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The primary objective of this paper is to provide a detailed confirmation of the 
validity of potential-flow theory for describing steep gravity waves produced in an 
experimental tank. Very high-resolution computations are carried out which use a 
refined mixed Eulerian-Lagrangian solution scheme under the assumptions of 
potential flow. The numerical results for a plunging breaker produced by a 
programmed piston-type wavemaker are found to be in excellent agreement with 
tank measurements up to and including overturning. The calculated free-surface 
elevations are almost indistinguishable from measured profiles, even close to where 
the wave plunges. The horizontal and vertical water-particle velocities measured 
with a laser anemometer throughout the water depth at two longitudinal stations are 
also well predicted by the theory. In  contrast to the fully nonlinear theory, 
predictions based on linearized theory become poorer as the wave packet moves 
down the tank. To allow other investigators to evaluate the computations and 
experiments, the Fourier amplitudes and phases which completely specify the time 
history of the wavemaker’s velocity are given in Appendix B. 

1. Introduction 
Ever since the work of Ursell, Dean & Yu (1959), who compared the waves created 

by a piston wavemaker to theoretical predictions based on linearized equations, the 
validity and limitations of classical small-amplitude wave theory have been well 
established. In  particular, they found that for small wave steepness, H / h  < 0.03, 
(wave height H ,  wavelength A ) ,  the error in the wave height in front of the 
wavemaker is of the order of 3 YO, although for steeper waves (0.045 < H / h  < 0.048) 
the deviations, presumably primarily due to nonlinearity, can be as much as 
10%. 

In the present work, we aim to verify against carefully controlled experiments in 
a wave tank the validity of fully nonlinear potential-flow theory for steep gravity 
waves up to and including overturning. Surface tension is ignored. Specifically, we 
consider the problem of a single plunging breaker created downstream of a piston 
wavemaker. The breaking wave is produced by generating a spectrum of waves 
whose phases are adjusted so that their superposition gives rise to  a rapid increase 
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in wave amplitude a prescribed distance away from the wavemaker (Longuet- 
Higgins 1974; Greenhow et al. 1982). 

This research is motivated by recent experimental work on breaking waves (Chan 
1985; Melville & Rapp 1985; Rapp 1986), and the successful application of the mixed 
Eulerian-Lagrangian method of Longuet-Higgins & Cokelet (1976) to the study of 
two-dimensional periodic breaking waves. In  many of the investigations to date (e.g. 
Vinje & Brevig 1981 ; New, McIver & Peregrine 1985), improvements of the method 
have been developed for studying spatially periodic waves but with no surface- 
piercing boundaries. 

At the intersection of a body with a free surface, i.e. the contact point, there exists 
a weak singularity due to the confluence of boundary conditions. This has been 
studied by several authors, and is reviewed, for example, by Dommermuth & Yue 
(1987). For a wavemaker started impulsively, D. H. Peregrine (1972, unpublished 
notes) showed that to leading order in a small-time expansion the surface elevation 
behaves like t log (tanh (nx/4h)), where t is time, x (x > 0) is the horizontal distance 
measured from the wavemaker, and h is the water depth. Lin (1984), who considered 
the nonlinear wavemaker problem, proposed an effective numerical treatment a t  the 
contact point and obtained results near the wavemaker which confirmed Peregrine’s 
leading-order solution, and which also agreed well with experiments for both 
impulsively started and sinusoidally driven pistons. Significantly, Lin’s approach 
eliminated the need for extrapolation (Vinje & Brevig 1981) or even experimental 
input (Greenhow et al. 1982) to fix the locations of the intersection points to obtain 
acceptable results. 

In almost all these numerical studies, high-wavenumber instabilities of the free 
surface occurred unless special treatment such as smoothing was used. Following 
Fink & Soh (1974), Dommermuth & Yue (1987) in their studies of the nonlinear 
axisymmetric waves implemented a regridding algorithm which effectively removed 
the instabilities without causing additional problems at the intersection points which 
smoothing did. 

