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We consider the evolution of weakly nonlinear dispersive long waves in a rotating 
channel. The governing equations are derived and approximate solutions obtained 
for the initial data corresponding to a Kelvin wave. In consequence of the small 
nonlinear speed correction it is shown that weakly nonlinear Kelvin waves are 
unstable to a direct nonlinear resonance with the linear Poincare’ modes of the 
channel. Numerical solutions of the governing equations are computed and found to 
give good agreement with the approximate analytical solutions. It is shown that the 
curvature of the wavefront and the decay of the leading wave amplitude along the 
channel are attributable to the Poincark waves generated by the resonance. These 
results appear to give a qualitative explanation of the experimental results of 
Maxworthy (1983), and Renouard, Chabert d’Hibres & Zhang (1987). 

1. Introduction 
The evolution of weakly nonlinear dispersive long waves in a rotating fluid has 

been the subject of some controversy in recent years. In  the absence of rotation and 
weak transverse effects the subject is well developed, a result of the applicability of 
the Korteweg-de Vries (KdV) equation and its related equations to problems of one- 
dimensional propagation, with the well-known solitary-wave solutions. However, 
Maxworthy (1983) drew attention to the problems associated with rotation in 
oceanographic applications to sea straits and the continental shelves where the 
transverse scales of the topography are not negligible when compared to the Rossby 
radius. Maxworthy conducted experiments on the second-mode waves evolving from 
the collapse of a mixed region in a stratified fluid. The more important features of 
these experiments were the curvature of the wavefronts (in contrast to the 
corresponding straight-crested linear Kelvin waves) and their dissipation along the 
channel, the latter being attributed to vertical radiation of inertial waves. 

In  a very careful theoretical investigation Grimshaw (1985) derived evolution 
equations for weakly nonlinear, long internal waves in continuously stratified fluids 
and found that a t  least two cases could be separated. Strong rotation: the Rossby 
radius is a t  most comparable with the wavelength, and the effects of rotation are 
separable from the effects of weak nonlinearity and dispersion. The wave decays 
exponentially across the channel with the evolution along the channel described by 
a KdV equation. Weak rotation : the Rossby radius is greater than the wavelength, 
and the effects of rotation are not separable. The evolution equation is a rotation- 
modified Kadomtsev-Petviashvili (KP) equation. In no case could Grimshaw 
explain the wave front curvature in the absence of dissipation in a channel of finite 
width. He suggested that the observed curvature could be due to  wave transience 
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associated with dissipation, or geometrical effects associated with the wave source. 
In the limit of infinitely wide channels he concluded that the radiation of Poincart5 
waves with their concomitant transverse energy flux could lead to unsteady Kelvin 
waves with curved crests. 

Recently Renouard, Chabert d’Hi8res & Zhang (1987) conducted a careful set of 
experiments, generating first-mode internal waves in a controlled fashion on the 
large rotating platform at the Coriolis Laboratory, Grenoble. Their experiments 
showed that the decay scale across the channel was the Rossby radius (in contrast 
to Maxworthy) and that the amplitude a t  the wall decayed due to viscous 
dissipation. They too observed the wavefront curvature. The combination of 
dissipation and wavefront curvature is consistent with Grimshaw’s conclusions. 

Katsis & Akylas (1987) solved the rotation modified KP  equation and found that 
the solutions they obtained were qualitatively similar to the observations of 
Renouard et al. (1987). However, there is no dissipation in the equations, so the decay 
along the channel wall in the numerical solutions could not be due to viscosity. They 
did note that the main curved disturbance was followed by smaller amplitude waves 
but did not relate the decay to these waves. The concluded that the weakly nonlinear 
inviscid theory revealed the main features observed by Renouard et al. (1987), and 
that the wavefront curvature is possible because of the attenuation along the 
channel. 

