )  Based on phase conservation, the ratio of the perturbation wavenumber to the 

(4.16) 

short wavenumber may be approximated by 

R / 2 k  = c2 Q (1 + O(E: &), 

where q is a constant along the long-wave surface. 
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We first solve (4.13) for ( y l + y 2 ) ,  and then obtain the resonant growth rate along 
the long wave through (4.12). Finally, the global resonant growth is computed 
through (3.6). To show the influence of the modulation on the stability of the short- 
wave train, we compare the instabilities of the short-wave train riding on the long 
wave with the Benjamin-Feir instability of an equivalent wave train advancing on 
otherwise calm water. Following Longuet-Higgins (1987), the equivalent wave train 
is defined to have the same wavelength and steepness as the short-wave train at the 
intersection of the long-wave surface and the calm water level. Therefore, the 
analytical solutions of the resonant growth rate, global resonant growth and 
perturbation wavenumber of the disturbances (to a short-wave train riding on a long 
wave) are expressed in terms of ratios to those of the equivalent wave. The details 
of ratios are described in Appendix B. 

4.3.1. Conventional sideband instability 
( a )  The relative phase along the long wave: 

(yl + y 2 )  = yo - 4s1si T-'( 1 + 2a1) q2 sin s + 4s' e: T2( 1 + Ssl) q2 sin yo cos s 

where 
- 7s; ci T 1 q 2  sin 2s+ 9.56; IS: T 2 q 2  sin yo cos 2s + O(E;,  el s! T3),  (4.17) 

1 + 2 4  - 1 - 6s' - 18s; + 12e; st T 2 q 2  sin2 yo 
1 + 66' + 186; - 4 4  6: T 2 q 4  

yo = arccos 

and 

(4.19) 

( b )  The global resonant growth: 

G = (1 + 8 4  - 4 4  e: T 2 q 4 )  sin yo + 6s: E: T 2 q 2  sin 27,. (4.20) 

(c) The bandwidth of resonant perturbation wavenumber : 

lqbl < 2/2( 1 + 48; - 44 E: Y2). (4.21) 

( d )  The perturbation wavenumber for the maximum global growth : 

qmax = 1 + 4 4  - 6 4  E: F2. (4.22) 

( e )  For q = qmax, the maximum global growth G,, is given by 

G,,, = 1 + 8 € ; - 4 ~ : ~ : T - ~ ,  (4.23) 

and the corresponding resonant growth rate along the long wave is given by 

4.3.2. 2hh instability 

solution for N = 1 in detail. 
The strongest 2Nr instability occurs when N = 1. For simplicity, we only give the 

( a )  The relative phase along the long wave: 

(yl + y 2 )  = yo + s+ [2e, -ei T ' ( 1  + 6s') cosy0-4e1 ei T-'1 sins 

- ei T-'( 1 + 6s') sin yo cos s + [24  - 2s1 ei T' cos yo 
+ 0.256; T 2  cos 2y,] sin 2s - [2s1 si T-' sin yo 

- 0.254 F2 sin 2y,] cos 2s + O(s;, s! T3),  (4.25) 

3-2  
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1. (4.26) 
1 + 2 ~ ~ )  - €2' T - 1 - 6s1 - 18s: - 0.54 T1( 1 + 128,) 

2e1( 1 + 6s, + ei F1) 
yo = arccos 

( b )  The global growth: 

G = 2 s 1 ( l + ~ ~ T - 1 ) s i n y 0 + O ( s ~ , ~ ~ T - 3 ) .  (4.27) 

( c )  The bandwidth of resonant perturbation wavenumber : 

[&ax- 2€1( 1 + f$ Fl)]' 6 qb < [&ax + 2€1( 1 + ci p')]', (4.28) 

where qmax is given by (4.29). 
( d )  The perturbation wavenumber related to the maximum global growth : 

ei2 T 
= [ 1 + 6e1 + 10~: + 1 + 86: + 0.54 T1( 1 + 6c1)r (4.29) 

( e )  When q = qmax, the maximum global growth G is given by 

G,, = 2c1( 1 + 6; T-'), (4.30) 

and the corresponding growth rate along the long wave is given by 

+ 0 . 5 ~ ~  E;  T' sin s + c1(3 - 24 T') cos 2s 

+ 0.54 F1( 1 + 6c1) sin 2s + (8.56: -0.25~4, T-') cos 3s 

+ 2 . 5 ~ ~  ei T - l  sin 3s. (4.31) 

