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On the Generation of Nonlinear Internal Kelvin Waves 

in a Rotating Channel 

W. K. MELVILLE, l D. P. RENOYARD, AND X. ZHANG 2 

Institut de M•canique de Grenoble, Saint-Martin d'H•res, France 

Recent observations have shown that islands and constrictions may be the sites of significant 
internal wave activity in sea straits. In this paper we examine one generation mechanism: resonant 
forcing by transcritical flow past topography. Experiments were conducted on the large rotating 
platform at the Coriolis Laboratory, Institut de M6canique de Grenoble, Grenoble, France. A slender 
body was towed through a two-layer stratified rotating channel, simulating the flow past an island or 
constriction in a strait. For a range of Froude numbers, blockage coefficients, and rotation rates, 
nonlinear internal Kelvin waves were generated upstream. The dependence of the wave parameters on 
the Froude number, Rossby number, and blockage coefficient was measured. The transition between 
subcritical and supercritical flow is found to occur at Froude numbers greater than unity, to depend on 
the blockage, but to be essentially independent of the internal Rossby radius of deformation. The 
results are compared with recent similar measurements of single-layer flows in nonrotating channels, 
and good agreement is obtained. The nonlinear Kelvin waves which are generated upstream are found 
to be similar in all respects to those described by Renouard et al. (1987). 

1. INTRODUCTION 

Satellite remote sensing and field experiments have shown 
that regions of abrupt topographic change can be the sites of 
significant internal wave activity in the coastal oceans. 
Examples of such topography include sills, islands, sea- 
mounts, and constrictions in straits. In the Strait of Gibraltar 
the exchange flow over bottom topography and past lateral 
constrictions gives rise to periodic generation of internal 
waves that propagate into the Alboran Sea [Kinder, 1984]. In 
the Gulf of California, tidal flows in the channels and past 
islands generate internal waves which are seen to propagate 
into the northern reaches of the gulf [Fu and Holt, 1982; 
Maxworthy, 1981]. If these waves were linear and disper- 
sive, they would decay in amplitude due to dispersion and 
not be of significance far from the generation site. However, 
the possibility that a characteristic velocity of the flow, V, 
which generates the waves may be close to the velocity of 
the nth free mode of the system, c,, makes resonance and 
finite amplitude effects of interest. The proximity to reso- 
nance is quantified by a Froude number, F n = V/c n. If F n is 
unity, the flow is said to be "critical"; if F n is in the 
neighborhood of unity, then the flow is said to be "transcrit- 
ical." In such flows the balance between nonlinearity and 
dispersion then permits the evolution of waves of (almost) 
permanent form which can propagate to large distances from 
the generation site. 

There has been a great deal of interest in recent years in 
the resonant generation of nonlinear waves by moving 
disturbances in nonrotating systems (see Wu [1987] for a 
review), and some work on the forcing of nonlinear Rossby 
waves [Patoine and Warn, 1982; Malanotte-Rizzoli, 1984]; 
however, little has been done on the generation of nonlinear 
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Kelvin waves by such a mechanism. Indeed, the subject of 
nonlinear Kelvin waves in a channel is one of some contro- 

versy. Experiments by Maxworthy [1983] and Renouard et 
al. [1987] show qualitative agreement in many respects but 
also display significant quantitative differences, for example, 
in the rate of decay of amplitude along the wave crest. 
Theoretical work [Grimshaw, 1985] casts serious doubt on 
whether weakly nonlinear Kelvin waves of permanent form 
exist for cases of weak rotation, that is, when the Rossby 
radius is much longer than the wavelength. This conclusion 
is consistent with the results of recent numerical work 

[Katsis and Akylas, 1987]. Most recently, Melville et al. 
[1989] and Tomasson and Melville [1990] have shown that 
Kelvin waves in a channel are unstable to direct and triad 

resonant interactions with Poincar6 waves. 

In this paper we wish to address the subject of the 
generation of nonlinear internal Kelvin waves by resonant 
forcing. In the nonrotating case it is now well known that a 
three-dimensional disturbance moving at transcritical speed 
can generate two-dimensional solitary waves upstream [see 
Wu, 1987; Katsis and Akylas, 1986]. The process by which 
the waves upstream evolve from three to two dimensions 
depends upon the nonlinear speed being a function of the 
wave amplitude. Reflection of the three-dimensional waves 
at the channel wall leads to an increase in amplitude and a 
corresponding increase in speed which ultimately produces a 
wave front normal to the wall [Macomb, 1986]. The process 
is akin to Mach reflection [Miles, 1977]. 