Most recently Grimshaw & Melville (1989) have reconsidered the derivation of the 
rotation-modified KP equation and its integral constraints (cf. Grimshaw 1985). 
They concluded that, owing to the radiation of Poincare’ waves behind the leading 
wave, in general it is not possible to assume that the solutions of the equation are 
locally confined. 

On the basis of the work briefly reviewed above it is difficult to avoid the 
conclusion that weakly nonlinear Kelvin waves may be unstable, in the sense that 
wave solutions of permanent form do not exist?. In this paper we shall show that 
weakly nonlinear dispersive Kelvin waves of finite bandwidth propagating along a 
channel may be unstable through resonance with Poincare’ waves. This is a resonance 
which arises due to the nonlinear correction to the speed of the Kelvin wave and may 
be simply shown graphically. In figure 1 we show the hydrostatic linear dispersion 
curves for Kelvin and Poincard waves in a channel. We also show that a small 
increase in the Kelvin wave speed due to nonlinearity may lead to a direct resonance 
with the linear Poincart5 modes. 

Approximate solutions of a coupled set of evolution equations for the longitudinal 
and transverse velocity, which are asymptotically equivalent to the rotation- 
modified KP equation derived by Grimshaw (1985) and used by Katsis & Akylas 
(1987), are studied. These solutions display the direct nonlinear resonance and the 

t Our use of the term ‘unstable’ requires some clarification as it  departs from the common 
usage. Instability usually describes growing perturbations to an exact solution of the governing 
equations. (However in many cases the governing equations are only an approximation to the full 
conservation laws.) Here we do not establish that there exists a nonlinear Kelvin wave of permanent 
form for the approximate governing equations. We do show that initial disturbances which are a 
rational approximation to Kelvin waves of permanent form for the governing equations, and which 
have a null transverse velocity component, develop a growing perturbation due to interaction with 
other modes of the system. Consequently, the approximate unimodal solution is ‘unstable’. This 
distinction, based on the criterion of existence of an exact solution to approximate equations, is 
often of little practical consequence. For example, it  is well known that there exist exact permanent 
form solutions for nonlinear irrotational inviscid free-surface flows. However, such waves of 
permanent form are not physically realizable in real fluids! 
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FIGURE 1. The dispersion curves for the linear hydrostatic modes of a channel (-) showing the 
possibility of direct resonant forcing of linear Poincak waves by weakly nonlinear Kelvin waves 
(----) having a small positive speed correction. k, denotes the resonant wavenumber of the nth 
Poincare’ mode. 

wavefront curvature evident in earlier laboratory and numerical experiments. The 
evolution equations are solved numerically, giving good agreement with the 
analytical solutions. 

2. The coupled evolution equations 
While the motivation for studying this problem comes from the dynamics of 

internal Kelvin waves, the elements of the problem and its resolution are to be found 
in the corresponding flow of a homogeneous fluid. Therefore we consider the motion 
of a homogeneous inviscid fluid in a rotating channel. The coupled evolution 
equations were originally derived in their non-rotating form by R. Winther (1985, 
personal communication) and subsequently by Macomb (1986) for the rotating case. 
All but the final steps in the derivation of the equations closely follow those of the 
rotation-modified K P  equation which is derived in detail by Grimshaw & Melville 
(1989). In the interests of brevity then we shall simply introduce the scaling and 
quote the final equations. 

We consider the motion of a homogeneous inviscid fluid in a channel of width W 
rotating with angular velocity +j’ about the vertical, z-axis. The walls of the channel 
are parallel to the x-axis and the undisturbed depth of the fluid is h. The dimensional 
variables may be written 

y = ahy’, u = ucou‘, v = uycov’, 

(2.1) 
I 

where (u,v) is the first-order, depth-independent velocity vector, y is the surface 
displacement, u is the nonlinear parameter, c,, is a characteristic phase speed, k-’ and 
1-’ are characteristic scales along and across the channel and y = I lk .  In order to 
introduce weak nonlinearity, dispersion, transverse variation and rotation at the 
same order in the evolution equations we choose 
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such that a, /3 and r a.re each of the same order and much less than unity. Here a is 
a typical wave amplitude. This corresponds to  the case of weak rotation considered 
by Grimshaw (1985). 