In  the present numerical simulation, we adopt many of these developments in a 
refined semi-Lagrangian scheme which uses the Cauchy-integral formulation of Vinje 
& Brevig (1981), the wavemaker and free-surface intersection-point treatment of 
Lin, Newman & Yue (1984), and the regridding idea of Dommermuth & Yue (1987). 
Like Longuet-Higgins & Cokelet (1976), a dynamically controlled time-stepping 
procedure is used to capture the large accelerations in the breaking wave. A high- 
resolution computation is then performed using only the displacement of the 
wavemaker in the experiment as input. The numerical simulation compares 
extremely well with the experimental measurements for the free-surface elevations, 
and the horizontal and vertical velocities below and above the still-water level. These 
comparisons confirm the validity and usefulness of such nonlinear potential-flow 
computations for predicting overturning waves (up to re-entry) and surface jets in 
the ocean environment. 

After establishing the accuracy of the numerical simulation, several interesting 
results not readily measurable from the wave tank such as the work done by the 
wavemaker, the energy in the fluid, and the velocities and accelerations of free- 
surface particles in the plunging jet are studied to  illustrate salient features of the 
deep-water breaking wave. 

Section 2 describes the experimental set-up and measurements for breaking waves 
in a tank, $ 3  gives a short summary of the mixed Eulerian-Lagrangian formulation 
for fully nonlinear potential flow, and $4 details the numerical implementation. 
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Extensive comparisons between the experiments and computations for the case of a 
single plunging wave are given in $5 which also contains other computed results for 
the breaking wave. 

2. Experiments 
The experiments are conducted a t  the Ralph M. Parsons Laboratory of MIT in a 

glass-walled channel 25 m long, 0.7 m wide, filled to a depth of 0.6 m with fresh 
water. A wooden beach of slope 0.1 covered with 5 cm thick fibrous mats dissipates 
the waves a t  the far end of the tank so that less than 4% of the incident-wave 
amplitude is reflected. The beach toe is 19.5 m from the rest position of the paddle 
and extends to 25 m at  the waterline. Measurements are completed before the most 
energetic wave frequencies are reflected back to the measurement point, thus further 
reducing the influence of reflections. 

The channel is equipped with a servo-controlled, hydraulically activated 
wavemaker driven under program control. The hydraulic cylinder moves a rigid 
vertical bulkhead horizontally, so that the velocity a t  the paddle is uniform with 
depth. The paddle is supported on springs and sealed on the sides and bottom with 
rubber wipers. The input to the wavemaker is computed taking account of the 
transfer function of the entire wave-generator system. For these experiments, the 
input to the wavemaker is thirty-two equally spaced components in the range 
0.56-1.2 Hz. The spectrum is flat except a t  the ends where it is tapered to zero, and 
the phases are chosen according to linear theory such that they are the same at  a 
prescribed point down the channel. 

The free-surface displacement is measured with a set of surface-piercing resistance- 
wire wave gauges, attached to Danish Hydraulic Institute (model 80-74G) a.c. 
bridges. The complete wave-gauge system has a resolution of O(O.01 cm). 
Simultaneous horizontal and vertical fluid velocity components are measured with a 
laser anemometer operating in the dual-beam backscatter mode with counter data 
processors. The system uses a LEXEL 95-2 argon-ion laser and ThermoSystems Inc. 
optics which is functionally equivalent to the TSI model 9100-7 laser-anemometer 
system. The water in the channel is seeded with silicon carbide particles of 1.5 pm 
mean diameter. Measurements are taken through the glass sidewall of the channeI, 
with the measuring volume well outside the sidewall boundary layer. Typical r.m.s. 
noise levels for the velocity measurements are O(O.l cm/s). 

The ' top-hat ' spectrum to the wavemaker is characterized by three dimensionless 
parameters measuring the amplitude, bandwidth and phase (Melville & Rapp 1985) 
scaled with the centre frequency. It is found that the strength of breaking is most 
sensitive to changes in the amplitude parameter (Chan 1985; Rapp 1986) and in these 
experiments i t  is chosen to give a single plunging wave. The wave plunges, that is 
the forward face touches the forward trough, at approximately 7.25m from the 
paddle a t  a time approximately 12.9 s from the paddle start. The wave gauges are 
positioned at x = 1.9, 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.1 and 7.3 m (see figure 3a).  The 
velocities are measured a t  x = 3.0 and 5.0 m from near the bottom of the tank to 
above the still-water level. Measurements are obtained from repeated runs of the 
experiment, which is repeatable to within 0.01 s over the duration, and to within 
- + 2  cm horizontally over the distance to breaking. Complete details of the 
experimental procedure can be found in Chan (1985) and Rapp (1986). 
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3. Mathematical formulation 
The mathematical formulation we use is similar to Vinje & Brevig (1981) and is 

