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A nonlinear Schrodinger equation, describing the evolution of a weakly nonlinear 
short gravity wavetrain riding on a longer finite-amplitude gravity wavetrain, is 
derived. This equation is then used to predict the steady envelope of the short 
wavetrain relative to the long wavetrain. It is found that approximate analytical 
solutions agree very well with numerical solutions over a realistic range of wave 
steepness. The solutions are compared with corresponding studies of the modulation 
of linear short waves by Longuet-Higgins & Stewart (1960) and Longuet-Higgins 
(1987). We find that the effect of the nonlinearity of the short waves is to increase 
the modulation of their wavenumber, significantly reduce the modulation of their 
amplitude, and reduce the modulation of their slope when compared with the 
predictions of Longuet-Higgins (1987) for linear short waves on finite-amplitude long 
waves. The question of the stability of these steady solutions remains open but may 
be addressed by solutions of this nonlinear Schrodinger equation. 

1. Introduction 
The evolution of short wind-generated waves riding on long ocean waves or 

currents has long been an area of active research in nonlinear wave dynamics. Short 
waves riding on long waves are modulated by, and interact with, the long waves. 
They may break on the crest of, and transfer momentum to the long waves. Detailed 
knowledge is required to understand the processes by which wind energy is 
transferred to the ocean surface. The recent development of remote sensing from 
satellites makes it possible to measure the ocean wave spectrum and infer the wind 
velocity from microwave radar images of the ocean surface (Allan 1983; Stewart 
1985). Accurate measurements, however, require more detailed quantitative 
knowledge of the modulation of short waves, and of energy transfer from the wind 
to the waves. The demand for this knowledge has stimulated great interest in the 
study of short- and long-wave interactions in recent years. 

The evolution of short wind-generated waves riding on long waves is extremely 
complicated because it is influenced by the combination of wave-wave interaction 
and wind-wave interaction. Thus, heuristic models (Keller & Wright 1975 ; 
Valenzuela & Wright 1979; Phillips 1984), or assumptions, such as that of a steady 
short-wave profile, are required in computing the modulation of wind-generated 
short waves riding on long waves. In  order to further understand these processes and 
establish better models, it  is helpful to separate these coupled and complicated 
processes into their simpler components, and thoroughly study each of them. 
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Here we concentrate on the steady solution of a weakly nonlinear short gravity 
wavetrain riding on a finite-amplitude long wave without considering the effects of 
wind or wave breaking. The stability of the nonlinear short wavetrain riding on a 
finite-amplitude long wave is currently being studied, and will be presented in a 
separate paper. Although the short waves are limited to gravity waves and are 
collinear with the long wave in our study, the method can be extended 
straightforwardly to include gravity-capillary waves and allow for three-dimensional 
short waves at the expense of more lengthy algebra. 

A striking feature of the modulation of short waves riding on long waves is that 
the short waves become shorter in wavelength and larger in amplitude at  the crests 
of the long waves, and conversely, longer and smaller a t  the troughs of the long 
waves. This phenomenon was first predicted by using the perturbation method 
(Longuet-Higgins & Stewart 1960), based on the assumption that the short wave is 
linear and the long wave is weakly nonlinear. The phenomenon was also found in 
investigating the superharmonic instability of a finite-amplitude periodic wavetrain 
(Longuet-Higgins 1978). Short waves riding on long waves can be viewed as 
travelling on currents with a varying horizontal velocity field, provided that the 
wavelength ratio of short waves to long waves is very small. I n  this way, Bretherton 
& Garrett (1968) applied the wave action conservation theory to study the 
modulation of short waves riding on long waves. Their results confirmed the 
predictions of Longuet-Higgins & Stewart (1960, 1964). Based on the assumption of 
small wavelength ratio, Phillips (1981) extended the study of Longuet-Higgins & 
Stewart (1960) to a long wave with finite amplitude. He applied the wave action 
conservation theory to a short wave riding on a finite-amplitude long wave. Since the 
velocity field of a finite-amplitude long wave can be accurately computed through 
the numerical schemes developed by Schwartz (1974) and Hogan (1980, 1981), the 
modulation of the short wave can be predicted accurately, with the assumption that 
the envelope of the short-wave amplitude is steady relative to the long-wave surface. 
Longuet-Higgins (1987) computed the modulation of short waves riding on a finite- 
amplitude long wave. His main finding is that the modulation of short waves is much 
stronger than that predicted by Longuet-Higgins & Stewart (1960). More recently, 
a canonical Hamiltonian formulation was used to study the dynamics of short waves 
riding on long waves (Henyey et al. 1988). Their results are similar to those of 
Longuet-Higgins ( 1987), except that  they have extended his calculation to include 
gravity-capillary waves and allow for a more general two-dimensional long-wave 
field. 

Although the weakly nonlinear limit of the long-wave steepness has been removed 
in the studies of Phillips (1981), Longuet-Higgins (1987) and Henyey et al. (1988), the 
short wave is still assumed to be linear. I n  the ocean, short waves riding on a long 
wave often are not of infinitesimal steepness, even in the absence of wind. Therefore, 
it is of practical importance to  study the modulation of a nonlinear short wavetrain 
riding on a finite-amplitude long wave. Furthermore, the present study lays the 
foundation for the investigation of the stability of a short wavetrain riding on a long 
wave, and this knowledge is essential to justify the assumption that the profile of the 
short-wave amplitude is steady relative to  a long wave. 