Following thc derivations cited above we obtain the couplcd set of evolution 
equations for the longitudinal and transverse velocity components 

(2 .3a)  

v,+u,+u = 0, (2.3b) 

Ut + u, + ~auu,  - i/3UZZt + - v] = 0, 

with the boundary conditions at the channel walls 

v = O  a t y = O , W ,  ( 2 . 3 ~ )  

where to the first order we consider only waves propagating in the positive x- 
direction. 

The linearized form of these equations has the dispersion relation 

m2[ 1 + &?k2] - o k  - $r[lz + I ]  = 0, (2.4) 

where u, v - ei(kxfzy-wt). The primary root of this equation has w = O(1)  and 
corresponds to the linear Kelvin (1 = i )  and Poincark modes ( 1  = nn/W, n = 1 ,2 , .  . .) 
propagating along the channel in the positive x-direction. This root avoids the 
singularity a t  k = 0 in the linearized K P  equation. However, a second mode given by 

exists when k scales with unity, and this corresponds to the conservation and 
stationarity of potential vorticity in the exact linear problem (cf. Grimshaw & 
Melville 1989). Hence in this formulation these wave components propagate slowly 
to the left unless (P + 1 )  = 0,  in which case they are stationary and the primary mode 
is the linear Kelvin wave. 

3. Stability to direct nonlinear resonance 
3.1. First-order Kelvin wave solution 

We take the initial data of the system (2 .3a,  6 ,  c )  to correspond to a solitary Kclvin 
wave, with u exponentially decaying in the transverse direction and v zero 
everywhere. In  what follows we show this wave to be unstable due to generation of 
Poincar6 waves, thus showing that no steady solitary Kelvin wave solution exists for 
(2.3a, b,  c) .  

With this choice of the initial conditions the first-order initial perturbation 
potential vorticity is zero, i.e. 

QO(X,Y) = [21,--,-UIt=o = 0 (3.1) 

and the constraints on the initial conditions discussed by Grimshaw & Melville (1989) 
are satisfied. 

With this in mind, we separate u into a Kelvin wave part and a Yoincard wave 
part, writing 

u(x, y, t )  = a(x, t )  e-?'+ &(x, y, t )  

and assume that E < 1, fi = O( l ) ,  which can be shown to hold a posteriori for small t 
by a proper choice of initial conditions. 

Subsituting this expression into (2.30,) and multiplying by c3-Y (which is an 
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integrating factor for v) we integrate the resulting equation over the channel width, 
using the boundary conditions ( 2 . 3 ~ )  to cancel terms involving v. This gives 

(at +a,- &?ti,,,) a( 1 - ePzW) +gaaa,%( 1 - e-3W ) 
f W  f W  

Anticipating the resonance mechanism described above we expect that to leading 
order .ii will be dominated by Poincar6 waves travelling a t  the same speed as C, thus 
we expect (a/at+a/az) C = O(a) ,  which is true for the first-order solution. Equation 
(3 .3)  then becomes to order (a,P) 

at + a, + asaa, - @ G ~ ~ ~  = 0, (3.4) 

where (3.5) 

is a parameter describing the combined effects of nonlinearity, rotation and finite 
channel width on this first-order solution. (cf. Grimshaw 1985, equations (5.2) and 
(5.4a)). 

t i (z, t )  = a sech2 [ r$r (z - ct)]  , (3 .6a)  

where c = l++sa. (3 .6b)  

Thus the leading-order solution is a solitary wave as in the non-rotating case but with 
a modified lengthscale and speed. This solution is the same as that found by Zhang 
(1986) and Grimshaw (1985) for the case of strong rotation. 

