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Flow past a constriction in a channel: 
a modal description 
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We consider the waves generated by transcritical flow past a constriction in a 
channel, or by ships or surface pressure distributions travelling at transcritical 
speeds. The two-dimensionality of the upstream advancing nonlinear waves, which 
has been observed both experimentally and numerically by several authors, is 
described by a modal decomposition of the flow response. We show that the lowest 
transverse mode may evolve nonlinearly, leading to a two-dimensional response 
upstream, with the higher transverse modes swept downstream. This description is 
supported by comparing the initial evolution of the solutions to the corresponding 
linear and nonlinear problems. Averaging across the channel demonstrates that the 
three-dimensional problem may be related to the corresponding two-dimensional 
problem with an additional effective forcing coming from the nonlinear coupling of 
the higher modes to the lowest two-dimensional mode. This coupling leads to a 
dependence of the upstream solutions on the channel width as well as the Froude 
number. Solutions are also obtained for two-layer fluids in which cubic nonlinearity 
is also important. The inclusion of cubic nonlinearity permits the generation of two- 
dimensional fronts upstream, and demonstrates that the transition from three- to 
two-dimensional solutions upstream is not specific to Boussinesq solitary waves. 

1. Introduction 
The generation of long nonlinear waves in a channel by flow over and past 

topography, and by travelling disturbances such as ships or surface pressure 
perturbations, has aroused considerable interest in recent years. Of particular 
interest has been the wave field generated when a characteristic Froude number is 
near unity. Linear theory predicts unbounded growth of the disturbance when the 
Froude number is exactly unity. The introduction of the effects of nonlinearity and 
dispersion restores the boundedness of the disturbance and may lead to the 
generation of nonlinear waves upstream. Experimental results by Huang et al. (1982) 
and Ertekin, Webster & Wehausen (1984) were among the first to show trains of 
solitary waves propagating upstream of ships moving a t  transcritical speeds in a 
channel. Ertekin (1984) also reports on waves upstream for subcritical Froude 
numbers. However, as described below, the generation mechanism for this case is 
different from that for the transcritical Froude numbers, which is the main focus of 
this paper. 

A number of authors, among them Wu & Wu (1982), Akylas (1984) and Mei (1986), 
have solved the two-dimensional problem numerically. Their results are consistent 
with the experimental findings, showing solitons being radiated upstream of the 
forcing. The generation of the upstream nonlinear waves in the transcritical range 
can be understood in the following way. When the speed of the forcing is close to 
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critical (i.e. close t o  the phase speed of the linear waves), the fluid is being forced near 
resonance and energy is continuously transferred from the moving disturbance to the 
fluid. I n  addition, owing to the weak dispersive effects, the group velocity of the 
linear waves is also close to the velocity of the forcing, thus energy cannot radiate 
away, resulting in a growth of the leading disturbance in the linear problem. 
However, as the amplitude becomes finite, nonlinear effects become important and 
nonlinear waves are generated. Grimshaw & Smyth (1986) and later Smyth (1987), 
considering a forced Korteweg-de Vries (KdV) equation, were able to predict 
analytically the main characteristics of the upstream solution based on the size of the 
topographic forcing and the Froude number. Their predictions of the amplitude and 
period of generation of the upstream advancing solitons, together with the Froude- 
number range in which these resonance effects occur, compared well with numerical 
solutions. 

In  an experimental and numerical study, Melville & Helfrich (1987) considered the 
two-dimensional problem of a transcritical flow over bottom topography in a two- 
layer fluid. They too observed upstream advancing solitons for cases where the KdV 
equation applies ; their results agreeing moderately well with the analytical 
predictions of Grimshaw & Smyth (1986) and Smyth (1987). However, in a certain 
parametric range of the two-layer problem, cubic nonlinearity is comparable to 
quadratic nonlinearity and cannot be neglected. The appropriate evolution equation 
is then the extended KdV (EKdV) equation. Melville & Helfrich (1987) found that 
this changes the character of the upstream disturbance, giving an upstream 
advancing non-dissipative bore, rather than a train of Boussinesq solitary waves. 