In a rotating channel this reflection process is clearly going 
to be influenced by rotation, and we anticipate that Kelvin 
waves may be generated upstream with the wave amplitude 
varying exponentially across the channel. In view of previ- 
ous experimental and numerical results we anticipate that 
the wave crests may not be normal to the wall but curved, as 
first observed by Maxworthy [1983]. 

The experiments described below were designed to model 
the waves generated upstream by transcritical flow past an 
island or a constriction in a strait. They are of a preliminary 
nature and were undertaken to demonstrate the importance 
of rotation and topography in this class of flows. 
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2. EXPERIMENTS 

The experiments were conducted on the 14-m rotating 
platform at the Coriolis Laboratory, Institut de M6canique 
de Grenoble, France. 

A steel-framed glass channel, 10 m long and 2 m wide, 
fitted with rails at the top of each longitudinal wall, was 
placed on the platform. The width of the working section 
could be set by positioning a movable wall parallel to one of 
the fixed walls of the channel so that the effective channel 

width could be varied between 50 cm and 2 m. For these 

experiments a channel width of 60 cm was chosen. A 
streamlined "ship-shaped" wooden body 60 cm long and 16 
cm in diameter was suspended from a motorized carriage 
driven by a stabilized dc motor. The speed of the carriage 
was chosen by setting the motor controller and checked by 
timing the carriage over a section of the channel. 

In a typical experiment the channel was spun up, and a 
lower saline layer of density P2 was added to a depth of h 2. 
Subsequently, a layer of fresh water of density Pl was slowly 
added (while the channel rotated) to give a total water depth 
of (h 1 + h2) with a typical interface thickness of less than 1 
cm. The carriage was slowly moved to one end of the 
channel, and after all disturbances had decayed, the carriage 
was accelerated to a constant speed V in approximately 1-2 
s and thereafter moved at this speed until it was stopped at 
7 m down the channel. Displacement of the interface was 
measured by three electromechanical interface followers 
[Renouard et al., 1987] fixed across the channel at 7.5 m and 
a fourth at 8.2 m on the right-hand wall to measure the wave 
speed by time delay relative to the followers at 7.5 m. An 
acoustic interface follower was attached to the carriage 
carrying the body at a position 16 cm ahead of the body. The 
combination of fixed and moving interface followers was 
dictated by the need to identify and measure the evolution of 
waves propagating upstream of the body. 

Data were recorded on a digital computer and plotted for 
quality control after each run. Following one run, the body 
was slowly towed back down the channel. This procedure 
was repeated for a set of Froude numbers in the range of 
0.59-1.3. After a set of runs at a fixed rotation rate (or 
Rossby radius) the platform would be very slowly acceler- 
ated or decelerated to a new (fixed) rotation rate, and the 
procedure repeated. This procedure was facilitated by a 
newly installed programmable speed control on the platform, 
which permits rotation periods in the range 18-999 s with a 
fractional error of less than 10 -4 . 

All of the experiments were run with a lower layer depth 
of 26 cm and upper layer depth of 4 cm. In all cases the 
normalized density change across the interface, •p/p = (P2 - 
Pl)/P2, was O(10-2), and the platform rotation periods Tr 
were in the range 50-800 s. 

Since the interface was thin in all experiments, the single 
(internal) Froude number F describing each experiment is 
given by 

F=F1 -= V/cl 

where 

•p hlh2 
½12 -- g 

P hi+h2 

is the phase speed of the first internal mode. Surface wave 
effects were negligible, since the Froude number F 0 corre- 
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Fig. l a. Schematic diagram of the channel and the towed body. 
Note that •/i is the maximum cross-sectional area of the body in the 
ith layer and Si = •i/(Whi) is the corresponding blockage coeffi- 
cient. 