Equation (3.4) has the solution 

3.2.  Direct resonance 
The leading-order solution is a wave of permanent form propagating with a speed c 
larger than the linear Kelvin wave speed and may therefore force the linear Poincar6 
modes of the channel a t  resonance as was explained in figure 1. 

Combining ( 2 . 3 ~ )  and (2 .3b)  gives 

v t t + v 5 t - ~ P z ) x x t t + ~ ~ ( ~ - v 2 ) y y )  = $a 1 + -  [uu,]. (3 .7)  ( 8 
For small t ,  and to the leading order, the right-hand side will be 

$a 1 +- [uu,] x -$uaa, ec2". (3 .8)  ( 3 
In order to solve for v we decompose into a Fourier series in y and a Fourier 

integral in 2, writing 
m f m  

v(x, y ,  t )  = Z I-, % ( K ,  t )  eix(x-ct) dK sin (3 .9a)  
n-1 

and (3.9b) 

where we have chosen the sine series in y in accordance with the boundary conditions 
on v. Here we have accounted for the anticipated growth of V in time due to resonant 
forcing but neglected the corresponding slow decay of a, and thus expect this 
solution to be good for small t only. 
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Substituting (3.9a, b)  into (3.7) and solving for V,(K, t )  using the initial conditions 
v = vt = 0 a t  t = 0 we get 

where 

1 V,(K, t )  = F(K, n) 
r2 -r1 

(3 .10~)  

(3.10b) 

Note that rl  = O(a)  and r2 = O(1). Using this expression for Vn(., t )  the full solution 
for v(x,y,t) can be written as 

(3.11) 

Here the first term represents the forced steady-state solution, while the second and 
third terms represent free wave transients due to the initial conditions, with wl, 2 ( ~ )  

the frequencies of the Poincar6 and potential vorticity modes described in $2. 
The group velocity of the transient Poincar6 modes is smaller than that of the 

leading wave, as can clearly be seen from the dispersion curves in figure 1.  (The same 
applies to the potential vorticity mode, see (2.5)). As a result, with increasing time 
the transients will radiate away from the leading wave and the non-resonant solution 
will approach the steady-state solution, which is in phase with the forcing, -fXx. 
However, the Poinear6 waves having the same phase speed as the leading wave will 
be forced a t  resonance and thus generated continuously in time. As K approaches the 
resonant wavenumber of the nth Poincar6 mode (K , ) ,  i.e. as 

- K z c 2 ( 1  +$~K~)+K~c+$ I ' [~  + (nx /W) ' ]  + O  

(cf. (2.4)) we get 

(3.12) 

where the last term represents secular growth of the Poincar6 wave in time. We 
notice that due to the factor i ,  these waves will be in quadrature with the forcing. 

The sine series expansion of the forcing (3.9b) induces the Gibbs phenomenon, i.e. 
non-uniform convergence in y with b, N n-l for large n. Examining the solution for 
V,(K, t), from (3.10a, b )  we see that away from the resonance V, - b,nF N n-3 for 
large n. As the resonance is approached we get from (3.12) V, + b n / K n  - n-:, using 
K ,  - d, which is valid for large n. Thus the sine series expansion of v (3.912) is 
uniformly convergent, justifying the term-by-term differentiation used to obtain 
(3.10). 

This analysis shows the leading-order Kelvin wave solution for u to be unstable 
owing to resonant forcing of the transverse velocity associated with the linear 
Poincar6 modes of the channel. We anticipate that energy will be transferred 
continuously from the Kelvin wave to the Poincare waves resulting in the decay of 
the first as the latter increases with time. 
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3.3 Wavefront curvature 
Substituting (3.2) into (2.3b) we get 

ut + €(ii + ?zg) = 0. (3.13) 

Taking the initial conditions for u to satisfy ( 3 . 6 ~ )  (i.e. ii = 0 initially), we solve for 
.li: from (3.13) with v given by ( 3 . 9 ~ )  and (3.10). Writing 

and substituting into (3.13), we solve for A,(K, t )  and B,(K, t )  to get 

with V,(K,~)  given by (3.10). For wavenumbers away from the resonance, i.e. for 

(3.16 b)  

using rlr2 = O(a),  as can be seen from ( 3 . 1 0 ~ ) .  Thus we choose e = O(a)  to be 
consistent with the assumption that ii = 0(1) which was made in deriving the 
leading-order solution. 