A striking feature of many of the experimental results is the two-dimensionality 
of the upstream waves, which are straight crested and uniform across the channel, 
even though the forcing is three-dimensional. Several authors have considered the 
three-dimensional problem, both analytically and numerically. Mei (1986) showed 
that for channel widths W ,  satisfying kW = O ( p : ) ,  where k-l is the lengthscale in the 
longitudinal direction, /3 = (kh)2 Q 1 is the dispersion parameter, and h is the water 
depth, the problem can be treated as essentially two-dimensional. The truly three- 
dimensional problem (i.e. kW = O ( p $ )  has been considered by several authors, 
including Ertekin, Webster & Wehausen (1986) and Katsis & Akylas (1987). Their 
numerical solutions show two-dimensional solitons being radiated upstream of the 
three-dimensional forcing for transcritical Froude numbers. Katsis & Akylas related 
the two-dimensionality of the upstream waves to the stability of the two-dimensional 
solitary wave solution. Most recently, Pedersen (1988) has solved the three- 
dimensional problem using Boussinesq-type equations forced by either a travelling 
pressure distribution or a time-dependent bottom topography. His numerical results 
show relatively good agreement with the experimental results of Ertekin et al. (1984), 
with the amplitude of the upstream advancing solitons determined by the blockage 
coefficient, which measures the strength of the forcing (see also Macomb 1986) and 
the Froude number. However, in contrast to the experimental results and the 
analytical predictions of Grimshaw & Smyth (1986), Smyth (1987) and Wu (1987) for 
the two-dimensional case, he concludes that neither the period of soliton generation 
nor the Froude-number range in which upstream influence occurs, is ‘particularly 
related ’ to the blockage coefficient. Instead he postulates that a Mach-reflection 
mechanism at  the sidewall of the channel is responsible for the generation of the two- 
dimensional upstream solitons from the three-dimensional disturbance, with the 
characteristics of the Mach reflection determining the maximum Froude number a t  
which upstream influence is possible. 
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at the critical speed, F = 1 .  Here w is scaled by co/h, k is scaled by h. 

In the present work we describe the two-dimensionality of the upstream 
disturbances using the dynamics of the transverse modes of the channel, rather than 
the properties of nonlinear reflection. In figure 1 we show the dispersion relationship 
of the linear transverse modes of the channel (defined in §2), together with the locus 
of a disturbance travelling at a transcritical speed. Here we have chosen kW = O @ ) ,  
so that transverse effects are important, which is manifested by the fact that the 
forcing curve lies close to and even intersects the curves of the higher transverse 
modes (n = 1,2,  . . .), within the wavenumber range of interest. 

We immediately see that for the lowest transverse mode (n = 0) at small 
wavenumbers, both the phase and group velocities of the waves are close to the 
velocity of the forcing, resulting in the energy accumulating and nonlinear effects 
becoming important, as described above for the two-dimensional case. However, this 
does not apply to the higher transverse modes (n  = 1 , 2 , .  . .). At small wavenumbers 
their group velocity is considerably less than that of the lowest mode and less than 
the speed of the forcing. A t  those wavenumbers where their phase velocity matches 
the velocity of the forcing (resulting in a resonance), their group velocity is again 
considerably less than the velocity of the forcing. Thus their energy is swept 
downstream with the flow, rather than accumulating as is the case for the lowest 
mode. This essentially explains the two-dimensionality of the leading disturbance : 
the lowest transverse mode is the only one that independently evolves nonlinearly 
and generates upstream propagating waves. In $4 we support this argument by 
comparing linear solutions of the problem to corresponding nonlinear ones, for both 
subcritical and transcritical Froude numbers. In the subcritical case, linear transients 
propagate upstream of the forcing region and then evolve nonlinearly; in contrast, 
the upstream influence in the transcritical case is due to nonlinear and resonant 
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effects, as described above. In $5 we give numerical results for the three-dimensional 
nonlinear problem at larger times and explain why the properties of the upstream 
waves are slightly different from those of the corresponding two-dimensional case 
(see Appendix B for a definition of the corresponding two-dimensional problem) ; 
showing that the properties of the upstream waves depend both on the blockage 
coefficient and the width of the three-dimensional channel, as well as the Froude 
number. 

We also extend the work of Melville & Helfrich (1987) for the two-layer internal 
wave problem to a three-dimensional channel. In certain parametric regions, where 
cubic nonlinearity cannot be neglected, the upstream disturbance is a monotonic 
bore, rather than a train of Boussinesq solitary waves. In  $6 we show that the 
solutions for the two-layer case including the cubic nonlinearity differ little from 
those given in $4 for the linear problem and those given in $ 5  for the quadratic 
nonlinear problem up to times at  which the leading disturbance has reflected from 
the far wall and nonlinear effects become important ; again confirming the usefulness 
of the modal description of the problem. Numerical solutions for larger times are 
given and compared to results of the corresponding two-dimensional problem. 