outlined here for completeness. The physical problem is formulated as the irrotational 
flow of an homogeneous, incompressible, and inviscid fluid in a two-dimensional 
rectangular tank of length L(t) with a vertical piston wavemaker a t  one end. Surface 
tension is not considered. We define Cartesian coordinates with the origin at  the 
intersection of the undisturbed water surface (y = 0) and a t  the rest position of the 
wavemaker (x = 0 ) ,  with y positive up. For simplicity, the units of length, time, and 
mass are chosen so that the initial depth of the water, the gravitational acceleration, 
and the fluid density are all unity. We define the complex potential 

pcz, t )  = $(x,  y> t )  + i$@, y, t ) ,  (3.1) 

where z = x+iy. Since both the velocity potential $ and the stream function $ are 
solutions to Laplace’s equation in the fluid domain, the Cauchy integral theorem can 
be applied to give 

27cip(5, t )  = lc m d z ,  (3 .2)  
z - Y  

where the contour of integration, C(z, t ) ,  is a closed path which includes the 
wavemaker B, the free surface F ,  the far end of the tank (x = L )  B,, and the bottom 
(y = - 1) B,; and 5 is inside C. On the wavemaker, which is vertical, the horizontal 
velocity U ( t )  is prescribed and the stream function is given by 

4 = U ( t )  (y+ 1) on B(x, t ) .  (3.3) 

(3.4) 

Similarly, on the bottom and the vertical wall a t  the end of the tank the condition 
of no normal flux gives $ = 0  onB,,B,. 

On the free surface, the kinematic boundary condition can be written as 

( 3 . 5 ~ )  

where DIDt E a/at+Q$.V is the material derivative, and an asterisk denotes a 
complex conjugate. From Bernoulli’s equation, the dynamic boundary condition for 
zero atmospheric pressure on the free surface gives 

(3 .5b)  

With the specification of initial conditions corresponding to  the fluid being a t  rest a t  
t = 0, the initial-boundary-value problem for p(z, t )  (and F(z ,  1)) is complete. We solve 
the system using a mixed Eulerian-Lagrangian method (Longuet-Higgins & Cokelet 
1976). At any instant of time t ,  the wavemaker position B(x, t )  and the stream 
function $(z ,  t )  on B, B, and B, are prescribed, and the free-surface elevation F(z ,  t )  
and the velocity potential $(z,t)  on it  are given from integration of the evolution 
equations (3 .5) .  Equation (3.2) is used to solve for the unknown $ ( z ,  t )  on B, B, and 
B,, and +(z, t )  on F .  As a result, we can integrate (3 .5)  for the new Lagrangian value 
of $(z ,  t + At) on the free surface and its position F(z ,  t + At) and the whole process is 
repeated. 

To minimize the final number of unknowns, we can take advantage of the fact that  
q5 is even and $ odd with respect to B, and B,, and the contour C can be reduced 
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using the method of images. For long tanks ( L  9 1) it is numerically more efficient 
to use images about the bottom only and (3.2) is written as 

where C' = F U B U B,. If we now let 5 approach C', the real part of (3.6) for 5 on 
F and the imaginary part on B U B, yield respectively Fredholm integral equations 
of the second kind for 9 on F ,  and for 4 on B and B, (Vinje & Brevig 1981). The 
system can then be solved for the complete complex potential along the boundary. 

For comparison to the fully nonlinear theory as well as the experiments, we also 
write down the linearized solution to the transient wavemaker problem. The 
linearized velocity potential $for a tank of length L can be expressed in a Fourier 
series as 

cash K,(% - L )  m 

$= 2U(t) C sinKmy 
m-o K: sinh K, L 

4 "  cosh k , ( y  + 1) cos k, x 
w ,  coshk, -- Ln=1 [ m=o ( k ; + K $ ) - ' ]  

x[ d7U(7) sinu,(t-T)-- [ d f  d7U(7), ( 3 . 7 ~ )  
L 

where K, = (m ++) x, k, = m / L ,  w i  = k, tanh k,, and the first and last two terms 
account respectively for the impulsive flow and the memory effect of the free surface. 
The corresponding linearized free-surface elevation f j  is 

d7U(7) 

Equations (3.7) are the finite-length-tank Fourier-series form of the classical infinite- 
tank transient wavemaker solution of Kennard (1949). 