As we approach the resonant wavenumber, (3.12) gives 

fort  2 1, 
d V l d t  _ -  1 

V , ( K ,  t )  = O(a) t ,  A - Y, t 
(3.17a, b)  

which shows that the assumption of ii = O(1) will be satisfied for t < O(1) only. 
However, this condition on t is very restrictive since 6 will only be growing linearly 
in time for wavenumbers close to the resonance but will remain small for all other 
wavenumbers. Thus we expect this analysis to be good for t somewhat larger than 
O(1) .  

As t increases the dominant terms in (3.15) will be 

(3.18) 

i.e. only wavenumbers close to the resonance of each transverse mode will contribute. 
For wavenumbers away from the resonance the solution for u approaches the 

steady-state solution, which is in phase with -%tix, as discussed in $3.2. The 
corresponding .li: is then in phase with [f&iizlt, which is symmetrical around the crest 
of the leading wave. However, close to resonance the dominant terms in v are due to 
the secularly growing Poincar6 waves, which are in quadrature with the forcing, thus 
the corresponding will be out of phase with [%tiz],. In  figure 2 we show how this will 
lead to  an apparent curvature of the wave front as the Poincar6 waves are 
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FIGURE 2. A sketch of the longitudinal and transverse structure of the leading wave and the first 
Poincar6 mode, to explain the apparent curvature of the wavefront away from the wall as the two 
are added. Note that as y increases the decay of the Kelvin wave plus the longitudinal and 
transverse structure of the Poincar6 wave lead to a curvature of the leading crest. 

superposed on the leading-order wave. In  this simplified example we consider only 
the first transverse mode (which typically dominates over the higher modes). As we 
move away from the right-hand wall the Poincar6 wave amplitude becomes 
comparable with that of the Kelvin wave, leading to the backward curving of the 
crest away from the wall as the two are added. 

Figure 3 shows an example of superposing the full solution for G(x, y, t )  on the 
straight-crested leading wave, a(x,  t )  e-u, using parameters typical of the numerical 
solutions given in $4. Here a(x, t )  is calculated according to (3.6a, b)  and G(x, y, t )  is 
calculated from (3.15), using Y n ( ~ ,  t )  as given by (3.10a, b ,  c).  The resulting wave has 
a wavecrest curved backwards away from the wall, in good qualitative agreement 
with experiments and numerical solutions to be introduced in $4. 

The shape of the curved wavecrest is very sensitive to changes in the phase of Ti. 
A direct comparison of these approximate solutions with numerical solutions showed 
small phase differences in .ii: leading to  a slightly wider and flatter wavecrest in the 
approximate solutions than in the numerical solutions. These differences were 
attributed to the small but cumulative effect of our assumption of constant leading 
wave speed (cf. figure 8). 

4. Numerical solutions 

Before solving (2.3 a, b)  numerically, we renormalize using the scaling 
4.1. Wave evolution 
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FIGURE 3. Contour maps of a typical analytical solution for u, showing the apparent cwwaturr of 
the wave as the Poinear6 modes are superposed on the straight-crested Kelvin wave. This and 
subsequent figures employ the units defined by (4.1) unless otherwise stated. ( a )  @ ( ~ , t ) e - ~  with ti 
given by (3 .6a ,  b ) ;  ( b )  S(r,y,t) calculated from (3.15); (c) u(z,y,t) = u ( ~ , t ) e - ~ + J ( z , y , t ) .  
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FIGURE 4(a). For caption see facing page. 
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where primes denote the new non-dimensional variables. This gives the equations 