2. Evolution equations 
The evolution equations for long, weakly nonlinear three-dimensional waves in a 

channel are derived following the procedure outlined by Melville & Helfrich (1987) 
and Helfrich & Melville (1990) (see also Grimshaw & Melville 1989). We consider a 
sidewall perturbation moving with a constant speed through a two-layer, inviscid 
and incompressible stationary fluid bounded by a rigid lid above. This is equivalent 
to the problem of a steady uniform flow past a fixed constriction. The coupled 
evolution equations for waves moving to the right are 

(2.1 a )  

K+v*  = 0. (2.lb) 

Here 71 is the displacement of the interface from its equilibrium position and V is the 
transverse flux in the upper layer. The three small parameters are 

representing weak nonlinearity, weak dispersion and weak transverse effects, 
respectively. All variables have been made dimensionless through the transformation 

x* = k-'x, y* = 1-ly, t* = (kc,)-lt,  

1 
k 

r* = ay, V*  = ac , -V,  d: = hod*,  

where * refers to the dimensional variables. Here a is a typical ampli!,uiie oi' thc: 
interface disturbance, k-' and 1-1 are typical lengthscales in the along-channel 
and across-channel directions, d,  are the upper- and lower-layer depths, 
h, = d,* df/(df + d ! )  is an equivalent single-layer depth, d, = (all+ ( -  l)n-ld:} 
and ci = (Ap /p )  gh,. 
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The sidewall boundary condition is 

F d  B dY 
aT d5 aT d5 

V = - - - ( Y - - Y ) = - F - -  a t y = O ,  + ( 2 . 4 ~ )  

V = O  a t y = W ,  (2.4b) 

where F is the Froude number, F = U/co,  U is the speed of the constriction, BY = 
Y- - Y+, where B is the dimensionless maximum amplitude of Y- - Y+, with B = O(aP) 
and Y = O( l),  y = Y* (6) defines the sidewall boundary in the upper and lower layers, 
5 = x-Ft and W is the width of the channel. For simplicity we assume the 
constriction to have piecewise vertical walls in the two layers. With this assumption 
the internal mode considered here is excited by the difference between the width of 
the constriction in each layer, the depth-averaged width excites the surface mode, 
which is neglected here by the assumption of a rigid lid (Melville & Macomb 1987). 
In all the solutions presented here we used 

Y = sech2[i] (2.5) 

The linearized version of (2.1 a, b ) ,  transformed into a problem with homogeneous 
boundary conditions, can be decomposed into a set of transverse modes defined by 

with the linear dispersion relationship given by 

02(1 +$Pd, k 2 ) - w k - i T  - = 0, (“w“)’ 
where we have taken Q, ,  V, - ei(k2-wt). The transverse modal functions form a 
complete and orthogonal set and will be used to describe both linear and nonlinear 
solutions of the problem. 

If d-, = O( l),  the cubic nonlinear term can be neglected compared to the quadratic 
one, with the balance in the equations given by /3 = O ( r )  = O(a).  This is equivalent 
to the single-layer case provided that the blockage coefficient for the two-layer case 

B is defined to be 
S = - d  w -29 (2.8) 

as is shown in Appendix A. These equations are a two-dimensional extension of the 
KdV equation and admit the well-known solitary wave solutions (independent of y) 

7 = A sech2 [A-’(x-ct)], ( 2 . 9 ~ )  

where A is an arbitrary amplitude, the lengthscale and speed are 

(2.9b) 

and c = l++aad-,A. ( 2 . 9 ~ )  
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If on the other hand we have d-,  = O(a) Q 1,  the cubic nonlinear term cannot be 
neglected and the balance in the equations is /3 = O ( r )  = O(a2) .  The equations are 
then a two-dimensional extension of the EKdV. These equations admit a family of 
solitary wave solutions similar to  the ones given above. However, of more interest 
here is another solution found by Kakutani & Yamasaki (1978) and Miles (1979) 

'1 = A31 + tanh [A-'(z-ct)]}, ( 2 . 1 0 ~ )  

where A is now a predetermined amplitude 

(2.10b) 
d A = & -  - 0(1), 

2ad-, 

with the lengthscale and speed given by 

n = [--I 16 /3d, d- ,  - - 0(1 ) ,  
3 d2, 

(2.10 c) 

(2 .104  
1 d l  
8 d-,  

and c =  1 + - 1 =  1+O(a2) ,  

respectively. 

assuming that 
The coupled evolution equations (2 . la ,  b )  may be reduced to a single equation by 

v, = - V,+O(P) (2.11) 

in (2.1 b)  to give -v2+T/Iy = 0. (2.12) 

Cross differentiating (2 . la)  and (2.12) and adding gives 

[r l t  + '12 + M d - 2  '1 - 2ad-3 r21 '1z - Wl '1zztlz + ir'1l/y = 0, (2.13) 

which is the extended K P  equation and reduces to the KP equation used by Katsis 
& Akylas (1987) by neglecting the cubic nonlinear term (Grimshaw & Melville 1989). 