For large N(N 2 2), only the order of magnitude of G,,,, qmax, and qb are given here: 

Gmax = O($'), (4.32) 

qmax = O(Nei2 T);, (4.33) 

[!&ax - O('$)lf qb [&ax + O(s?)lt. (4.34) 

4.3.3. 2(N/M)n Instability 
A comprehensive search for 2(N/M)n instabilities is laborious and has not been 

pursued. We have only considered the approximate solutions for the cases : (a) N = 1, 
M = 2, ( b )  N = 1,  M = 3 and (c) N = 2, M =  3. Within the accuracy of our 
approximate solutions a t  order O(e: ci F), no global resonant growth is found for all 
three cases, indicating that the 2(N/M)n instability of these cases is insignificant 
compared with 2Nn instability. 

5. Numerical solutions of the stability problem 
5.1. Comparison between analytical and numerical results 

It is of practical interest to study the characteristics of disturbances displaying a 
large global resonant growth along the long wave. Hence, the comparison is focused 
on those disturbances having a maximum global resonant growth (i.e. when 
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FIGURE 2. The resonant growth rate (l / lpl)  (d(pl/dt) IsB is shown as a function s. Symbols are the 

same aa figure 1.  

q = a,,,). The numerical results are also normalized by the corresponding results 
in the absence of the long wave. The details of the normalization are described in 
Appendix B. 

For the conventional sideband instability the analytical solutions for the relative 
phase (4.17), and resonant growth rate (4.24), of disturbances when q = qmax are 
compared with the related numerical results in figures 1 and 2, respectively. It is 
observed that the related analytical and numerical results are almost identical when 
the scale parameters e l ,  e2, and e3 are small. As these parameters increase, the 
discrepancy between numerical and analytical results gradually increases. Both the 
analytical solution (4.20) and the related numerical results of G as a function of q are 
shown in figure 3. The agreement between the analytical and numerical results is also 
satisfactory when E , ,  e2 and e3 are small. 
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4 

FIGURE 3. The global resonant growth of disturbance G,, is shown as a function of the perturbation 
wavenumber q for: el = 0.01, e2 = 0.03, and E~ = 0.001 (-, analytical ; +, numerical); el = 0.1, 
e2 = 0.1 and es = 0.01 (---, analytical ; 0,  numerical); and el = 0.2, c2 = 0.1 and e3 = 0.01 
(--, analytical ; 

9 
& + 
$ v 

x , numerical). 

2 

0 
s/2x 

FIGURE 4. (rl +y2)2n of 271 disturbances displaying a maximum global resonant growth is shown as 
a function of s for: E ,  = 0.05, e2 = 0.03 and es = 0.0005 (-, analytical; A, numerical); and 
el = 0.10, e2 = 0.10 and e3 = 0.01 (---, analytical; x ,  numerical). 

For the 27t instability, the approximate solutions for ( y l + y z )  of (4.25), 
(l/(pl) (d(pl/dt) of (4.31) when q = qmax, and G of (4.27) are compared with the related 
numerical results in figures 4-6. When el, e2 and e3 are small, the two related results 
match consistently. With the increases of el, eZ, and e3, the discrepancy between them 
gradually increases. 

Owing to the approximations made in the study it is expected that the 
approximate analytical solutions are valid for small parameters el, eZ and e3. This is 
confirmed by the excellent agreement between the analytical and numerical results. 

A numerical search for 2(N/M)x instabilities was conducted for the cases studied 
analytically in $4.3.3. Insignificant instabilities were found in all cases. The 
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FIQURE 6. G,, is shown as a function of q for: el = 0.05, E ,  = 0.03 and e3 = 0.0005 (-, analytical ; 
A, numerical) ; and el = 0.05, E, = 0.05 and eg = 0.01 (---, analytical ; x , numerical). 

magnitudes of qb and G,, for e3 = 0.01 are O( lo-’) when 
when el = E, = 0.2. In  both cases qb and G,,, are much less than O(e: E: T2), and 
thus are consistent with the approximate results. These magnitudes are comparable 
to the numerical errors tolerated in the computation, and cannot definitely be 
considered as instability. 