Ut+U,+UU,-uU,,t+vy-v = 0, ( 4 . 2 ~ )  

v,+y(u+u,) = 0, (4.2b) 

(4.34 

U ( 0 ,  y, t )  = U P ,  y, t )  = 0, (4.3 b )  

where L is the length of the channel used in the numerical solutions. Initial 

with boundary conditions 
v(z, 0, t )  = v(2, w, t )  = 0, 

., 
conditions are as described in $ 3 :  

u(x,  y, 0) = a sech2 [ ($ (x- Xd] e-", (4.4a) 

v(x, y,O) = 0. (4.4b) 

Here y = &r,B and the primes have been dropped for convenience. 
Using the finite-difference, staggered-mesh scheme, as proposed by Winther (1985) 

and described by Macomb & Melville (1987), we obtain second-order accuracy in both 
space and time. Here we present detailed results from one run with R/W = 0.5. 
Results from runs with different rotation rates (R /W = 1.0 and 2.0) were consistent 
with this case. We take h/W = 0.05 and L / W  = 10, where R, W ,  h, L are the 
dimensional Rossby radius, width, depth and length of the channel, respectively. In 
this run a = 0.3, Ax = 0.25 and Ay = At = 0.1. 

In figures 4 and 5 contour plots of the solutions for u and v are shown a t  four 
different times. Consistent with the experimental and numerical results described in 
$ 1  we see a solitary wave with a crest curved backwards, followed by a train of 
smaller amplitude waves. We notice that the transverse structure of v is dominated 
by the first transverse mode, especially in the leading wave. This feature was even 
more evident in runs with lower rotation rates. 

Figure 6 shows the decay of the amplitude of u across the channel, both normal to 
the wall (from the point of the maximum amplitude a t  the wall), and along the crest 
of the wave. This is compared to  the linear Kelvin wave decay at two different times. 
For the large time the decay normal to the wall is close to  the linear decay, while the 
decay along the crest is considerably slower ; this was even more evident for slower 
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FIQURE 4. Contour maps of the solution for u with R/W = 0.5 at four different times. (a) t = 0 ;  
( b )  60; (c) 160; ( d )  350. 
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FIGURE 5. Contour maps of the solution for v at the same times as given in figure 4 for u, 
except the initial conditions are not shown (v = 0 initially). (a) t = 60; (a) 160; (c) 350. 
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FIGURE 6. The decay of the amplitude of the leading wave across the channel, both normal to the 
wall from the point of maximum amplitude at the wall (..---), and along the wavecrest (-). Also 
shown is the linear Kelvin wave decay (----). (a )  t = 60; ( b )  350. 

rotation rates. This can be attributed to  the superposition of the forced Poincar6 
waves on the Kelvin wave: as we move away from the wall the Poincard wave 
amplitude becomes comparable with the Kelvin wave amplitude (cf. figure 3 and $3). 

The maximum amplitude of the leading wave a t  the right-hand wall is shown in 
figure 7 as a function of time for three different rotation rates. Again this is in 
qualitative agreement with the experimental results described in $ 1, and in the 
absence of viscous damping the leading wave decays in amplitude as i t  propagates 
down the channel. The decay depends on the rotation rate. For the slowest rotation 
rate the amplitude increases far down the channel. Again, this can be attributed to  
the superposition of the forced Poincard waves on the leading-order Kelvin wave. 