sponding to the long surface wave speed c o was very much 
less than unity. The length scale imposed by rotation is the 
(internal) Rossby radius of deformation R, given by 

where f is the Coriolis parameter. 
The strength of the forcing due to the body is a function of 

the immersion and cross section of the body. Figure la 
shows a schematic of the channel and the body; Figure lb 
shows the displaced volume v as a function of the depth of 
immersion, D. The results of similar experiments in nonro- 
tating systems [Ertekin et al., 1984] show that both the 
amplitude and frequency of generation of the waves up- 
stream increase with the blockage coefficient, defined to be 
the fractional cross-sectional area of the channel blocked by 
the body. Experiments were run with D in the range [4, 13.5 
cm], with most of the experiments run for D = 6.5 or 8 cm. 
Given the other constraints, these immersions were chosen 
to give a forcing sufficient to generate waves which could be 
resolved accurately in the length of the channel. In section 3 
the experimental results will be presented with a parametric 
dependence on D. In section 4 it will be shown that they may 
be interpreted in terms of a modified blockage coefficient $ 
(as derived by Melville and Macomb [1987]), which is a 
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Fig. lb. Immersed volume • of the moving body (in liters) as a 
function of the immersion D (in centimeters). 
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function of St and S2, the blockage coefficients for each 
layer. 

3. RESULTS 

Before undertaking a detailed analysis of the data it is 
worthwhile to show examples of the "raw" data. Figure 2 
shows examples of the measurements with (R, D) = [% 6.5 
cm] and F = 0.79 (Figure 2a) and 0.95 (Figure 2b). Note that 
the upper trace corresponds to the interface measured rela- 
tive to the body, and the lower three traces are from the fixed 
gauges. The time at which the body stops is marked and 
noted as T s. In both cases we see that waves propagate 
upstream of the body while it is moving and separate earlier 
at the lower Froude number. The fixed gauges show that the 
leading waves are two-dimensional and aligned across the 
channel. The number of waves upstream decreases as the 
Froude number increases. 

Figure 3 shows corresponding results with R = 29 cm and 
(D, F) = (8 cm, 0.71) in Figure 3a and R = 28 cm and (D, 
F) = (6.5 cm, 1.02) in Figure 3b. A number of features in 
these figures differ significantly from those in the nonrotating 
case. While waves separate from the body before it stops, 
they are no longer two-dimensional. First, there is a clear 
decrease in amplitude of the leading waves from the right- 
hand wall to the left-hand wall, qualitatively similar to a 
Kelvin wave. Second, the leading wave suffers a phase 
change across the channel similar to that observed in related 
experiments and numerical models of nonlinear Kelvin 
waves described in the introduction. Note also that the 

I I I I ' I 
0 50 I00 150 

TIME ($) 

6- Tr"O D-6.5 F=.95 
4 ' Ts b) 
2 - Xb ß 16 Y ß 23 i 

... 0 • E . 

•- X-750 Y= 58.5 I ,-.•-, .. 
z •/V• - vv 14J - 

m X=750 Y=29 

o 

• •/-VV • 
o 5o ioo 15o 

TIME 

Fig. 2. Records of the inte•ace height variation with time at 16 
cm in front of the moving body (upper record in each figure) and at 
three fixed locations at x = 750 cm from the sta•ing point of the 
body (which moved over 7• cm): at the right-hand wall (y = 1 cm), 
middle (y = 29 cm), and left-hand wall (y = 58.5 cm) of the channel. 
Here &•p = 0.0144, R = •, D = 6.5 cm. Ts is the time at which the 
body stops. (a) F = 0.79. (b) F = 0.95. 
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Fig. 3. Same as Figure 2, but with (a) F = 0.71, •p/p = 0.0154, 
R = 29 cm, D = 8 cm and (b) F = 1.02, •p/p = 0.0140, R = 28 cm, 
D = 6.5 cm. 

leading waves are reflected at (or propagate around) the end 
of the channel and then have the largest amplitude on the 
left-hand wall (see especially Figure 3a). In view of the wave 
decay across the channel we may tentatively conclude that 
Kelvin waves are generated upstream. In view of the wave 
front curvature and previous experiments on unforced 
waves [Maxworthy, 1983; Renouard et al., 1987] we may 
tentatively conclude that the waves upstream are nonlinear. 
The conclusion from these figures is that nonlinear Kelvin 
waves may be generated upstream of a moving disturbance. 
In the remainder of this section we shall expand upon this 
result with a detailed examination of the measurements. 