The short wavetrain is assumed to be weakly nonlinear, and the free-surface 
boundary conditions are expanded about the surface of the finite-amplitude long 
wave. Using the perturbation method, a nonlinear Schrodinger equation (equation 
(3.5)) describing the evolution of a short wavetrain riding on a long wave is derived. 
We show that the conservation of short-wave action may be reproduced from (3.5) 
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if the higher-order terms are neglected. We also show that it is consistent with the 
ordinary nonlinear Schriidinger equation. 

Applying (3.5), we calculate the steady envelope of a nonlinear short wavetrain 
riding on a finite-amplitude long wave. Particular attention is paid to  the effect of the 
short waves’ nonlinearity on the modulation. Our numerical results show that the 
modulation of a short wavetrain with small wave steepness is close to that of a linear 
short wavetrain (Longuet-Higgins 1987). With the increase of the short wave 
steepness, the modulation of the short wavelength along the long wave increases only 
slightly, while the modulation of the short wave amplitude along the long wave 
declines significantly; thus the modulation of the steepness of the short wave is 
reduced. For the purpose of confirming our computation and providing a rational 
explanation of the differences between the steady solutions for linear and nonlinear 
short wavetrains, we use both approximate analysis and numerical computation to 
solve (3.5). 

It should be pointed out that in our numerical computation, we exclude the case 
of the long wave of extreme steepness. This is because the extremely steep long wave 
may be unstable to local or superharmonic disturbances (Longuet-Higgins 1978 ; 
Longuet-Higgins & Cokelet 1978; MacKay & Saffman 1986), and instabilities with a 
large growth rate may lead to numerical difficulties. Furthermore, steady long waves 
a t  extreme steepness may not be physically realizable (Longuet-Higgins & Cokelet 
1976). 

In  $2, we employ orthogonal curvilinear coordinates to study the evolution of a 
weakly nonlinear short wavetrain riding on a finite-amplitude long wave. Using the 
perturbation method, (3.5) describing the evolution of a short wavetrain riding on a 
long wave is derived in $3. In  $4, we compute the steady solution of a nonlinear short 
wavetrain riding on a long wave. Finally, the steady solution of a nonlinear short 
wavetrain riding on a long wave is compared with that of a corresponding linear 
short wavetrain. 

2. Governing equations in orthogonal curvilinear coordinates 
2.1. Orthogonal curvilinear coordinates 

We introduced three parameters: and e2 are the steepnesses of the long wave and 
short wave (at the trough of the long wave), respectively, and E~ denotes the ratio of 
the short wavelength (at the trough of the long wave) to the long wavelength. Since 
we are concerned with the evolution of a weakly nonlinear short wavetrain riding on 
a finite-amplitude long wave, the relationships between these scaling parameters are 

(2.1) 
chosen to be: 

El = O(&, €3 = O(&. 

From this scaling it is seen that the amplitude of the long wave can be greater than 
the wavelength of the short wave. Therefore, i t  is not appropriate to expand the free- 
surface boundary conditions a t  the calm water level. With the assumption of a 
weakly nonlinear short wavetrain, however, i t  is reasonable to expand them at the 
long-wave surface. Since the profile and the velocity field of the long wave in the 
absence of the short wave can be computed numerically, we are able to  use the 
standard perturbation method to solve for the short wave. The method of expanding 
the free-surface boundary conditions a t  the long-wave surface was used by Longuet- 
Higgins (1978). The difference is that the short wave in our study is weakly 
nonlinear, while the superharmonic disturbances in Longuet-Higgins (1978) are 
infinitesimal. Particular attention should be paid to  examining the degree to  which 
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the profile and the velocity field of the long wave will change owing to the presence 
of the short wave. When the ratio of the short wavelength to the long wavelength is 
small enough (e3 x O(&), the change of the long wave, and its feedback effect on the 
short wave, are found to be negligible. This is discussed in Appendix A. 

In order to facilitate the algebra, orthogonal curvilinear coordinates are employed, 
whose transverse and vertical coordinates are the streamlines and equipotentials of 
the long wave respectively in the absence of the short wave. The relation between the 
ordinary rectilinear coordinates and the orthogonal curvilinear coordinates is 
equivalent to the conformal mapping from the physical plane ( x , z )  to the complex 
potential plane (s, n).  By mapping, the streamlines and equipotentials of the long 
wave in the (x,z)-plane project onto the straight lines in the (s, n)-plane, respectively, 
as shown in figure 1.  Then s and n are given by 

s = @/lCl, n = Y/lCl, (2.2) 

where 0, Y and C are the potential, stream functions and phase velocity of the long 
wave respectively in the absence of the short wave. Since the scales of s and n are 
different from their corresponding projection lengthscales in the (2, 2)-plane (figure 
l), the scale factors h, and h, are introduced to denote the ratios of As,/As and 
And/An, where the subscript d denotes the variable expressed in the physical length, 
i.e. the length projecting on the (x, 2)-plane. For the water with infinite depth, h, and 
h, are equal: 

where U,(s, n) is the particle velocity of the long wave (in a frame moving at  its phase 
velocity). The derivation of (2.3) may be found in Zhang (1987). 

h(s, n) = h,(s, n)  = h,(s, n)  = C/U,(s, n) ,  (2.3) 

2.2. Governing equations 
We consider a two-dimensional weakly nonlinear short gravity wavetrain riding on 
a collinear two-dimensional periodic finite-amplitude long gravity wavetrain in 
water of infinite depth. Both wavetrains are advancing in the same direction, from 
left to right. However, the results can be easily extended in a straightforward manner 
to the case in which the long and short waves are moving in the opposite directions. 