Finally, in figure 8 we show the location of the leading wavecrest a t  the wall versus 
time, the slope of this line giving the propagation speed. This is shown for R /  W = 

0.5 only; for lower rotation rates the speed increases slightly, consistent with (3.6b).  
For comparison we have also plotted lines corresponding to a constant speed of 
propagation for the initial conditions using equation (3 .6b ) ,  and for the linear wave 
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FICPRE 7. The attenuation of the maximum amplitude of the wave a t  the right-hand wall versus 
distance along the channel, shown here for three different rotation rates : -, R /  W = 0.5; 
1.0; '.".. 2.0. 
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FIGITRE 8. Position of the maximum of the leading wave at the right-hand wall versus time. -, 
measured from the numerical solutions (note the slight decrease in speed with time); ----, the 
constant nonlinear speed predicted from the initial conditions by (3.6.b); .-.., the linear wave speed. 

speed. We notice that the computed speed decreases slightly with time, owing to the 
decreasing amplitude of the leading wave, again consistent with (3 .6b) .  

4.2. Resonant forcing of Poincare' waves 

In figure 9 the longitudinal wavenumber spectra of the first three transverse modes 
of v are shown a t  four different times. The spectra are obtained from the numerical 
solutions for v by first taking the Fourier-sine transform in y and then Fourier 
transforming each transverse mode in x, using a standard FFT algorithm. As time 
increases thc resonant forcing of v is evident with the bandwidth of the spectra 
decreasing and the peaks tuning to  the predicted resonant wavenumbers. In  table 1 
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FIQURE 9. The longitudinal wavenumber spectra of the first three transverse modes of w, obtained 
from the solution for w by first taking the Fourier-sine transform in y and then Fourier transforming 
each mode in 2: -, n = 1 ; ----, 2;  ....., 3. (a )  t = 60, (b)160, (c) 250, ( d )  350. (Note that in this 
and subsequent figures k is scaled by W-l, whereas in the governing equations separate longitudinal 
and transverse lengthscales are employed.) 

Computed kW 

n Predicted kW t = 60 t = 160 t = 250 t = 350 

1 8.2 7.1 7.6 8.0 8.1 
2 12.3 10.6 11.7 12.0 12.2 
3 15.7 13.8 14.6 15.4 15.6 

TABLE 1. Resonant wavenumbers predicted from initial data and the wavenumbers of the 
peaks of the computed spectra of v 

the observed wavenumbers of the peaks are compared to the predicted resonant 
wavenumbers. The agreement between predicted and observed values is very good, 
especially as t increases. 

In figures 10 and 11 we compare the computed growth of individual components 
of v to the solution given by (3.10). This is done for the first two transverse modes 
and two different longitudinal wavenumbers : one close to the resonant wavenumber 
of the first mode, and the other close to the resonant wavenumber of the second 
mode. Recall that owing to the slowly changing nonlinear wavespeed the exact 
resonance wavenumber is not well defined. Again, the agreement is very good, 
especially for small t .  

Finally in figure 12 we compare the predicted spectra of individual transverse 
modes a t  a given time against corresponding spectra from the numerical solutions. 
This is done for t = 120 and the agreement is good; however, as time increases we 
expect increasing errors, as can be seen from figures 10 and 11. 

Thus we conclude that the analysis given in $ 3  quantitatively describes the 
evolution of the numerical solutions, i.e. the leading-order Kelvin wave is unstable 
owing to resonant forcing of the linear PoincarQ waves. 
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FIGURE 10. Growth of individual Fourier components of ?I as predicted by (3.10n. h,  c) (-), and 
computed (*), for the first two transverse modes at kW = 8.0 (close to the resonitlice of the first 
transverse mode). (0,) First transverlie mode ; (6)  second transverse mode. 

4.3. Wavefront curvature 
From the numerical solution for v we can compute ii from (3.15) and subtract this 
from u to give the first-order solution. In figures 13 and 14 we show contour plots of 
d and u-lii a t  two different times, using only the first three transverse modcs for v 
and C. 