4. Numerical implementation 
To discretize (3.6), we (i) subdivide C' into linear segments, (ii) represent 9 and 7,k 

by linear basis functions over each segment, and (iii) collocate a t  selected points on 
C' corresponding to the end points of the segments. The resulting influence 
coefficients and their asymptotic approximations are given in Vinje & Brevig (1981). 
To avoid numerical difficulties due to the weak singularities a t  the intersections of 
the free surface with the tank walls we use Lin's (1984) technique and prescribe both 
the velocity potential 4 and stream function 11. a t  these points by enforcing both the 
free-surface and body boundary conditions there. The resulting system of linear 
algebraic equations is amenable to iterative solutions (Baker, Meiron & Orszag 1982), 
although in practice even for O( 1000) unknowns the computation time is dominated 
by the calculation of the matrix elements themselves (which we do not vectorize 
well), and we simply use a vectorized Gaussian elimination scheme with partial 
pivoting to find the solution. Once the velocity potential and stream function are 
known everywhere on the fluid boundary, a second-order difference formula is used 
to find the velocities on the boundary. To calculate fluid velocities inside the contour, 
the most obvious choice is to take the derivative of (3.6) with respect to 5. However, 
since the complex potential /3 is only piecewise linear, the influence coefficients of the 
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fluid velocity within a few panel lengths of the contour are logarithmically singular. 
A more robust and accurate method is to use the fluid velocity on the boundary 
contour, calculated by differencing, directly in Cauchy's integral to calculate the 
velocitv inside the fluid 1 

whose influence coefficients are non-singular as the field point 6 approaches the 
boundary C'. 

For the integration of the free-surface boundary conditions (3 .5) ,  the fourth-order 
multi-step Adams-Bashforth-Moulton (ABM4) predictor-corrector method is used, 
and the fourth-order Runge-Kutta (RK4) technique is used to start the scheme 
(Longuet-Higgins & Cokelet 1976). A von Neumann stability analysis of the 
linearized problem shows that RK4 is conditionally stable for At2 Q BAx/7c, where At 
is the time step and Ax is the minimum grid spacing. On the other hand, ABM4 is 
weakly unstable with a growth rate proportional to Atg/Ax3. These linearized 
stability analyses are given in Appendix A. A stronger saw-tooth instability first 
reported by Longuet-Higgins & Cokelet (1976) is also observed by most investigators 
using the mixed-Eulerian-Lagrangian approach. The exact cause of this instability 
is not well understood, but we believe that one important mechanism is the 
concentration of Lagrangian points in regions of high velocity gradients where 
locally the wavenumbers are so high that small errors in the complex potential can 
cause large errors in the water-particle velocities. Thus, in order to minimize the 
highest wavenumbers, we adopt a regridding algorithm (Fink & Soh 1974; 
Dommermuth & Yue 1987) wherein a new set of equally spaced free-surface control 
points are selected after a fixed number of time steps. In  our regridding calculations, 
we use quadratic interpolations for both the new surface positions and the potential 
values, which are found to conserve total energy as well as the five-point smoothing 
formula used by Longuet-Higgins & Cokelet (1976). Although both regridding and 
smoothing effectively remove high-wavenumber instabilities, smoothing cannot be 
applied as easily as regridding near the intersections of the free surface with the 
wavemaker and far wall. The main disadvantage of regridding is the loss of resolution 
near the cusp of a plunging wave where Lagrangian points would otherwise 
concentrate. Thus, when the wave is about to break, we switch to a five-point 
smoothing (except near the intersection of the free surface with the wavemaker and 
far wall) and reduce the time step accordingly. Interestingly, Baker et al. (1982), who 
used regridding to evaluate to high accuracy the integral equations which govern the 
motion of the interface between two fluids of different densities, also found it 
necessary to use smoothing. 

Since the plunging phase of the wave is characterized by large velocities and 
disparate timescales, we use a dynamic time-stepping procedure whereby a new time 
step is chosen after each regridding or smoothing operation such that no panel moves 
more than 10% of its length in a given time step. 