The flow is assumed to be incompressible, irrotational. The pressure on the free 
surface is constant, and the short wave riding on the long wave is assumed to have 
small steepness. The governing equations for the velocity potential $(x, z,  t )  and 
profile [(x,t) of the short wave riding on the long wave can be expressed in the 
rectilinear coordinates (2, z )  which are moving at phase velocity of the long wave C :  

q 5 t + ~ [ ( C + @ ~ + $ , ) 2 + ( ~ Z + $ z ) 2 ] + g ( ~ + ~ c o s 6 )  = C, at x = ~ + c c o s 8 ,  (2.4) 

cos ect + [qz + (COS ~g),] (c+ ajz + 9,) = ajz + $z at z = 7 + ~ C O S  8, ( 2 . 5 ) ~  

@zz+@zz+q5zz+$zz = 0 (-a < z < q+ccOsB), (2.6) 

a j z + O ,  g Z + O  aszJ-Co, (2.7) 

where @(x) and r(x) are the potential function and the profile of the long wave, and 
are steady relative to the moving coordinates x, z. 0 is the local slope angle of the long 
wave; C, is the Bernoulli constant, and g is the gravitational acceleration. The 
subscripts x, z and t denote the partial derivatives. The z-axis is positive upwards 
with z = 0 fixed at the calm water level. The details are shown in figure 2. 

t Notice that  C(x,t) is measured normal to  the long-wave surface. 



Evolution of weakly nonlinear short waves riding on long gravity waves 325 

0.3 

0 

-0.3 

Z 

-0.6 

-0.9 

0 

- 0.3 

n 

-0.6 

-0.9 

0 1 .o 2.0 3.0 
5 

FIGURE 1. The orthogonal curvilinear coordinates. 

In  the orthogonal curvilinear coordinates defined in $2.1, (2.4)-(2.7) may be 
written as:  

U,(s,n)+C, $ , + O  whennl-co, (2.11) 

where $ is expressed in the physical length, but the subscript d is dropped to avoid 
confusion with the derivative subscripts. h is the scale factor defined in (2.3). 
Ud(s,n), q d ( s ) ,  C, and hence h can be computed given the wavelength and the 
amplitude of the long wave. In  the following analysis, they are assumed to be known. 
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FIGURE 2. Definition sketch for short waves riding on long waves 

2.3.  Expanding equations (2.8)  and (2.9)  on the long-wave surface 
In expanding (2 .8 )  and (2 .9 )  at the long-wave surface, we assume that the velocity 
field of the long wave can be analytically extended to the region between n = 0 and 
n = 5. After subtracting the steady solution of the long wave, we have the following 
governing equations for the short wave riding on a long wave: 

#t  + Ho Uo(s) $ 8  + c91+ cA7a +H* UO(4 48% c+ 2HOPI $8 5 
+ a H ~ ( ~ , 2 + $ ~ ) + a ~ t n n $ + + H o  ~ l l ( ~ ) $ s n n ~ + 2 H o P l $ s n ~  
++Ho(&+&)nc = O(ei ,e iez)cg a t  n = 0,  (2.12)  

ct + c s  H ,  U0(s)  - H i  4, + 2Pl Ho K* - 2 g Ho c A  +Hi($% 61, 

$), = O(& E ~ E ~ )  ccr a t  n = 0, (2.13) 

$ , , + $ , , = O  (-a < n < O ) ,  (2.14) 

$ , + O  a s n l - a ,  (2.15) 

where (2.16) 

(2 .17)  

(2.18) 

(2 .19)  



Evolution of weakly nonlinear short waves riding on long gravity waves 327 

u is the intrinsic frequency of the short wave (see $ 3 . 2 ) .  It may be shown that (2.12) 
and (2 .13)  are consistent with the equations derived by Longuet-Higgins (1978, 
equations (3 .1 )  and ( 3 . 4 ) ;  this derivation gave only the linear terms of the short 
wave) to  the first order in 6 (Zhang 1987). 

3. Derivation of the nonlinear Schrodinger equation 

The perturbation expansions for $($, n, t )  and c(s, t )  are given by : 

$ = p) + # I )  

3.1. Multiple-scale perturbation expansion 

(3 .1 )  

(3 .2 )  

where a8/& = k and ag/at = - w ,  (3 .3 )  

* + $ ( z )  e2is+ *, 

5 = ~ ( 0 )  + {(I) eifi+ * + ~ ( 2 )  e2ils+ * 

a, k and w are the phase function, wavenumber and frequency of the short wave, 
respectively, and * denotes the complex conjugate of the preceeding term. $(O) and co) are the long wave potential and amplitude induced by the short wave, and found 
to be negligibly small. $(l), C(l) ,  $(2) and Q2) represent the short-wave potential, 
amplitude and their higher harmonics. They may be further expanded with respect 
to  e2. Substituting (3.1)-(3.3) into the governing equations, equations (2.12)-(2.15) 
may be reduced to a hierarchy of equations according to the order of e2 and the 
harmonics. After solving these equations step by step in increasing order of e2, we 
obtain the solution for the short wave up to the third order of e2. We then derive the 
nonlinear Schrodinger equation (3 .5) .  For brevity, the detailed derivation and 
solution for the short wave are omitted, except where necessary to clarify ( 3 . 5 ) .  
Details may be found in Zhang (1987) .  