3. Numerical scheme 
For convenience in presenting the numerical scheme and the numerical solutions, 

we renormalize the equations so that all coefficients except that in the cubic 
nonlinear term become unity. The required scaling is 

z = ($d,)&/, y = (&/31'dl)$', t = ($d,):t',) 

where the primed variables denote our new non-dimensional variables. Then the 
initial boundary-value problem becomes 

3t +3z + ('1 -n2) '1% -7szt + v, = 03 ( 3 . 2 ~ )  

V+ry = 0, (3.2 b)  

V ( X ,  0 , t )  = -:FBd-, 5, V(Z, W ,  t )  = 0 ( t  > 0), ( 3 . 2 ~ )  

(3.2d) '1(z, y,O) = V(Z,  y,O) = 0, 

where y = $(d-,/d?2), and we have dropped the primes for convenience. 
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Winther (1983) developed a numerical scheme for these equations without the 
cubic nonlinear term (i.e. with y = 0). The scheme is locally second-order accurate in 
both space and time, giving the difference equations 

1 1 
- [ V?;' - Vt,] +- [7;;1- 7t;Il] = 0, (3.3b) 
At AY 

and 

where 

The boundary and initial conditions are 

( 3 . 4 ~ )  

(3.4b) 

( 3 . 5 ~ )  

(3.5b) 

(3.5c) 

( 3 . 5 4  

Winther (1983) showed that this scheme is stable if At/Ay < 1 and (Ax)"Ay 4 0. 
Unless otherwise indicated, in all runs with y = 0, we used a grid size (Ax,Ay) = 
(0.25,O.Z) and At = 0.2. 

The cubic nonlinear term is added to the scheme in the following way 

which is only first-order accurate in space. Thus, to keep the second-order accuracy 
of the scheme, iterations are necessary. However, from numerical experimentation 
we found that by choosing (Ax,Ay) = (0.25,0.2) and At = 0.125, the scheme was 
sufficiently stable without iteration up to times well above those presented in $6. 
These values are used in all runs which included cubic nonlinearity. Tests on the 
propagation of the exact analytical solution given by (2.10), gave errors of less than 
2% of the maximum amplitude after 15000 timesteps, which is comparable to the 
maximum number of timesteps used in the solutions presented in $6. Mass and 
energy were conserved to within 0.5 % accuracy. 

Truncation of the computational domain may require the specification of radiation 
conditions at the upstream and downstream boundaries. In this case the upstream 
solution is of primary interest and the computational domain was continuously 
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FIQURE 2. The linear solution for the subcritical case ( F  = 0.6, S = 0.044, W = 40), for the first three 
transverse modes of 7 a t  ---, t = 40; ---, t = 80 and -, t = 200. (a )  Zeroth mode, ( b )  1st mode, 
(c) 2nd mode. The arrows indicate the location, size and direction of propagation of the sidewall 
constriction. In this and subsequent figures the scales are those defined by (Xl) ,  unless otherwise 
stated. 

extended to ensure that no disturbance reached this boundary. This procedure would 
be very time consuming in the case of the downstream boundary and instead the 
solution was weighted with a ' tanh'  window so that the dependent variables and 
their derivatives approached zero sufficiently smoothly. This ad hoc procedure was 
tested and found only to give detectable differences (in contour plots of elevation) 
over a small fraction of the channel length closest to the downstream boundary. 
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4. Linear solutions 
Before going on to describe numerical solutions to the full nonlinear problem, it is 

instructive to look at the corresponding linear problem in order to better understand 
the underlying physics. In fact, since the solution is started from a quiescent state, 
it remains essentially linear until it reaches a large enough amplitude for nonlinear 
effects to become important (see the discussion in $1) .  

To confirm this, we solve the linearized three-dimensional problem numerically 
and compare with the numerical solutions of the corresponding nonlinear problem 
(see $ 5 ) .  We will consider two cases, a subcritical case with F = 0.6 and a transcritical 
case with F = 1.05. In  both cases we have taken the blockage coefficient to be S = 
0.044 and the width of the channel to be W = 40. In figure 2 the linear solution for 
the lowest three transverse modes for the subcritical case is shown at  three different 
times. We see a linear transient disturbance propagating upstream of the forcing 
with its leading part dominated by the lowest transverse mode, owing to its group 
velocity exceeding that of the higher modes, as discussed in $ 1. This can also be seen 
quite clearly in the contour plots of the full linear solution, shown in figure 3 along 
with its nonlinear counterparts, to be discussed in $5.  