FigUre 4a shows the amplitude of the leading wave (at the 
center of the channel) as a function of the immersion depth 
for the nonrotating case. There is little dependence of the 
wave amplitude on the immersion depths at subcritical 
Froude numbers. At supercritical Froude numbers the wave 
amplitudes reach a maximum and decline for D = 4 and 13.5 
cm, while they continue to increase for D = 6.5 and 8 cm. 
We shall discuss this behavior below. Figure 4b shows the 
amplitude of the leading wave (at the right-hand side of the 
channel) as a function of the Rossby radius for D = 6.5 cm. 
Within the scatter of the measurements we find a monotonic 

increase as the Rossby radius decreases. Corresponding 
results at the other immersion depths are qualitatively con- 
sistent with these data. 

Figure 5a shows the amplitude of the first few waves for 
D = 8 cm and R = •o. At subcritical Froude numbers there is 

a small decrease in amplitude with the second and subse- 
quent waves. At supercritical Froude numbers the amplitude 
of the second wave decreases rapidly while that of the first 
continues to grow. The corresponding amplitudes for D = 8 
cm and R = 57 cm are shown in Figure 5b, which is 



18,250 MELVILLE ET AL.' GENERATION OF NONLINEAR INTERNAL KELVIN WAVES 

0 
.4 

6 - 

o 
4 

o) 

4-o 

o# 

+ o+ 
o ..• 

+o E 

i i I • 
.8 1 1.2 1.4 

F 

x 

o 

xO x + 
+ 

x o. 
x+ 

o. 

x+ ,x. 'x' 
o* 

+o 

i I i i 

.8 1 1.2 1.4 

F 

Fig. 4. (a) Amplitude A of the first wave recorded at x = 750 cm, 
y = 29 cm (middle of the channel), versus the Froude number for R 
= oo. (asterisks) 8p/p = 0.0160, D = 4 cm; (circles) 8p/p = 0.0144, D 
= 6.5 cm; (plus signs) 8p/p = 0.0160, D = 8 cm' and (crosses) 8p/p 
= 0.0160, D = 13.5 cm. (b) Amplitude Aw of the first wave recorded 
at x = 750 cm, y = 141 cm (right-hand side of the channel), versus 
the Froude number: (asterisks) 8p/p = 0.0144, R = oo; (circles) 8p/p 
= 0.0117, R = 100.4 cm; (plus signs) 8p/p = 0.0145, R = 56 cm; and 
(crosses) 8p/p = 0.0140, R = 28 cm, D = 6.5 cm. 

qualitatively similar to Figure 5a with the exception that the 
second wave is still growing in amplitude at F = 1. 

The time between the first and second waves (an estimate 
of the "period" of generation) for R = o0 and D in the range 
[4, 13.5] cm is shown in Figure 6a. This period of wave 
generation decreases as the critical Froude number is ap- 
proached from below. Corresponding results for D = 8 cm 
and R in the range [29 cm, oo] (Figure 6b) show similar 
behavior (albeit with somewhat larger scatter) with little 
discernible dependence on R. 

The essential nonlinearity of the waves upstream is shown 
in Figure 7 for both nonrotating and rotating experiments. 
The data show the increase in wave speed with amplitude 
corresponding to a two-layer Korteweg-de Vries (KdV) 
model: 

- [hlh2] -I c Cl_«A w 
c] h2 - hi 

where c is the speed and c• the corresponding linear speed. 
The effects of rotation are evident in the decay in amplitude 
along the crest of the leading wave across the channel, as 
shown in Figure 8 for D = 8 cm, R in the range [100, 29 cm], 
and 0.7 -< F -< 0.9. The amplitudes along the crest are 
generally a little higher than 

A(y)/Aw = exp (-y/R) 

This is consistent with earlier experiments on nonlinear 
waves in rotating channels [Renouard et al., 1987]. Similar 
results to Figure 8 are found for 0.9 -< F -< 1.3. As seen 
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Fig. 5. Amplitude A w of the first (asterisks), second (circles), 
third (plus signs), and fourth (crosses) waves recorded at x = 750 
cm, y = 1 cm (right-hand side of the channel), as a function of the 
Froude number: (a) 8p/p = 0.0144, R = o• and (b) 8p/p = 0.0154, R 
=57cm, D= 8cm. 