3.2.  Amplitude and potential of the leading-order and jirst-harmonic short wave 

$(11) = -ibekn, (3 .4a )  

b = ag,/a, (3 .4c)  

p )  = a, (3 .4b)  

CT' = H ; g ,  k ,  ( 3 . 4 d )  

where C T = O J - ~ H ~ U ~ ( S ) ,  (3 .4e )  

is the intrinsic frequency of the short wave. Equations ( 3 . 4 d )  and (3 .4e )  are the 
dispersion relation of the short wave riding on the long wave, and may be transferred 
to the form expressed in the lengthscale of the original physical plane 

u2 = kdg, ( 3 . 4 f  1 

U=W-kdUO(S) ,  (3 .4g)  

where (3 .4h)  

kd = H o k ;  ( 3 . 4 4  

k, is the short wavenumber. Equations (3 .4 f ) - (3 .4h)  are the same as those given by 
Phillips (1981, equation ( 2 . 6 ) ) .  
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3.3. The nonlinear Schrodinger equation 
The nonlinear Schrodinger equation describing the evolution of a narrow-band short 
wavetrain riding on a long wave is then given by 

where D = 1 + 4 b H 0  % ~ + O ( E ~ E \ ) .  (3 .5a)  
cr 

Neglecting the higher-order terms a t  the right-hand side of (3 .5) ,  some algebraic 
manipulation gives 

Equation (3.6) is the wave action conservation equation for short waves riding on the 
long wave. If the envelope of the short-wave amplitude is steady relative to the long- 
wave surface, then (3.6) becomes 

(3 .7)  

(cf. Phillips 1981, equation (2 .13)) .  
In  the absence of the long wave, the coordinates are stationary in space and the 

orthogonal curvilinear coordinates degenerate into the rectilinear coordinates. Thus 
(3 .5)  may be simplified to 

Equation (3 .8)  is the nonlinear Schrodinger equation describing a narrow- band 
wavetrain advancing on otherwise calm water. 

We may decompose (3 .5)  into two real equations, with respect to the evolution of 
the (potential) amplitude Ibl and slow phase function a of the short wave. Let b = 
Ibl e'", multiplying (3 .5)  by b* and then adding and subtracting the product with its 
complex conjugate respectvely, we have the following two equations, 

( 3 . 9 ~ )  

(3 .9b)  
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Equations (35) and (36) of Yuen & Lake (1982) may be recovered from ( 3 . 9 ~ )  and 
(3.96) if the long wave is absent. The left-hand sides of ( 3 . 9 ~ )  and (3.9b) represent the 
local change of (potential) amplitude 161 and slow phase 01 of the short wave, 
respectively, for an observer moving a t  the group velocity of the short wave in the 
moving coordinates. The right-hand sides show their coupling. Equations ( 3 . 9 ~ )  and 
(3.96) are used in computing the steady solution (modulation) of a weakly nonlinear 
short wavetrain riding on a long wave. 

4. Computation of the steady solution of the short wave 
4.1. Normalization and non-dimensionalization 

The normalization is set so that the long wavenumber Kd and gravity g are equal to 
unity, and the coordinate s ranges from zero to 2 x .  The variations along the long- 
wave surface, are normalized by the corresponding value a t  the trough of the long 
wave. It should be noted that Longuet-Higgins (1987) normalized the variables 
relative to their corresponding values a t  the intersection of the calm water level and 
the long-wave surface. The reason for adopting our normalization is that the 
coordinate s a t  the trough of the long wave is a constant, independent of the 
steepness of the long wave, while the coordinates a t  the calm water level of the long- 
wave surface depend on the long-wave steepness. For the purpose of comparing our 
results with those of Longuet-Higgins (1987), however, we may transform our 
normalized variables to his. 

The time is non-dimensionalized by the intrinsic frequency of the short wave a t  the 
trough of the long wave. 

Thus equations ( 3 . 9 ~ )  and (3.96) may become 

( 4 . 1 ~ )  

where the variable with a subscript 0 denotes the value of the corresponding variable 
a t  the trough of the long wave, and the variable with a circumflex represents the 
corresponding normalized variable ; 

( 4 . 2 ~ ’  b) 

If and a are the normalized wavenumber and frequency corrections due to the 
nonlinearity of the short wave ; 

(4 .3)  
r 

R ,  = C- NN O(S;$ 
91 
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is the phase velocity ratio of the long wave to the short wave; 
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is the wavelength ratio of the long wave to  the short, wave (at the trough of the long 
wave). In  the following, we drop the circumflexes for simplicity. 