Figure 4 shows the solution for the lowest three transverse modes at  three times 
for the transcritical case. We see that at the leading edge of the disturbance the 
lowest mode ( n  = 0) grows initially with time much like the solution to the 
corresponding two-dimensional problem, whereas the higher transverse modes are 
bounded in amplitude owing to their energy being swept downstream, as is apparent 
from the increasing length of the downstream tail. As the lowest mode grows with 
time, the leading edge of the disturbance becomes more uniform and straight crested 
across the channel. This can be seen in the contour plots of the full linear solution 
shown in figure 5 along with its nonlinear counterparts, to be discussed in $5.  

The above arguments imply that in the transcritical range, only the lowest 
transverse mode, which corresponds to the only mode in the two-dimensional 
problem, will evolve nonlinearly upstream, with the nonlinear waves generated being 
essentially uniform and straight crested across the channel. The higher modes will 
not evolve nonlinearly upstream, owing to their energy being swept downstream. 
Thus, the prediction of the upstream disturbance generated by the three-dimensional 
transcritical flow past a constriction in a channel is reduced to solving the 
corresponding two-dimensional problem modified by nonlinear interactions of the 
lowest mode with the higher transverse modes, as will be shown in $5. 

5. Results for quadratic nonlinearity 
If d+ -d- = O(d+,  d-), the cubic nonlinear term can be neglected and the governing 

equations become (3.2) with y = 0. These equations are solved numerically using the 
scheme described in $3. 

In figure 3 we show contour plots of the nonlinear solutions of the subcritical case 
together with their linear counterparts. Qualitatively the two agree very well and 
quantitatively the agreement is good up to times at which the leading upstream 
disturbance starts to evolve nonlinearly. Note the excellent agreement between the 
two sets of solutions at those times at which the leading disturbance is reflecting from 
the far wall ( t  < 80). 

In figure 5 we show contour plots of the nonlinear solutions to the transcritical case 
together with their linear counterparts. Again, the two agree quite well up to times 

2-2 
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FIGURE 3 ( a 4 ) .  For caption see facing page. 

a t  which nonlinear effects in the leading disturbance become apparent ( t  > 80). Note 
again the excellent agreement between the two at those times at which the leading 
disturbance is reflecting from the far wall. Also note the qualitative resemblance of 
this process to the Mach reflection, to which Pedersen (1988) attributed the 
generation of the upstream waves in the transcritical case. Here these qualitative 
effects appear in the linear solution and cannot be attributed to a nonlinear reflection 
process. 

As a measure of the two-dimensionality of the leading disturbance, we have listed 
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FIGURE 3. Contour plots of the linear and quadratic nonlinear solution for 7;1 for the subcritical case 
(F = 0.6,s = 0.044, W = 40). (a) Linear at t = 40; ( b )  linear at t = 55; (c) linear at t = 80; ( d )  linear 
at t = 200; ( e )  nonlinear at t = 40; (f) nonlinear at t = 55; (9)  nonlinear at t = 80; (h)  nonlinear at 
t = 200. The arrows indicate the location, size and direction of propagation of the sidewall 
constriction. 

in table 1 the angle the leading crest makes at the centre of the channel with a line 
normal to the channel walls. As the nonlinear solution becomes exactly straight in 
the transcritical case at t x 200, the linear solution is still slightly curved. In this 
modal description, the transition to a nonlinear two-dimensional upstream 
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FIQURE 4. The linear solution for the transcritical case (P  = 1.05, S = 0.44, W = 40) for the first 
three transverse modes of 7 at ---, t = 40; ---, t = 80 and -, t = 200. (a) Zeroth mode, ( b )  1st 
mode, (c) 2nd mode. The arrows indicate the location, size and direction of propagation of the 
sidewall constriction. 

disturbance is due to the increase in speed of the nonlinear lowest mode, and its 
consequent propagation upstream of the forcing region, away from the higher 
transverse modes. 

In  the subcritical case the upstream influence was due to linear transients 
propagating upstream of the forcing owing to their group velocities exceeding the 
velocity of the forcing. However, in the transcritical range, the upstream propagating 
nonlinear waves are generated by the resonant forcing of the lowest transverse mode. 
Rather than growing to large amplitudes as in the corresponding linear problem, 
nonlinear effects become important and lead to a periodic generation of finite 
amplitude nonlinear waves, which propagate upstream of the forcing in certain 
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Subcritical 

Linear Nonlinear 
Time e R 

40 20" 20" 
55 12" 12" 
80 8" 8" 

200 O0 0" 

Transcritical 

Linear Nonlinear 
e R 

32" 34" 
24" 29" 
23" 22" 
20" 0" 

TABLE 1. The angle the leading crest makes at  the centre of the channel with a line normal to 
the sidewalls for both the linear and nonlinear solutions for the subcritical (F = 0.6, S = 0.044, 
W = 40) and the transcritical case (F = 1.05, S = 0.044, W = 40). 