earlier in Figure 3, the leading waves in the rotating system 
are not normal to the sidewalls of the channel but suffer a 

phase shift across the channel. The role of rotation in leading 
to a phase shift of the leading wave across the channel is 
demonstrated in Figures 9a and 9b, which show the phase 
shift for D = 6.5 cm and R = [o•, 28 cm], respectively, and a 
range of Froude numbers. This effect is quantified in Figure 
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Fig. 6. Time between the first and the second wave recorded at 
a fixed location, as a function of the Froude number: (a) (asterisks) 
/Sp/p = 0.0160, D = 4 cm; (circles) 8p/p = 0.0144, D = 6.5 cm; (plus 
signs) 8p/p = 0.0160, D = 8 cm; and (crosses) 8p/p = 0.0160, D = 
13.5 cm, R = o•; and (b) (asterisks) 8p/p = 0.0160, R = o•; (circles) 
8p/p = 0.0117, R = 100.4 cm; (plus signs) 8p/p = 0.0154, R = 56 cm; 
and (crosses) 8p/p = 0/0154, R = 28 cm, D = 8 cm. 
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Fig. 7. Increase in wave speed with amplitude for both rotating 
(circles, plus signs, crosses) and nonrotating (asterisks) experi- 

i H* ments. The solid line corresponds to (c - cl)/cl = •Aw/H* with 
= hlh2/(h2 - 

9c, where the dimensionless phase shift of the crest is plotted 
as a function of the distance across the channel. In this figure 
the dimensionless scaling due to Zhang [1986] appears to 
collapse the data for D = 6.5 and 8 cm, 0.7 -< F -< 0.9. 
Corresponding data for 0.9 -< F -< 1.3 show much larger 
scatter. The scatter in the results at the larger Froude 
numbers is perhaps due to the fact that the leading wave had 
insufficient time to develop before reaching the fixed inter- 
face followers (see also Figures 9a and 9b). The time at 
which the leading wave reached a maximum at the moving 
interface follower (taken to be the "separation time"), and 
the time of the first maximum at the fixed interface follower 

in the center of the channel, gave an elapsed time which 
could be transformed to a distance Xs using the nonlinear 
wave speed. This is an estimate of the distance traveled by 
the wave after separating from the body. This distance is 
plotted versus Froude number in Figure 10a for R = • and 
shows that for small Froude numbers, Xs is sensibly inde- 
pendent of the depth of immersion. At larger Froude num- 
bers a dependence on D is evident and will be discussed in 
section 4. In Figure 10b, Xs is plotted for all D and R. 
Comparison with Figure 10a shows that there is no discern- 
ible dependence on R for the range of parameters used in 
these experiments. 

Finally, we consider the leading wave profile. In all cases 
the forward face of the wave was well described by a sech2 
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Fig. 8. Decay in amplitude along the crest of the leading wave 
across the channel, for D - 8 cm, 0.7 -< F -< 0.9: (circles)/ip/p = 0 
and 0.0117, R - 100.4 cm; (plus signs) lSp/p = 0.0154, R = 56 cm; and 
(crosses) lSp/p = 0.0154, R = 28 cm. 
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Fig. 9. (a) Plan view of the crest of the leading waves for 
various Frouric numbers. The lower scale and lowest symbol for 
each experiment indicates the Frouric number value, while the 
upper scale (middle of figure) shows the spatial phase shift across 
the channel. Here lSp/p = 0.0144, D = 6.5 cm, R = •o. (b) Here lSp/p 
= 0.0140, D = 6.5 cm, R = 28 cm. (c) Nondimensional spatial phase 
shift across the channel for various radii of deformation, and 0.7 -< 
F -< 0.9: (circles) D = 6.5 cm and (plus signs) D = 9 cm. 

profile (see, for example, Figure 11). However, the KdV 
amplitude-wavelength relationship is not satisfied exactly: 
the wavelength is approximately proportional to the square 
root of the amplitude, but the proportionality constant is 
larger than the two-layer KdV model result (Figure 12) [cf. 
Renouard et al., 1987]. 