4.2. Numerical computation of the long wave 
In  computing the profile and velocity field of the long wave, we use the numerical 
scheme developed by Hogan (1980). His scheme allows for surface tension ; however, 
it can also be used in computing gravity waves if the non-dimensional surface tension 
coefficient is chosen to be negligibly small, say Surface profiles of the long wave 
with respect to its steepness el = 0.05, 0.10, 0.20 and 0.30 are shown in figure 3. The 
scale factor h and the gravitational acceleration g ,  may be computed according to 
(2.3) and (2.19). H ,  and g1 are shown in figures 4 and 5 as a function of s and el. In 
computing the derivatives with respect to s, we use the centred difference scheme, 
whereas the derivative with respect to n is computed using the high-order backward 
difference scheme. The magnitude of the intervals As and A n  is chosen to be small 
enough so that the truncation error is smaller than lops. 

4.3. Steady modulation of a linear short wavetrain 
The modulation of a linear short wavetrain riding on a finite-amplitude long wave 
has been studied numerically by Longuet-Higgins (1987). For the purpose of 
comparison, i t  is briefly derived and shown below. 

Based on the conservation of the wave phase (assuming that the short wave does 
not break), and assuming k is independent of t  (the steady solution), we have a first- 
order differential equation for k .  

Given the wavelength ratio R, the short wavenumber a t  the trough of the long wave 
is determined. Using the centred difference scheme, we may solve (4.5) for k. 
Following the same procedure, we may also solve (4.6) for u. 

In  order to examine the accuracy of our numerical computation, we have 
computed the difference between u2 and H ,  g1 k2 .  It is found that the maximum 
absolute error 1u2-Hogl k2)  along the long wave is smaller than for el = 0.1 and 
A8 = R /  1024. The magnitude of k ,  u and their derivatives with respect to s are shown 
in figures 6-9 as a function of s, given the wavelength ratio R and the long-wave 
steepness el. It is shown that k and u are symmetric, and hence their derivatives with 
respect to s are antisymmetric, with respect to the crest and the trough of the long 
wave. 

It is interesting to notice that for moderately steep long waves the normalized 
wavenumber k is almost independent of R but dependent on el. Figure 10 shows that 
for the same long-wave steepness, the curves for different wavelength ratios (R = 80, 
100,120) are almost identical. This is consistent with Longuet-Higgins (1987, figure 
4). The reason for this effective independence ofR is analysed in Appendix B. For the 
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FIGURE 4. The scale factor H,(s) defined in (2.16) shown as a function of s for the long-wave 
steepness = 0.05, 0.10, 0.20 and 0.30. 
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FIGURE 6. The wavenumber k, normalized by its own value at the trough of the long wave, shown 
as a function of 5 ,  for el = 0.05, 0.10, 0.20 and 0.30 and the wavelength ratio R = 100. 
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same reason, the variations of the normalized intrinsic frequency CT, and amplitude 
ladl are also insensitive to R as long as 6, is moderate. Hence, we fix R = 100 in the 
following numerical computations without significant loss of generality. 

The modulation of the normalized amplitude of the steady short wave ladl can be 
computed from (3.7). For comparison, the normalized wavenumber k,, amplitude 
(ad( ,  and steepness of a steady linear short wavetrain as a function x with respect to 
el = 0.10, and 0.20, are shown in figures 13-15. 

4.4. Steady modulation of a weakly nonlinear short wavetrain 
In the case of a nonlinear short wavetrain riding on a finite-amplitude long wave, it 
is expected that its modulation may be different from that of a linear short 
wavetrain. Hence, we now define the wavenumber and frequency of the short 
wavetrain by k +K and o + a respectively, where K and a are the contribution due 
to the nonlinearity of the short wave, as shown in ( 4 . 2 ~ )  and (4.2b). If the short wave 
is steady relative to the long wave, (4.1 a )  and (4.1 b)  may be simplified by letting the 
time derivatives of (bl, X and equal zero. 

Based on phase conservation and the steady assumption, we may show that 
aa/as=O; that is, a is a constant along the long wave surface. Owing to the 
normalization of the short wavenumber, we let the wavenumber correction R = 0 a t  
the trough of the long wave. We find that ( 4 . 7 ~ )  and (4.7b) are the second-order 
coupled ordinary differential equations for lbI2 and K with respect to s, while a is an 
unknown constant. 

4.4.1. Approximate analysis 
Before solving (4.7 a )  and (4.7 b)  numerically, we present approximate solutions 

and explore their physical interpretation. From the numerical computation in 
994.2 and 4.3, we find the leading-order term a t  the right-hand side of (4.7b) is 
+ei Do D(JbI4 k4H;/c7) which is O ( E ~ ) .  Neglecting the higher-order terms at the right- 
hand side of (4.7b), we approximate it by 

At the trough K = 0, thus 

Since 

a = $:Do x O(si). 

is a constant, we solve (4.8) for K: 
(4.9) 

(4.10) 

The result given by (4.9) is clear; 0 is the frequency correction due to the 
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FIQURE 11.  The normalized wavenumber (k +I?‘), of a weakly nonlinear short wavetrain is shown 
as a function of z, for e2 = 0.1, 0.2 and 0.3, el = 0.1 and 0.2. Results from ( 4 . 7 ~ )  and (4.7b): ---, 
e2 = 0.1; ---, e2 = 0.2; ---, e2 = 0.3. Results from approximation equation (4.8): x , eB = 0.1; 
0,  e2 = 0.2; A, e2 = 0.3. 

nonlinearity of the short wave, corresponding to the frequency increase in the case 
of a weakly nonlinear gravity wavetrain travelling in otherwise calm water. 
Equation (4.10) shows that IT > 0 for all 6 except a t  the trough of the long wave. This 
results from the fact that the steepness of a modulated short wavetrain changes 
along the long-wave surface. For a gravity wave, its group velocity increases slightly 
with the increase of its steepness. Hence, the modulated short wavetrain has a 
larger/smaller group velocity near the crest/trough of the long wave. Owing to its 
non-uniform group velocity, a modulated short wavetrain is compressed/stretched 
while riding on the forward/backward face of the long wave. This effect is similar to, 
but much weaker than, the effect of the particle velocity of the long wave on the 
short wavetrain. Hence, the variation of x along the long wave is similar to that of 
k ,  and its magnitude is much smaller than the latter. The wavenumber (EfK), as a 
function of 2, for e2 = 0.1, 0.2 and 0.3 and el = 0.1 and 0.2, is shown in figure 11. 