The accuracy and convergence of both the field-equation solver and the time- 
stepping procedure are checked independently against known (prescribed) solutions. 
Our numerical experiments indicate that when forty segments are used per 
wavelength, the average relative error of the discretized version of (3.7) is less than 
0.5%, and the convergence with grid size is quadratic (see table 1) .  Similarly, the 
time-stepping procedure has less than 0.1 9'0 relative error when forty time steps per 
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wave period are used and the global truncation error is fourth order, as expected. In  
addition to these tests for convergence with respect to spatial and temporal 
discretizations, the overall accuracy of the numerical simulation is also evaluated for 
conserved total fluid volume and conservation of energy : 

The first term represents the power input by the wavemaker in terms of the total 
pressure p .  and the second and last two terms represent respectively the rates of 
change of the kinetic and potential energies of the fluid. The +U term represents the 
rate-of-change of potential energy associated with the changing length of the tank 
bottom with time. Here, nu is the component of the unit outward-pointing normal in 
the vertical direction. To evaluate the accuracy of the numerical simulation, a better 
measure is obtained by eliminating the hydrostatic contribution ( t U )  from both sides 
of (4.2). Such checks are satisfied to within 1% up to wave plunging (see e.g. 
figure 5). 

For the comparison with the single-plunging-wave experiment, we use a numerical 
tank of length 20 (corresponding to a length of 12 m for a physical tank depth of 
0 .6m) with 500 linear segments on the free surface and 25 segments on the 
wavemaker and the far wall for a total of N x 550 unknowns. For this many 
unknowns, 80 YO of the computation time is devoted to the assembly of the influence 
coefficients, and the remaining 20% is dominated by the LU decomposition of the 
matrix solution. Altogether, about 4000 time steps are used to  complete the 
simulation to the point where the plunger re-enters the free surface. Of these, we use 
regridding every 15 time steps for the first 3000 steps, and employ smoothing every 
5 steps for the final 1000 steps. In  the dynamic time-stepping procedure, the largest 
time step used is 0.08 at the beginning of the simulation and the smallest is 0.0004 
near the end to capture the overturning wave. Consequently, more than half of the 
computational effort is used in the final 20% of the simulation time. The entire 
simulation uses 30 hours on a Cray 1 supercomputer, which is needed because a very 
fine resolution is sought, and also because the breaking event in the experiment 
occurs at a relatively large distance and time from the start of the wavemaker 
motion. In our simulation, approximately 7 wavelengths and 12 periods of the 
central wave component (w,  = 1.4) are modelled. The computational effort increases 
quadratically with the length of the tank and linearly with simulation time. If our 
error tolerance is doubled (see tables 1 and 2), or if the distance at wave plunging is 
halved, the computation time for the simulation can be reduced to a few hours, 

5. Computational and experimental results 
The velocity of the piston wavemaker is calculated by taking centred finite 

differences of the wavemaker displacement which is measured in the experiment. 
This velocity is the only input to  the numerical simulation. The measured time 
history of the wavemaker velocity U ( t )  is given as a Fourier-cosine series: 

72 

U ( t )  = c U n  cos (w ,  t-e,), 
n=l 

where, to achieve about 3 significant figures of accuracy, 72 components are required. 
The amplitudes U,, frequencies w,, and phases On are tabulated in Appendix B. 
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TABLE 1. Maximum relative error in the free-surface velocity of a Stokes wave of (total) wave 
steepness B for different numbers of panels per wave. 

Total no. 
of panels At 7 (no regrid) 7 (regrid) 

100 0.10 -0.063 61 - 0.063 6 1 
150 0.075 - 0.066 75 - 0.066 24 
200 0.075 - 0.066 11 -0.06582 
250 0.050 -0.066 10 - 0.066 2 1 

Experiments - -0.067 0 - 

TABLE 2. Convergence of the surface elevation 7 (r = 3.17, t = 25) as the number of panels increases 
and the time step is reduced. The tank length is L = 8. The panels are initially evenly distributed 
over the wavemaker, free surface and far wall. 