parametric regimes (Grimshaw & Smyth 1986). The three types of upstream 
influence that are observed are shown in figure 6. Figure 7 summarizes the regions in 
the F-S (Froude number-Blockage coefficient) plane in which each type of solution 
is seen. Here results are given for three channel widths, W = 20, 30 and 40. Above a 
certain Froude number, called the limiting Froude number, no upstream influence is 
seen. Below F = 1, the upstream influence is an undular bore. In  between the two, 
a train of equal amplitude solitary waves corresponding to the exact analytical 
solutions of the KdV equation given by (2.9), is generated and propagates upstream 
of the forcing. Both upstream advancing disturbances are essentially uniform and 
straight crested across the channel and correspond to solutions of the two- 
dimensional problem, i.e. the inhomogeneous KdV equation. 

In figure 7 we have also plotted the corresponding regions for the two-dimensional 
problem. These agree quite well with the regions of the three-dimensional problem, 
with some modifications in accordance with the discussion in $4. In  particular, the 
limiting Froude number is higher for the three-dimensional problem than the 
corresponding two-dimensional problem. To understand this difference, we look a t  
the governing equation for the lowest transverse mode and write 

where 

is the average of across the channel (i.e. the lowest transverse mode), and i j  consists 
of higher transverse modes. Substituting this into ( 3 . 2 ~ )  and integrating across the 
channel, using the boundary conditions (3.2c), gives 

We note that this is the governing equation for the corresponding two-dimensional 
case (see Appendix B, note the different scaling), modified by the additional forcing 
term on the right-hand side. Thus, the only influence of the higher transverse modes 

FIQURE 5 .  Contour plots of the linear and quadratic nonlinear solution for 7 for the transcritical 
case (F = 1.05, S = 0.044, W = 40). (a) Linear at t = 40; (a) linear at t = 55; (c) linear at t = 80; 
( d )  linear a t  t = 200; (e) nonlinear at t = 40; (f) nonlinear at  t = 55;  (9 )  nonlinear a t  t = 80; 
( h )  nonlinear a t  t = 200. The arrows indicate the location, size and direction of propagation of 
the sidewall constriction. 
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FIGURE 6. The three types of upstream influence observed in the quadratic nonlinear problem. ( a )  
No upstream influence. ( b )  Upstream solitary waves. ( c )  Upstream undular bore. The arrows 
indicate the location, size and direction of propagation of the sidewall const,riction. 



Flow past a constriction in a channel 

0.9 

37 

0 0 
Undular bores 

upstream 

I I I I * ' '  " * ' * I * I * I I * ' I * ' 

40 

30 

10 

0 
600 700 800 900 lo00 1 1 0 0  

Time 
FIQURE 8. The effective increase in blockage in the quadratic nonlinear case over one cycle of 

soliton generation. Here W = 30, F = 1.175 and S = 0.0288. 

on the evolution of the lowest mode is to provide an additional forcing term, which 
can be interpreted as an equivalent additional constriction equal to 

thus changing the effective blockage coefficient for v(x,t) from that for the two- 
dimensional case. 
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FIGURE 9. An example of the increased blockage in the quadratic nonlinear case. Here W = 20, 
F = 1.175 and S = 0.0288. -, Physical constriction ; ..., additional equivalent constriction ; ---, 
total effective constriction. 
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FIGURE 10. An example of the increased blockage in the quadratic nonlinear case. Here W = 30, 
F = 1.175 and S = 0.0288. -, Physical constriction ; . . ., additional equivalent constriction ; ---, 
total effective constriction. 

The equivalent additional Constriction was found to be unsteady, resulting in 
fluctuations in the size of the total constriction with time. Figure 8 shows how the 
effective increase in the blockage changes through one cycle of soliton generation for 
W = 30, F = 1.175 and S = 0.0288. In  figure 9 we give an example of the increased 
effective blockage for W = 20, F = 1.175 and S = 0.0288, showing about a 10% 
increase in blockage, which is close to the maximum increase observed for these 
conditions. This increase was found to depend on the width of the channel, becoming 
larger as the width of the channel increased, while keeping the physical blockage 
coefficient constant. I n  figure 10 we give an example of the increased effective 
blockage for W = 30, again for F = 1.175 and S = 0.0288, showing about a 30% 
increase in blockage, which again is close to the maximum increase seen for these 
conditions (see figure 8). This is consistent with Pedersen's (1988) findings of the 
limiting Froude number increasing with increased amplitude of the constriction, 
again with the physical blockage coefficient kept constant. 
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The observed increase in the limiting Froude number for 8 = 0.0288 from F = 
1.175 to F = 1.185 for W = 20 and F = 1.21 for W = 30 (see figure 7) is consistent 
with approximately 10% and 30% increase in blockage for the two-dimensional 
case, respectively (see figure 7) ,  agreeing well with the increase seen in effective 
blockage in the three-dimensional case. However, it should be kept in mind that the 
two-dimensional results apply to  a steady, constant shape constriction, whereas the 
effective three-dimensional constriction fluctuates in size and shape. Thus any 
comparison between the two has to be more qualitative than quantitative. 