Based on the order of magnitude analysis in (4.9) and (4.10), and the numerical 
computation in ss4.2 and 4.3, we find the leading-order terms a t  the right-hand side 
of ( 4 . 7 ~ )  are 

which are O(eiel e i )  and O(e:ei), respectively. Using (4.8) and (4.10) and neglecting 
the higher-order terms, ( 4 . 7 ~ )  may be approximated by 

a 
as 
- [ (R,  ++) 1bI2 (1  +bi a2k2)] = 0. (4.11) 
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For exploring the physics in (4.11), we transfer it to the form expressed in the 
original physical lengthscale (cf. $3.2). 

as 
(4.12) 

Equation (4.12) is essentially a weakly nonlinear version of wave action 
conservation, if the short wave is steady relative to the long wave. This interpretation 
of (4.12) is further explored in Appendix C. 

As a result of (4.12), the modulation of ladl along the long-wave surface is smaller 
than that in a corresponding linear short-wave case. The reduction in the modulation 
of the short-wave amplitude may be explained by comparing (4.12) with its 
corresponding linear version (3.7). The wave closer to the crest of the long wave has 
greater ‘wave action’ t(ladlzg/r)*(l +h2kz), owing not only to the larger wave 
amplitude ludl, as in the linear short-wave case, but also to the larger wave steepness 
ak. Consequently, the wave action flux is greater a t  the crest of the long wave than 
in the linear-wave case, and the increase of ladl should be smaller. 

4.4.2. Numerical computation 
We solve the coupled equations ( 4 . 7 ~ )  and (4.7b) numerically by an iteration 

method described below. 
The solutions of (4.8) and (4.11) are used as the initial input for lbI2 andR.  Taking 

the advantage of the fact that K = 0 a t  the trough of the long wave and Ib12, k, u, g1 
and H ,  are symmetric with respect to the trough of the long wave, we obtain a 
second-order algebraic equation for 8. 

(4.13) 

Equation (4.13) is valid only a t  the trough of the long wave. We may obtain 8 
according to the requirement that a 4 1. Having obtained a, we solve equation 
(4.7b) for r f .  After substituting the new value of a and jT into (4.7a), we solve for lb12. 
In the computation of ( 4 . 7 ~ )  and (4.7b), the centred difference scheme is used. We 
calculate the absolute differences of JbI2 and r f  between each cycle. If the maximum 
absolute differences of JbI2 and K along the long-wave surface are smaller than their 
respective tolerance errors, say lop5 and lo-’, the iteration will terminate ; otherwise, 
it  continues. Typical CPU time for computing lbI2, R and 8 is about 5 s on VAX8800 
machine when el = 0.1 and e2 = 0.10. For relatively large steepnesses (el = 0.30, 
e2 = 0.30), the CPU time is about 8 s. 

In computing Ho(s) ,  k, g, and u, we obtain better accuracy by adopting a smaller 
space interval As, say As = x/1024. When we use the iteration method to solve ( 4 . 7 ~ )  
and (4.7b) for lbI2, K and 8, however, a smaller As does not always guarantee a more 
accurate result. This is because the factor a21b12/as2 in (4.7b) may amplify large- 
wavenumber noise, with the largest amplification factor being (R, +i)2/4ki(As)2 for 
each cycle of iteration when the centred difference scheme is used. In order to avoid 
this effect (i.e. let the amplification factor be no greater than unity), we choose the 
space interval As > IR,+$/2ko x O(&. Hence, we must use decimation on the 
variable arrays such as k, ak/as ,  H, ,  g, and u, to increase the space interval to say 
As = n/64 when solving ( 4 . 7 ~ )  and (4.7b). Decimation in the space domain is 
equivalent to a high-wavenumber cutoff (Oppenheim, Wilsky & Young 1985 ; 
Oppenheim & Schafer 1975). The Fourier transform of the steady solution and 
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K) should not have any substantial components with large wavenumbers if it is to be 
consistent with our assumption made in deriving (3.5), that  lb12 and CY vary slowly 
along the long-wave surface. Therefore, the decimation should not have any 
significant effect on our numerical computation. 

5. Numerical results 
Figures 11 and 12 compare the results of ( I f + k ) ,  and Ibl obtained from the 

approximate analysis (equations (4.8) and (4.11)) with those from the numerical 
computation of ( 4 . 7 ~ )  and (4.7b). For small values of both short- and long-wave 
steepness, the discrepancy between the results of the two methods is negligible. With 
the increase of both steepnesses, the discrepancy increases ; however, their qualitative 
agreement is retained. It should be mentioned that the relative difference of the 
amplitude ladl between the results of the approximate analysis and the numerical 
computation is much smaller than that of lbl, though we do not show this comparison 
here. The agreement shows that the approximate analysis is adequate and also 
confirms the numerical computation of (4.7 a )  and (4.7b). Consequently, the 
discussion of the effect of the short-wave nonlinearity on the modulation based on 
the approximate equations, is relevant and supported by the numerical solutions. 