To evaluate the accuracy and convergence of the scheme, we first test the 
convergence with panel length of our boundary-value problem solver for (3.2) using 
exact deep-water progressive Stokes waves as a benchmark. For the solution of the 
latter, we follow Schwartz (1974) but solve the nonlinear equations associated with 
the mapping function (Schwartz's equations 2.6) directly using Newton-Raphson 
iteration rather than high-order perturbation. The final results are exact to 10 
significant figures. We prescribe the position of the free surface and the potential on 
it from the exact solution and solve for the stream function on the free surface 
numerically using a periodic extension of (3.2). The relative errors between the exact 
(8,8/az) and calculated velocities (@/az) on the free surface are summarized in 
table 1 for a range of Stokes-wave steepnesses and panels per wavelength. As 
expected, for each wave steepness, the relative error decreases quadratically with 
panel size. From the harmonic content of the wavemaker velocity given in 
Appendix B, we see that most of the energy is concentrated below o - 2. Thus, by 
using 500 equally spaced panels distributed over the tank length, or approximately 
forty panels per wavelength, we are able to achieve a relative error of less than 0.5 % 
for moderately steep waves (6 < 0.2). As the wave nears overturning, switching to 
smoothing instead of regridding allows the panels to eventually become five times 
denser in regions of large gradients. 
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FIGURE 1. Free-surface elevations according to linearized theory (-) compared to wave-probe 
measurements (----) as a function of time a t  distances from the wavemaker of (a )  z = 3.17, 
(b )  5.00, (c) 6.67, ( d )  8.33, ( e )  10.00 and ( f )  12.17. 

t 

The accuracy of our time-stepping procedure and of the overall problem is checked 
by systematically increasing the number of panels and reducing the time step for 
simulations of the plunging-breaker experiment. The measured and calculated free- 
surface elevations a t  a time midway to the breaking event are compared in table 2 
for a tank of length L = 8. For 250 panels and At = 0.05, which roughly corresponds 
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-0.25 I 
0 10 20 30 40 50 60 

FIGURE 2. Free-surface elevations according to nonlinear theory (-) compared to wave-probe 
measurements (----) as a function of time at  distances from the wavemaker of ( a )  z = 3.17, 
(6) 5.00, (c) 6.67, ( d )  9.17, ( e )  10.83 and ( f )  11.83. 

t 

to the computation parameters of our final simulation, the results have converged to 
within 0.02% with no regridding and 0.5% with regridding every 15 time steps. 
These errors are the same order of magnitude as those predicted in table 1 for the 
solution to the boundary- value problem alone. 

The length of the tank used in our numerical simulation L = 20 is about 60% that  
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FIGURE 3. (a) Instantaneous free-surface profile of the simulated plunging wave at t = 51.55 
showing the actual (undistorted) computational tank as well as the positions of the nine wave 
probes used in figures 1 and 2. ( b )  Details of the computed overturning wave (to scale) a t  times 
t = 51.11, 51.24, 51.34, 51.45 and 51.55 from left to right respectively. Symbols (A) represent 
wave-probe measurements a t  z = 11.83 (probe 8) a t  the same time instants from bottom to top 
respectively. 

of the physical tank which, in addition, is equipped with an absorbing beach. To 
evaluate the effect of reflection from the far wall in the computations, the results 
according to  linearized theory, (3.7), using the wavemaker velocity given by (5.1) are 
compared for two tank lengths corresponding to L = 20 and 40. Near the point where 
the wave plunges a t  x = 12.2, a harmonic analysis of the free-surface elevations 
indicates, as expected, that wave reflection is primarily limited to low wave 
frequencies, o < 0.3, and that the relative difference in energy between the two 
results is less than 2 YO. In  view of the above, and to minimize computational effort, 
which increases roughly as N 2  - L2, we use the shorter length of L = 20 for the 
nonlinear simulation. 

In  figure 1, the free-surface elevations according to linearized theory ( L  = 20) are 
compared to wave-probe measurements a t  x = 3.17,5.00,6.67,8.33, 10.00 and 12.17. 
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FIGURE 4 ( a , b ) .  For caption see page 436. 

The agreement becomes less satisfactory as the wave group steepens and travels 
down the tank. Near the plunging point the predicted linear wave amplitudes are in 
error by as much as 100% although the phases appear to agree somewhat better. 

The comparisons between the surface elevations predicted by the nonlinear 
potential theory and those measured by wave probes at x = 3.17, 5.00, 6.67, 9.17, 
10.83 and 11.83 are given in figure 2. Note that the nonlinear numerial simulation 
stops near t = 52 which is the time when the cusp of the plunging wave meets the 
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FIQURE 4(c,d) .  For caption see page 436. 
t 

wave trough in front (see figure 3). The computed and measured profiles can barely 
be distinguished up to the plunging location. For x = 11.83, the discrepancies are no 
greater than those discussed earlier when linear theory is applied to two tanks of 
different lengths, so that the errors in the nonlinear simulation may be partly 
attributed to wave reflection from the endwall of the computational tank. 