In the solution for d ,  as well as v, the Poincard wave structure is evidmt (cf. Gill 
1982, figure 10.2). As t increases the Poincard wave wake increases in length owing 
to the lower group velocity of the Poincare’ waves compared with the leading-order 
Kelvin wave (as may be seen from the dispersion relationship in figure 1). 
Subtracting lii from u gives a straight-crested wave consistent with the analysis in $3.  

a t  the wall ( A )  
(defined as twice the distance between the point of the maximum amplitude and the 
point ahead of the crest where the amplitude is half the maximum amplitude) to the 

To check the shape of the profile we compare the wavelength of 
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FIGURE 11. Same as figure 10, except kW = 12.0 (close to the resonance of the second transverse 
mode). (a )  First transverse mode; ( b )  second transverse mode. 
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FIQURE 12(a). For caption see facing page. 
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FIGURE 12. Longitudinal wavenumber spectra of individual transverse modes of v predicted by 
(3.10a, b, c) (----), and computed (-), at t = 120. (a )  First transverse mode; (b )  second 
transverse mode. 
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FIGURE 13. Contour maps of the solutions for (a )  i? and (b )  (a-ii) at t = 60. ii is calculated from 
(3.15) using the numerical solution for v. 
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FIGURE 14. Same ay figure 13 except t = 350. 

wavelength predicted by (3.6,). In  figure 15 we plot A-' vs. at, where a is the 
amplitude a t  the wall. The agreement is good. 

In figure 16 we plot the speed correction as measured from the numerical solutions 
against the amplitude a t  the wall and compare to the predicted relationship from 
(3 .6b) .  The agreement is fairly good; the difference can be attributed to difficulties 
in estimating the small nonlinear speed correction from the numerical solutions, due 
to the discreteness of the solutions. 

5.  Discussion 
For reasons of simplicity and exposition we have considered the stability of 

barotropic Kelvin waves although as stated earlier the original motivation for this 
work came from the baroclinic problem. It may be shown (Tomasson 1988) that  there 
is a complete equivalence between the single-layer case treated here and a 
corresponding two-layer flow. It is of interest then to ask whether the instability we 
have examined is likely to occur in natural flows. To this end we have taken 
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FIGURE 15. The wavelength of the leading-order wave, A ,  predicted by ( M a )  (-), and 
computed for u--4 (*). 
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FIGURE 16. The nonlinear speed correction predicted by (3.66) (-), and derived from the 
numerical solutions (*). 

parameter values appropriate to a two-layer model of the Strait of Gibraltar, as 
presented in table 2. 

These data have been used to generate figure 17, which shows the dispersion curves 
for the hydrostatic baroclinic Kelvin wave and the first five Poincark modes for the 
channel. We see that the nonlinearity is sufficiently strong to excite Poincar6 waves 
whose length along the Strait is comparable with the width of the Strait. This would 
remain so even if the nonlinearity were reduced by a factor of two or three. The 
parameters for the Strait of Gibraltar then are comparable with those in the 
numerical solutions presented in 94, and thus we expect that  the resonance described 
here may be observable. 

Of course, no naturally occurring strait has homogeneous boundaries and the 
reference state is usually not quiescent, involving both baroclinic and barotropic 
flows. In this case waves of the kind studied here may evolve upstream of 
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Upper layer depth, h, 
Lower layer depth, h, 

100 m 
400 m 

Normalized density difference, Aplp 0.002 

Linear phase speed, co = 1.25 m s-' 

Rossby radius, c,/f 15 km 
Approximate channel width, W 20 km 
Approximate channel length, L 40-80 km 
Wave amplitude, a 40 m 

Nonlinear speed, c = e, i . i i c o  

1.15 

TABLE 2. Parameters estimated for a two-layer model of the Strait of Gibraltar 

w n = 5  - 
f 

10- 
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4 2 -  

0 k ,  10 k* 20 
kW 

FIGURE 17. The dispersion curves for the hyrostatic baroclinic Kelvin wave and the first five 
Poincare modes of a channel, together with the nonlinear Kelvin wave, using parameters estimated 
for the Strait of Gibraltar. 

constrictions (or inhomogeneities) in the strait when the flow speed is close to the 
linear Kelvin wave speed as shown by Melville, Itenouard & Zhang (1988). 
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