6. Results for cubic nonlinearity 
If the two layer depths are comparable, cubic terms become comparable to 

quadratic terms and thus cannot be neglected. Formally this corresponds to d, -d- 
= O(a) .  In  figure 11 we have plotted the ratio of the quadratic to cubic nonlinear 
terms in ( 2 . 1 ~ )  for different strengths of the nonlinearity. We see that even for 
moderate nonlinearities, cubic nonlinearity is important for a range of depths around 
d, = d-, and as the nonlinearity strengthens this range becomes larger. 

For small times the nonlinear solutions for the transcritical case with cubic 
nonlinearity shown in figure 12 agree well with the linear ones and the quadratic 
nonlinear ones given in figure 5 ,  again confirming the dominance of linear dynamics 
over nonlinear ones at these small times (here we have taken d?/ (d++df )  = 0.35, 
giving y = 4.70 in ( 3 . 2 ~ ) ) .  As time increases, nonlinear effects become important and 
as before, in certain parametric regimes, we see two-dimensional, straight-crested 
nonlinear waves propagating upstream of the forcing, again in accordance with the 
arguments given in $4 on the importance of the lowest transverse mode. 

However, the types of upstream influence observed are now different from those 
seen in $5.  These are shown in figure 13 and the corresponding regions in the F-S 
plane in which each solution type is seen are plotted in figure 14. Here, results are 
given for W = 20 only ( W = 30 and W = 40 gave the same results up to  the accuracy 
that our discrete set of runs provides). These regions correspond exactly to those seen 
in the two-dimensional solutions, i.e. from solving the inhomogeneous EKdV 
equation (Melville & Helfrich 1987). Above a certain Froude number there is no 
upstream influence. Below a certain Froude number the upstream advancing 
disturbance is an undular bore, very much like the quadratic nonlinear case. 
However, in the region between those two, rather than seeing a train of solitary 
waves, we observe an upstream advancing monotonic bore. This front-like solution 
corresponds locally to  the exact solution of the EKdV equation, given by (2.10). 

Unlike the quadratic nonlinear case, the boundaries in the F-S plane were found 
to be the same for the three-dimensional case as those for the two-dimensional case 
and consequently independent of the width of the channel. This holds a t  least to  the 
accuracy that we were able to determine these boundaries from our discrete set of 
runs, as indicated by the symbols in figure 14. Trying to determine the boundaries 
more accurately proved to be too expensive computationally owing to  the large times 
needed as we approach the boundaries. This good agreement is easily understandable 
for the limiting Froude number, since it is directly determined by the speed of the 
monotonic front solution, which in turn is dictated by the stratification parameters 
of the problem, as discussed in $2. To understand the agreement for the boundary 
between monotonic and undular bores upstream, we can look a t  the evolution 
equation for the lowest mode, as we did in $ 5  for the quadratic case. Following that 
analysis, using (5.1) and (5 .2) ,  substituting into (3 .2a) ,  integrating across the channel 



40 G. G. Tomasson and W.  K .  Melville 

7.5 - 

5.0 _..-._.- ...._._______ - 

. ------------- 2.5 =- 

0.30 0.35 0.40 0.45 0.50 

h, = 1-h, 

FIGURE 11. The ratio of the quadratic and cubic nonlinear terms in the coupled evolution equation 
as a function of the normalized upper-layer depth for different strengths of the nonlinearity. -, 
a = 0.01 ; ..., a = 0.025; ---, a = 0.05; -.-, a = 0.1. Note that here hl,2 = d:,-/h and a = a/h,  
where h = d: + d f  is the total depth. 

and isolating the corresponding two-dimensional operator on the left-hand side, we 
obtain, corresponding to (5.4), the following equivalent additional constriction 

where the two additional terms are due to cubic nonlinear effects. From the 
dominance of the first transverse mode (n = 1) in the solution for ,ij (see figure 4), we 
immediately see that the last term will in general be much smaller than the other two 
in the region of the physical constriction, and can thus be neglected. Recalling our 
scaling, the first two terms will be of the same order of magnitude, however, they are 
of opposite sign in the region of interest, since there 7 > 0. Thus the two terms will 
tend to balance each other, reducing the effect of the additional constriction from 
that in the quadratic nonlinear case. This was tested for several conditions, all of 
which showed very little or no increase in the effective blockage from the two- 
dimensional case. 