5.2. Numerical results 
To investigate the influence of the scale parameters el, e2 and E~ on the conventional 
sideband and 2Nn instabilities, we show their global resonant growth G as functions 
of q and e, in figures 7(a) -7(c)  for a fixed c3 = 0.01, and el = 0.10, 0.20 and 0.30, 
respectively. They are also shown as functions of q and E;: in figure 8 for el = 0.10 and 
e2 = 0.10. Since the instabilities are symmetric with respect to q = 0 and q is limited 
to O(1) for the validity of the perturbation method, we only plot instabilities for 
O G q G 6 .  

= E, = 0.1, and O( 
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FIGURE 7. The global resonant growth G and bandwidth qb are shown as functions of q and e2 
for e3 = 0.01, and (a) el = 0.10; ( b )  el = 0.20; ( c )  6 ,  = 0.30. 

A 

2.0 

1.5 

G 1.0 

0.5 

0 1.5 310 415 

i” 4.47 €if 

A 2.24 
6.0 

4 
FIGURE 8. G and qb are shown as functions of q and E;; for E, = e2 = 0.1. 

The conventional sideband instability region is in the neighbourhood of q = 0. The 
271 and 471 instability regions are located a t  large q. When el and e2 are small and e3 
is relatively large (e3 = 0.01), the conventional sideband instability is dominant, 
with a large resonant bandwidth, qb, of approximately d2, and G,,, slightly larger 
than one. Both are much greater than the corresponding parameters of the 2hk 
instabilities. Of the 2Nn instabilities, the 2n: instability is the strongest, with G,,, 
and qb of O(el). The resonant regions are separated by wide stable regions. 

For large el values, qb and G,,, for the conventional sideband instability increase 
slightly, while those for the 2Nn instabilities increase rapidly and their resonant 
regions shift slightly towards q = 0. When el = 0.20 and 0.30 (figures 7 b ,  c ) ,  qb and 
G,, of the 271 and 471 instabilities are comparable to those of the conventional 
sideband instability. 

As tz2 increases (as shown in figure 7a-c) and/or e3 decreases (as shown in figure 8), 
or Qb and G,,, of the conventional sideband instability both decrease. The decrease 
is too slow to be observed clearly in figures 7 and 8. To display this trend, in 
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FIGURE 9. The normalized global sideband resonant growth G,, is shown as a function of q for 
1. 

The corresponding result (-) for an equivalent wave train travelling on otherwise calm water is 
also given for comparison. 

B, = 0.20, e3 = 0.01 and e2 = 0.05 (-- ), 0.1 (---), 0.2 (--- ) and 0.3 

figure 9 we show G for the sideband instability as a function of q for fixed el = 0.20, 
eg = 0.01 and e2 increasing in the range 0.05-0.30. The slight decrease of G,,, and qb 
for the conventional sideband instability with respect to e2 is consistent with the 
analytical result in $4.3.1. It should be noted that a similar phenomenon has been 
observed, with the resonant bandwidth of the normalized perturbation wavenumber 
and the growth rate decreasing with the increase of the wave steepness, in the study 
of the stability of a wave train on otherwise calm water (Yuen & Lake, 1982), but the 
causes of the seemingly similar phenomena are quite different. In the absence of the 
long wave, the decreases in normalized resonant growth rate and the bandwidth of 
the normalized perturbation wavenumber are due to the contribution from the 
higher-order terms, whereas in our study, the related higher-order terms are 
truncated and the decreases result from the modulation by the long wave. 

With the increase of e2 or decrease of eg, the resonant bandwidth qb and the 
maximum global growth G,,, of the 2Nn instabilities notably increase. Their 
resonant regions move towards the conventional sideband resonant region. 

These changes of G and qb of the sideband and 2Nx instabilities with respect to el, 
e2 and e3 are qualitatively consistent with the approximate solutions presented in 
$$4.3.1 and 4.3.2. For relatively large el and e2 (0.2 - 0.3), or very small c J ~ O - ~ ) ,  the 
three resonant regions are so close that they seem to merge. Detailed numerical 
evidence reveals that there always exists a stable region between two adjacent 
resonant regions in the range of our numerical computation. This is accompanied by 
a decrease in the bandwidths of the 2x and 4x instabilities, with their bandwidths 
being smaller a t  e2 = 0.3 than those at  e2 = 0.20 when el is relatively large (0.24.3). 
This behaviour of qb for the 2Nx instabilities is not predicted by the approximate 
solutions of $4.3.2. 