The effects of the short-wave steepness on the modulation of the short wave riding 
on the long wave are described in figures 13-15. Figures 13, 14 and 15 show the 
relative variations of the wavenumber, amplitude and steepness of a steady short 
wavetrain along the long-wave surface respectively. Given the long-wave steepness, 
the modulation of a short wavetrain with small wave steepness, say e2 = 0.1, is close 
to that of a linear short wavetrain. Actually, the results for a linear short wavetrain 
can be reached in the limit as cz goes to zero. With the increase of the short-wave 
steepness, the shortening of the short wavelength a t  the crest of the long wave 
increases slightly, while the increase of the short-wave amplitude at  the crest of the 
long wave declines significantly. Consequently, the steepening of the short waves a t  
the crest of the long wave decreases. 

In figures 13-15, it is shown that the maximum/minimum of the wavelength, 
amplitude and steepness of the short wavetrain always occurs at the crest/trough of 
the long wave. Therefore, i t  is of particular interest to compare the modulation 
results a t  the crest and the trough of the long wave, predicted by the present study, 
by Longuet-Higgins (1987), and by Longuet-Higgins & Stewart (1960). Figures 
16-18 show the normalized short wavenumber ( I f + k ) , ,  amplitude la,l, and wave 
steepness a t  the crest and the trough of the long wave as a function of long-wave 
steepness, predicted by the three methods. For the purposes of comparison, the 
wavenumber, amplitude and wave steepness are normalized by their corresponding 
values a t  the calm water level of the long wave in figures 16-18. The normalized 
wavenumber and steepness of a linear short wavetrain riding on a finite-amplitude 
long wave are computed by the method outlined in 54.3. The results have been 
checked against the corresponding curves of Longuet-Higgins (1987, figures 4 and 6) 
and are found to be identical. Although the definition of the wavelength ratio in 
Longuet-Higgins (1987) is slightly different from our definition shown in (4.4), the 
difference actually has no effect on the numerical computation for the reasons 
described in Appendix B. For simplicity, we denote the results of a linear short 
wavetrain riding on a finite-amplitude long wave as the results predicted by 
Longuet-Higgins (1987). 

When the long-wave steepness is small, the results given by all three methods are 
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FIGURE 12. (a) The normalized potential amplitude Ibl of a weakly nonlinear short wavetrain is 
shown as a function of s, for c2 = 0.1, 0.2 and 0.3, c1 = 0.1. Key as for figure 11. (b )  Same as (a),  
except el = 0.2. 

very close; no significant differences are observed for < 0.1 in figures 16-18. With 
the increase of the long-wave steepness, however, the results predicted by our study 
and Longuet-Higgins (1987) begin to depart from those given by Longuet-Higgins & 
Stewart (1960). This departure is expected, because the latter's prediction is based on 
the assumption that the long wave is weakly nonlinear. With the increase of the 
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FIGURE 13. The normalized wavenumber ( k - t g ) ,  of a weakly nonlinear wavetrain, is shown as a 
function of 5 for, ---, e2 = 0.1; ---, e2 = 0.2 and ---, e2 = 0.3, el = 0.1 and 0.2. For 
comparison, -, the normalized wavenumber k, of a linear wavetrain is also given. 
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FIQURE 14. The normalized amplitude ladl of a nonlinear wavetrain is shown as a function of z for, 
___- , e2 = 0.1 ; ---, e2 = 0.2 and ---, e1 = 0.3, = 0.1 and 0.2. For comparison, -, the 
normalized amplitude la,l of a linear wavetrain is also given. 
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FIGURE 15. The normalized steepness of a nonlinear wavetrain is shown as a function of x 
--_ , E - 0 1 . - - -  - . , , e2 = 0.2 and ---, eZ = 0.3, el = 0.1 and 0.2. For comparison, --, 
normalized steepness of a linear wavetrain is also given. 
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FIGURE 16. The increase/decrease of the short wavenumber (K+ k), at the crest/trough of the long 
wave, with respect to the corresponding value at the calm water level, is shown as a function of the 
long-wave steepness, where ~ and are the results given by Longuet-Higgins (1987) and 
Longuet-Higgins & Stewart (1960) respectively; ---, ---- and are our results for 
e2 = 0.1, 0.2 and 0.3. 
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FIGURE 17. The increase/decrease of the short-wave amplitude la,l at the crest/trough of the long 
wave, with respect to the corresponding value at the calm water level, is shown as a function of the 
long-wave steepness, where the symbols are defined in figure 16. 
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FIGURE 18. The increase/decrease of the short-wave steepness at  the crest/trough of the long 
wave, with respect to the corresponding value at the calm water level, is shown as a function of the 
long-wave steepness, where the symbols are defined in figure 16. 
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short-wave steepness, our results begin to  differ from those of Longuet-Higgins 
(1987). This difference may be due to the linear short-wave assumption made in 
Longuet-Higgins (1987). However, the effects of the short-wave steepness on the 
shortening/elongation of the short wavelength and on the increase/decrease of the 
short-wave amplitude a t  the crest/trough of the long wave are quite different. We 
describe them below. 