4. DISCUSSION 

The results presented above clearly show that nonlinear 
internal Kelvin waves may be generated upstream by flows 
past a constriction or island in a rotating channel. There are, 
as far as we are aware, no theoretical or numerical predic- 
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Fig. 10. Estimated distance X s traveled by the first wave after it 
separates from the moving body, as a function of the Froude 
number: (a) R = o•: D = (asterisks) 4 cm, (circles) 6.5 cm, (plus signs) 
8 cm, and (crosses) 13.5 cm. (b) All experiments for all R and D. 

tions of such flows with which we may compare our results. 
However, some comparisons with the results of single-layer 
nonrotating flows are possible and confirm the quality of the 
data presented here. Furthermore, some physical interpre- 
tation of the data is justified and will be presented. 

Fig. 12. Relation between nondimensional wavelength, L/(• 
hlh2) 1/2 amplitude, Aw/[hlh2/(h 2 - hi)], for all experiments with 
rotation, and D = 8 cm. The solid line corresponds to the KdV 
relation, with a (-1/2) slope. 

In a recent paper, Melville and Macomb [1987] showed 
that the theoretical formulation of a two-layer flow past a 
constriction in a strait could be transformed into an equiva- 
lent single-layer problem with a transformation of variables 
and boundary conditions. In the single-layer case the block- 
age coefficient is just the fractional area of the channel 
occupied by the constriction. In the two-layer case the 
internal mode is not excited by a body having a shape 
uniform with depth through the two layers. 

It is the representation of the geometry of the body in 
terms of the internal (displacement) modes of the wave field 
which leads to forcing of internal waves. Thus in order to 
force a first mode internal wave the width of the body must 
vary with depth so that the effective body geometry over the 
water column has a nonzero mode corresponding to the first 
mode internal wave. For the two-layer case the equivalent 
blockage coefficient becomes 

1 
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Fig. 11. Nondimensional shape of the forward face of the lead- 
ing wave at the three stations across the channel, for 5p/p = 0.0154, 
R = 57 cm, D = 8 cm, and (asterisks) F = 0.64, (circles) F = 1.03, 
and (plus signs) F = 1.26. Solid line corresponds to sech 2 profile. 
Note that the length scale L is given by L 2 = • h•h•/[Aw(h 2 - hl)]. 

h2-h:l 
s- Is2- s,I 

hi + h2 

where h l and h 2 are the upper and lower layer depths, 
respectively, and S• and S2 are the corresponding blockage 
coefficients for each layer. That is, S i is the fraction of the 
cross section of the ith layer blocked by the body. Applying 
this result to our experiments, we find that the equivalent 
blockage coefficients are as shown in Table 1. 

Referring to Figure 4a (R = o•),we see that for fixed F 
there is, within the scatter of the results, an increase in the 
amplitude of the waves generated upstream with increasing 
S. This is consistent with the available numerical and exper- 
imental evidence for the equivalent single-layer case [cf. 
Ertekin et al., 1984; Katsis and Akylas, 1986; Macomb, 1986] 
at subcritical Froude numbers. To demonstrate this, in 

TABLE 1. Depth of the Immersion D of the Body and 
Equivalent Blockage Coefficients S for the 

Two-layer System 

D, cm S 

4 0.10 
6.5 0.13 
8 0.14 

13.5 0.09 
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Fig. 13. Same as Figure 4a with measurements of Ertekin et al. 
[1984, Figure 10] rescaled according to Melville and Macomb [1987] 
for S = 0.09 (curve with squares) and S - 0.14 (curve with solid 
circles). 

Figure 13 we have replotted Figure 4a along with the 
experimental data of Ertekin et al. [1984] for S = 0.09 and 
0.14, the range of blockage coefficients in our experiments. 
The data of Ertekin et al. [1984] have been rescaled accord- 
ing to the transformation of Melville and Macomb [1987] in 
which the displacement is scaled with the quiescent depth 
for the single-layer case and h 1 h2/(h 1 - h2) for the two-layer 
case. We see that our amplitudes are a little below those of 
Ertekin et al., but given the scatter in both sets of experi- 
ments we consider the agreement to be good, especially 
below F = 1. Above F = 1 the data diverge for the higher 
blockage coefficients with the amplitude of the single-layer 
waves being limited by breaking. 