The 2Nn instabilities for N 2 3 are not plotted in figures 7 and 8, because their 
occurrence at  large q may lead to x 1.0 which violates the assumptions of the 
perturbation approach. 
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FIQIJRE 10. The total growth rate of disturbances is shown as a function of s for el = 0.20, and (a) 
e2 = 0.10, e3 = 0.01; ( b )  e2 = 0.20, = 0.01; (c) c2 = 0.01, e3 = 0.0004. For reference, the 
corresponding resonant growth rates are also given ; sideband disturbances : -, total growth 
rate; --, resonant growth rate. 2x instability disturbances : ---, total growth rate ; 
_ _ _  , resonant growth rate. 

6. Effect of modulation on the growth rate of disturbances 
In addition to their resonant growth, the sideband disturbances travelling with the 

short-wave train along the long wave are also modulated by the long wave. 
Therefore, we should consider the effect of modulation on the rate of change of the 
disturbance amplitude. 

According to (2.8a), (2.1) and (2.9), the amplitude of disturbances measured in the 
(2, 2)-plane is given by 

Using the assumption that the amplitude profile of the short-wave train is steady 
relative to the long-wave surface, the change of the disturbance amplitude may be 
explicitly expressed as a function of the position on the long wave, 

The first term on the right-hand side of (6.2) accounts for the resonant growth rate, 
and the second term represents the modulation rate. 

The total growth rate of disturbances displaying a maximum global resonant 
growth in the conventional sideband or 2n resonant regions is shown as a function of 
the position on the long wave in figure 10. For comparison, the corresponding 
resonant growth rate is also plotted. The difference between the total growth rate 
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and the resonant growth rate is hence the modulation rate. In order to show how fast 
the disturbances vary along the long wave, the total growth rate and the resonant 
growth rate have not been normalized by the maximum resonant growth rate of an 
equivalent wave train. They are only normalized by u,, as implied in the 
normalization of time. The influence of the scale parameters el, e, and E, on the total 
growth rate of the disturbances are explored in these figures. In figures 10(a) and 
l O ( b ) ,  el and e3 are fixed. For smaller e2 (=  O . l ) ,  the total growth rates of the 
sideband disturbances, ( l / lapl)  (dla,l/dt) ISB and the 271 instability disturbance, 
(l / lupl) (dla,l/dt) 1 2 n  are negative along most of the rear face of the long wave. For 
larger e2 (=  0.20), both are close to their corresponding resonant growth rates, being 
slightly greater (smaller) on the forward (rear) face of the long wave. That is, when 
e, is smaller than el, the modulation rate plays an important role in the total growth 
rate. With the increase of e2, its role in the total diminishes. 

In figures lO(a) and lO(c), el and e2 are fixed. For a relatively large e3 (=  0.01, 
figure lOa), the effect of the modulation on the total growth of disturbances is 
significant. With a small e3 (=  0.0004, figure lOc) ,  the modulation becomes 
unimportant. This is because when the wavelength ratio decreases, the modulation 
rate decreases approximately in proportion to the square root of the wavelength 
ratio, while the resonant growth rate is virtually unchanged. 

Consideration of the total growth rate of the disturbance amplitude implies that 
short waves are more unstable on the forward face of the long wave. This may 
contribute to short-wave breaking on the forward face of the long wave. 

7. Implications for wave energy transfer 
We have studied the instability of a short-wave train riding on a periodic long 

wave. Some of the assumptions (e.g. irrotational flow, free-surface boundary 
conditions) may have limited validity for real ocean waves. However, the 2Nn 
instability may have important implications for nonlinear energy transfer in short 
wind waves. 

With the 2Nx instability, the resonant bandwidth of the perturbation wavenumber 
is wider (though not continuous) than that for a short wave riding on calm water. 
The quartet resonance in a broadband wave train is known to be related to the 
sideband resonance (Longuet-Higgins 1976, hereinafter referred to as LH ; Janssen 
1983). In the light of the 2Nn sideband instability, corresponding new types of 
resonances are expected to exist in a broadband short-wave train riding on a long 
wave. Following the analogy between the sideband instability and quartet resonance, 
we discuss below the resonance condition and the wave-action transfer rate of these 
new resonances. 