In figure 3 we plot the computed instantaneous free-surface profiles near the 
plunging location at times t = 51.11, 51.24, 51.34, 51.45 and 51.55, which are 
compared to the wave-probe measurements a t  x = 11.83 taken a t  the same time 
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FIGURE 4. Water-particle velocities according to nonlinear theory (-) compared to measure- 
ments using a laser-Doppler anemometer (----) as a function of time. (a) ~(8.33, -0 .10, t ) ;  
(b)u(8.33, -0.10,t); (c)u(8.33,0.10,l); (d)v(8.33,0.10,t); (e)u(5.00, -0 .25 , t ) ;  (f)v(5.00, -0 .25, t )  
and (9) ~(5.00,0.067, t). 

t 

instants. (Note that the wave has not yet become multi-valued at the probe.) The 
nonlinear computations predict that the wave plunges closer to the wavemaker and 
at an earlier time than is observed. The deviations in the estimated plunging 
position and time are respectively Ax x 0.15 and At w 0.25. From the figure, the 
wave trough immediately in front of the breaker appears to rise faster and higher in 
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FIGURE 5.  Energy conservation as a function of time : power input into the fluid by the wavemaker 
(-); and rate of change of total energy of the fluid in the tank (+). Note that the mean 
hydrostatic contribution is subtracted out. 

the numerical simulation suggesting that some of the errors can be attributed to 
reflection from the far wall. Another possible effect is the presence of some (albeit 
small) dissipation in the physical experiment which tends to delay the breaking 
event. Given the large local velocities and accelerations of the plunging wave (see 
figure 6) the observed discrepancies are, however, within the expected accuracies of 
the computation and experiment. 

As a final comparison, we examine the fluid-particle velocities measured using a 
laser-Doppler anemometer and the velocities computed using (4.1). Figure 4 shows 
these comparisons for the horizontal and vertical velocities u(zo, yo, t )  and v(xo, yo, t )  
for horizontal positions located a t  xo = 5 and 8.33 over a range of vertical positions 
yo. As before, the agreement is excellent. For points above the still-water level the 
velocity traces show intermittent pulses (positive for u and changing sign for v) which 
correspond to the passage of individual wave crests. When yo is below but close to the 
still-water level, the velocity curves may appear cut off a t  zero (truncated peaks for 
u and a t  upward zero-crossings for v) as the sample point comes out of the water at 
the troughs. 

An advantage of a numerical simulation over a sequence of repeatable physical 
experiments is that useful information that requires difficult measurements such as 
in situ pressures or a large number of readings such as fluxes is now readily available. 
With the above validations of the computational results with respect to surface 
elevations and particle velocities, we proceed now to compute some quantities of 
special interest. Figure 5 shows the power input into the fluid by the wavemaker 
compared to the rate of change of the total energy of the fluid (see (4.2)). The global 
error of the numerical simulation with respect to energy conservation is less than a 
few percent for most of the simulation. Note that the discrepancy becomes noticeable 
after t N 42, which coincides with the time when numerical smoothing is introduced. 

New et al. (1985) examined the velocities and accelerations of particles in the free 
surface of periodic overturning waves on finite (shallow) depth and observed 
maximum horizontal velocities almost twice the linear phase speed and maximum 
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FIGURE 6. (a )  Vector velocities and ( b )  Lagrangian accelerations of fluid surface particles of the 
deep-water plunging breaker a t  time t = 51.5 just before re-entry occurs. 