Ertekin et al. [1984] also measured the period of genera- 
tion of waves upstream and presented the data as a dimen- 
sionless time T* = VT/h, where V is the speed of the body, 
T is the period in the frame moving with the body, and h is 
the undisturbed depth. Using the results of Melville and 
Macomb [1987], the equivalent dimensionless time for the 
two-layer case is 

1/2 

where •7 is the gravitational acceleration, •p/p is the frac- 
tional change in density across the interface, and h is the 
total depth of the two layers. From Figure 2 we find that 
T* = 23 (Figure 2 a) and 28 (Figure 2b). The corresponding 
values from the measurements of Ertekin et al. [1984] for 
F = 0.8 and 1 are 23 and 29, respectively. On the basis of the 
above results we conclude that the two-layer experiments in 
the absence of rotation agree well with the available single- 
layer experiments when compared according to the transfor- 
mation of Melville and Macomb [1987]. 

Figure 4a also shows that for fixed S the amplitude of the 
leading wave increases with F to a maximum which is 
dependent on the equivalent blockage coefficient, the maxi- 
mum increasing as S increases. For the smaller S the 
maximum amplitude corresponds to the Froude number at 
which there is a transition from unsteady flow upstream to 
steady supercritical flow in the neighborhood of the body, 
that is, the Froude number Fc at which the leading wave 
begins to travel at the same speed as the body. Figure 10a 

shows that for the smaller values of S, waves do not travel 
upstream relative to the body for F > F c. For the larger 
values of S it appears that Fc may be equal to the largest 
Froude numbers tested; however, at these Froude numbers 
there is some uncertainty, since the waves may not have 
been fully developed before the body stopped. Notwith- 
standing this uncertainty, the transition clearly occurs at 
higher Froude numbers and wave amplitudes for the larger 
blockage coefficients. Thus the transition to supercritical 
flow occurs at Froude numbers greater than unity and is 
dependent on the blockage coefficient. This contrasts with 
the classical use of F = 1 as the boundary between subcrit- 
ical and supercritical flow. 

From Figure 4b it can be seen that for a given blockage 
coefficient the wave amplitude (at the right-hand wall) in- 
creases as F increases and R decreases, reaching a maximum 
at a value of Fc which appears to be independent of R. The 
smallest Rossby radius considered was approximately 50% 
of the channel width and led to increases of wave amplitude 
of approximately 20% (F = 1.15) to 100% (F = 0.6). These 
results emphasize the importance of accounting for rotation 
in the flow in straits when the internal Rossby radius of 
deformation is comparable to or less than the width of the 
strait. For example, in the Strait of Gibraltar the internal 
Rossby radius of deformation may be O(10 km), comparable 
to the width of the strait. 

It is also significant that the time scale for generation of the 
waves upstream may be short compared to the major tidal 
cycles. For example, for dimensionless blockage coefficients 
comparable to those employed here the period of wave 
generation may be O(1 hour) for typical stratifications and 
depths of the coastal oceans (i.e., •Sp/p "• O(10-3), h --• 
O(102) m). Thus care should be exercised in considering the 
time scales over which quasi-steady models of flows through 
straits are valid. 

Finally, we wish to emphasize the important difference 
introduced by rotation. Without rotation, through a process 
of nonlinear reflection at the sidewalls (as described by 
Macomb [1986]) the initially three-dimensional disturbance 
ahead of the body evolves into two-dimensional waves 
spanning the channel. This is clearly shown in Figure 9a, 
where at the subcritical Froude numbers there is no discern- 

ible phase change across the channel. We believe that the 
small changes in the phase at the higher Froude numbers in 
this figure may be due to the fact that the waves may not 
have completely evolved in the available channel length (see 
also Figure 9b). Another explanation suggested by the shape 
for the highest Froude number is that the leading wave is a 
steady bow wake shed by the body after stopping. This 
would be consistent with our earlier discussion of the leading 
wave in the neighborhood of the maximum amplitude, which 
is based in part on the results in Figure 10. When rotation is 
introduced, the waves upstream remain three-dimensional 
and evolve very much like the nonlinear interfacial waves 
observed by Renouard et al. [1987], exhibiting curved fronts 
(compare Figures 8 and 9c) and profiles comparable to 
Boussinesq solitary waves (compare Figures 11 and 12). 
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