With the increase of the short-wave steepness, i t  is shown in figure 16 that the 
shortening of the short wavelength a t  the crest of the long wave is more pronounced, 
while the elongation of the short wave a t  the trough is hardly affected. In  short, the 
effect of the short-wave steepness is to enhance the modulation of the short 
wavelength along the long-wave surface ; however, this enhancement is only slight. 
With the increase of the short-wave steepness, it is shown in figure 17 that the 
relative increase of the short-wave amplitude a t  the crest of the long wave declines 
significantly, while the relative decrease of the short-wave amplitude a t  the trough 
is reduced only slightly. Thus the effect of the short-wave steepness is to reduce the 
modulation of the short-wave amplitude along the long-wave surface. For example, 
for el = 0.30 and e2 = 0.30, the relative increase/decrease of the short-wave 
amplitude at the crest/trough of the long wave is about 45 %/ 12 %O smaller than that 
predicted by Longuet-Higgins (1987). As a result of figures 16 and 17, the modulation 
of the short-wave steepness by the long wave decreases with the increase of the short- 
wave steepness, as shown in figure 18. For el = 0.30 and e2 = 0.30, the relative 
steepening/flattening of the short-wave steepness a t  the crest/ trough of the long 
wave is about 19 %/6 % smaller than that predicted by Longuet-Higgins (1987). 
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Appendix A. Change of the long wave due to the presence of the short 
wave 

The leading order of the zero harmonic short wave (i.e. long wave) is given by 

where A is the amplitude of the long wave. 
At the crest of the long wave, P1 > 0, thus f;'O) < 0. At the trough of the long wave, 

p1 < 0, and C ( O )  > 0. Therefore, <(O) reduces the amplitude of the long wave. In  the 
dynamic boundary condition, g1 5'') plays the role of an additional pressure. 
Considering this additional pressure, we examine the changes of the profile and 
velocity field of the long wave, denoted by Aqd and Aud respectively. The dynamic 
free-surface boundary condition for the long wave may be written as, 

(A 2) 

where = c(') cos6/Ho. (A 3) 

U0(s)*AUd ++(AUJ = U o ( s ) ~ ~ , ~ ~ o ~ .  (A 4) 

1 
y [ U O ( S ) + A U d 1 2 + g ( r d + A r d )  = 91 Y ' o ' + c O ,  

Using (2.19) and the steady solution of the long wave, we obtain, 
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AU, = [(O) x O(ei ei 8) U,(s) or O(e: E, e3) au. (A 5 )  

The corresponding terms neglected in (2.12) and (2.13), are of the order O ( s ~ e ~ e 3 ) a g  
and O(e:eie,)acr respectively. I n  the range of el, e2, e3 defined in (2.1), their order is 
higher than O ( E ~ ) ,  and hence they may be neglected. 

Appendix B. The relationship between the normalized wavenumber lc and 
the wavelength ratio R 

Assume that two short wavetrains ride on the same long wave with the normalized 
wavenumbers k, and k,, respectively. Their wavelength ratios with respect to the 
long wave are R, and R, respectively. According to (4.5), 

where 

k, and k ,  are normalized by their own value a t  the trough of the long wave 
respectively. Subtracting (B 2) from (B 1) then we have 

If both R, and R, are much greater than unity, an approximate solution for (B 4) 

1 1  1 1  
is given by 

kl ' [Rf-Rz/RIRP. - = 91 
k2 

For a long wave with moderate wave steepness, (B 5 )  may be approximated by 

In the case where R, = 100, R, = 90 and el = 0.1, it is estimated that the maximum 
difference between k ,  and k ,  is smaller than Thus, we may conclude that the 
relative variation of the short wavelength along the surface of the long wave with 
moderate steepness is almost independent of its wavelength ratio with respect to the 
long wave. Following the same procedure, a similar conclusion may also be drawn in 
describing the relative variation of the intrinsic frequency and amplitude along the 
long-wave surface. 

Appendix C. Wave action conservation for a weakly nonlinear wavetrain 

for a wavetrain travelling on a slowly varying current : 
Bretherton & Garrett (1969, equation (2.12)) derived the wave action conservation 

d ac 
-(YJ+-Yyb = 0, 
dt ax 
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where 9 is the average Lagrangian density; (r and e are the intrinsic frequency and 
group velocity of the wavetrain, respectively. 

If the wavetrain is steady, (C 1 )  may be written as 

a 
-[[c9u] = 0. 
ax 

Bretherton & Garrett (1969, equation (2.25)) proved that 

E + 9  Yu=-, 
CT 

where E is energy density. 
For a linear wave, the potential energy V and kinetic energy T are equal; hence, 

(C 4) 
E 

9 = T-V = 0. 
zc=-. 

0- 

However, if we consider a weakly nonlinear wave to the second order, 9 = T- V > 0 
for gravity waves. Thus 

E + 9  - 2T 
-40 =--- > 

(r 0- 
- U  

and its kinetic energy T may be expressed by 

2T = #ad12g( 1 +$'k2). (C 6) 

Therefore, for long wave-short wave interaction, (C 2) may be written as 

which is equivalent to (4.12). 
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