7. Discussion 
In  this paper we have attributed the two-dimensionality of the upstream waves 

generated by a transcritical flow past a constriction in a channel to properties of the 
linear modes, as well as nonlinear effects. Decomposing the problem using the linear 
transverse modes, which form a complete and orthogonal set, has proved helpful in 
understanding the underlying dynamics, exposing the different evolution processes 
of the lowest transverse mode on one hand and the higher transverse modes on the 
other. In  the transcritical range of Froude numbers, the lowest mode evolves in much 
the same way as the two-dimensional problem, generating nonlinear waves upstream 
through resonant effects, whereas the dispersive properties prevent the higher modes 
from producing waves upstream. 
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FIGURE 12. Contour plots of the cubic nonlinear solution for 7. (a) t = 40; ( b )  t = 55; ( c )  t = 80. The 
arrows indicate the location, size and direction of propagation of the sidewall constriction. Here 
dl/(df + d f )  = 0.35 giving y = 4.70. 

X - 
These ideas carry over to the problem of upstream influence in a rotating channel, 

where the Kelvin mode may evolve nonlinearly upstream, whereas the Poincar6 
modes may not produce any upstream influence. However, this situation is 
complicated by the fact that the upstream advancing Kelvin wave may act as a 
transcritical forcing for the linear Poincard modes, as shown by Melville, Tomasson 
& Renouard (1989). This results in the nonlinear Kelvin wave becoming unstable 
owing to resonant forcing of the Poincard waves, with the crest curving backwards 
and the amplitude decreasing as it propagates along the channel, as was observed in 
experiments by Melville, Renouard & Zhang (1990), who towed a body at  transcritical 
speeds through a rotating two-layer fluid. 
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FIQURE 13. The three types of upstream influence observed in the cubic nonlinear problem. (a) No 
upstream influence. ( b )  Upstream monotonic bore. (c) Upstream undular bore. The arrows indicate 
the location, size and direction of propagation of the sidewall constriction. 
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0.35 giving y = 4.70. 

Finally, it should be emphasized that these results apply only to channels of 
intermediate width, or more precisely with kW = 0(/3-+). As W increases, the 
separation between the dispersion curves of the transverse modes decreases (see 
figure i), resulting in the curves moving closer to the forcing curve. Thus a clear 
separation of a nonlinearly evolving lowest mode from linearly evolving higher 
modes is not possible. 

This work was supported by the Office of Naval Research (Coastal Sciences). 

Appendix A. Evolution equations for a single-layer fluid 

we take the scaling to be 
To derive coupled evolution equations for a homogeneous fluid with a free surface, 

instead of that given by (2.3). Following a derivation similar to that outlined in $2, 
we obtain the coupled evolution equations 

77t + 77x + $777, - i P r l X X t  + i f l u  = 0, (A 2a) 

K+ry = 0, (A 2 b )  

where u = a/h,  p = (kh)* and r = ( Z / / C ) ~  are the small parameters, h is the equilibrium 
depth of the fluid, 7 is the surface displacement and V is the depth averaged 
transverse velocity. The boundary conditions are 

V = O  a t  y = W ,  (A 3 b )  



44 G. G. Tomasson and W. K .  Melville 

where y = BY(6) defines the right-hand wall, B is the maximum amplitude of the 
constriction and 5 = x-Ft. The blockage coefficient for this single-layer case is 

B S = -  
W’ 

Renormalizing the two-layer evolution equations (2.1 a b )  (without the cubic 
nonlinear term), together with the boundary conditions (2.4a, b ) ,  using 

I 7 = d-,q’, V = d-, V‘, 
I 

where the primed variables correspond to those used in $2, results in 

Tt + T z  + %772 - m m t  + trv, = 0, 

K+T,  = 0, 
with the boundary conditions 

FB dY 
aT dc 

V = --ad_,- at  y = 0, 

V = O  a t  y = W .  (A 7 b )  

Here B is the maximum amplitude of Y ,  BY = (Y- - Y+). Comparing the two systems 
of equations, we see that they are formally equivalent, given that we take the 
blockage coefficient for the two-layer case to be 

B 
w -2 ’  

S = - d  

Appendix B. The corresponding two-dimensional problem 
By assuming the solution for 7 to be two-dimensional, i.e. 

7(x,  y, t )  = T(x, t ) ,  (B 1) 

we get, after substituting into ( 2 . 1 ~ )  and integrating across the channel, using the 
boundary conditions (2.4) 

which is the equation solved by Melville & Helfrich (1987) and we refer to as the 
corresponding two-dimensional problem. 
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