By comparison with the 271 instability, the corresponding conditions for the 
resonant quintet interaction in a broadband short-wave train modulated by a long 
wave are expected to be 

k, -t k, +Kd = k, + k,, (7.1) 

a 1 + ~ 4 + Q d  = V , + V ~ ,  (7.2) 

where Kd < lkll < lk,l < lk,l < lk41 and long-wave propagation in the positive x- 
direction are assumed. Following LH, we examine whether or not (7.1) and (7.2) are 
the linear resonance condition for this new quintet resonance and determine the 
leading order of the wave-action transfer rate. Instead of using coordinates 
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translating with the wave train, we obtain the wave-action transfer rate in fixed 
coordinates, 

S(k,+k,-kl-k4-K,)}, (7.3) 

where C,(l = 1 4 )  is the action of wave 1. With the exception of an additional long 
wavenumber Kd in the delta function and consequently an extra term, -iKd x, in the 
phase function, equation (7.3) resembles equation (4.8) of LH. If the long wavelength 
is much larger than those of short waves, a t  the leading order the modulated wave 
actions can be approximated by 

where the overbar denotes the time or space average. Substituting (7.4) into (7.3), the 
change rate of the averaged wave action with respect to  time due to the quintet 
resonance is given by 

c, = c,[1+2s,cos(Kdx-a,t)], (7.4) 

!!El= 3E1K C [(c4+c1)c,c3-(c,+c3)c,c4] 
2,3 .4  dt 

q ( T z  + rT3 -rl - cr4 -a,) S(k, +k , -k l  -k, -K,). (7.5) 
The delta functions in (7.5) confirm the resonance conditions suggested by (7.1) and 
(7.2). The leading order of the wave-action transfer rate of the quintet resonance is 
3e1 times as large as that of the conventional quartet resonance given by LH. Hence, 
the former may be comparable to the latter if the long wave is significant, say 

The 2Nn instability of a narrowband short-wave train riding on a long wave 
indicates a new type of resonant energy transfer mechanism in a broadband short- 
wave train riding on a long wave. A more complete study of this new resonance and 
its implications for wind-wave, wave-wave interactions in the ocean will be carried 
out in the future. 

8, = 0.1-0.2. 
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Appendix A. The Derivation of (4.7) and (4.8) 
The effective gravitational acceleration g1 is defined in ZM as 

91 = - g cos 0 +C2HoE1 , 
HO an n-0 

where 0 is the local slope of the long-wave surface and is given by 

0 = tan-l ( v s / x s ) .  (A 2) 
Using (A 2) and recalling that K ,  is normalized to unity and C2 x g( 1 +et) /Kd,  

(A 1)  is simplified to  

(A 3) 
n-0 n-0 
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where H is given by (4.3). For ease of computation, it is not normalized with respect 
to  H,,  here. The derivative of g1 with respect to  s is given by 

where, using (4.2), (4.3) and (4.4), 

x,, In-, = - E~ sin s - 4~; sin 2s + O(E!) ,  

= - H:&; sin 2s + O(E: ) .  2 E  In-,  
Substituting (A 5)-(A 7) into (A 4), and recalling that g1 = g[l + O ( E ~ ) ] ,  we obtain 
equation (4.7) : 

According to the linear dispersion relation (4.5), we have 

-----+--+--' 2817 2 aH, l a k  l a g  - 
H ,  as ka5  g1 as. 

According to the phase conservation and (4.6), we have 

Substituting (A 9) into (A 8) it is found that 

Since R;' - O(e$),  we find equation (4.8): 

Appendix B. Benjamin-Feir instability of equivalent waves 

the long-wave surface and calm water level is given approximately by 
The wavenumber and steepness of a modulated short wave at the intersection of 

k = a(")k = 1+2s1--s~. (B 1) 

The Benjamin-Feir instability of the equivalent wave on calm water can be 
straightforwardly determined. The maximum resonant growth is given by 
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After the time required for the short wave to travel one long wavelength in the 
moving coordinates, the resonant growth is equal to 

(B 4) G = !&!Z'-'(l +6el+ 108;). 

The approximations for resonant growth rate, global resonant growth and 
perturbation wavenumber given in $4 are normalized by (B 2)-(B 4), respectively. 

In  accordance with the approximate solution, the numerical results depicted in $5 
are also expressed in terms of ratio to (l/lpl) (dlplldt), G and qmax, respectively, except 
that the wavenumber and steepness of the equivalent wave and the time for a short 
wave to travel one long wavelength are obtained numerically. 
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