accelerations up to six times that of gravity. It is of interest to examine these 
quantities in the present case of deep-water breaking waves created by the 
superposition of a spectrum of waves whose phases have been judiciously chosen. The 
vector velocities and accelerations of surface particles a t  time t = 51.5 just before re- 
entry are shown in figure 6. The maximum velocity amplitude occurs in the cusp of 
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the wave and is roughly twice as large as the linear phase speed based on a central 
frequency of w, x 1.4. The maximum Lagrangian accelerations, which occur inside 
the loop, are of the order of 6g and are directed radially inward. In  the cusp of the 
wave the maximum acceleration is approximately g and is directed downward so that 
the tip of this overhanging wave is essentially in free fall. The resemblance of the 
kinematics of the deep-water plunging wave in the present case and that of the 
periodic shallow-water overturning wave computed by New et al. (1985), as well as 
that created by an asymmetrically applied surface pressure (Longuet-Higgins & 
Cokelet 1976), is quite remarkable. This further confirms New et al.'s conjecture that 
the evolution of an overturning wave must be relatively independent of the interior 
dynamics, so that a local solution for the jet (Longuet-Higgins 1982; New 1983; 
Greenhow 1983) may be surprisingly useful. 

6. Conclusion 
High-resolution state-of-the-art experiments and computations have been carried 

out to study steep and overturning gravity waves produced by a piston wavemaker 
in a tank. The comparisons between measurements and fully nonlinear potential- 
theory computations for a plunging breaker are found to be excellent for the surface 
elevations, and horizontal and vertical velocities a t  various depths. This confirms the 
validity and usefulness of potential-theory calculations for such waves and that 
other physical mechanisms must play a very minor role up to the point of wave re- 
entry. Although much work remains to be done to improve the efficiency and 
robustness of nonlinear free-surface potential-flow calculations, especially in the 
treatment of open boundaries (e.g. the use of matching radiation boundaries by 
Dommermuth & Yue 1987), the present work is an important step towards 
establishing their usefulness, limitations, and applications in ocean science and 
engineering. 
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Appendix A. Linearized von Neumann stability analysis 
Let q5k and qk be the Fourier modal amplitudes a t  time t = kAt of the potential and 

surface elevation respectively of a deep-water Airy wave. If, for simplicity, we 
assume that $ and r j  are normalized such that the frequency and wavenumber are 
one, then the linearized free-surface boundary conditions are simply 

Thus, q5k and qk can be expressed exactly in terms of their initial values $O and r j o  by 
the transformation (or amplification) matrix T 1 

cos (A t )  - sin (At) { $} = "" { $} [sin (At)  cos ( A t r  { ::}' 
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Note that (A 2 )  is neutrally stable since the exact matrix T has a spectral radius of 
unity. I n  a numerical time integrator, T is replaced by some approximation, say f ,  
and the scheme is conditionally stable if its spectral radius is less than or equal to one 
for some suitably small value of At ; neutrally stable if it  is exactly one ; and unstable 
if it is greater than one. 

For example, for any of the explicit fourth-order Runge-Kutta methods (RK4), 
direct substitution into (A 1) gives 

At2 At4 At3 
I--+- - A t + -  '=[ A t - -  'A! l - - + -  A: !:]' 

which is simply the fourth-order Taylor-series expansion of the exact transformation 
matrix T defined in (A 2 ) .  The magnitudes of the eigenvalues of this matrix are less 
than or equal to  one if At2 < 8 ,  which is the Courant condition for the stability of 
RK4. Furthermore, for At 4 1 ,  the r.m.s. norm of the vector {@, T,P} attenuates like 
( l - ~ W / 1 4 4 ) ~  to leading order so that, in fact, RK4 is mildly dissipative. 

Substituting the fourth-order multi-step Adams-Bashforth-Moulton prsdictor- 
corrector method (ABM4) into (A l), we obtain an algebraic equation for T :  

7At 55At2 
6 

1 -~ 
64 

55At2 __ 1 - - - -  7At 
. 6  64 . 

-- 

For At 4 1, f may be expanded 

59At2 5At 
64 24 
5At 59AP 

, 24 64 

- -  

-~ __ 

- - 
37At2 At -- -- 

64 24 
At 37At2 

24 64 - 
- -- 

in a perturbation 

r9At2 1 

series in At, f = Po) + At F1) 
+ At2 f@) + . . . , which when substituted into (A 4) can be solved a t  each order to yield 
finally 

' (A51 

At3 5At5 + O(At8) 
At2 At4 77At6 

I--+-+- 
2 24 576 

-At + - - - + O(At') 
6 144 

+ O(At8)  
At3 5At5 At2 At4 77At6 
6 144 2 24 576 

At--+-+O(At')  I--+-+- 

Since the magnitudes of the eigenvalues of this matrix are greater than one, ABM4 
is strictly unstable. The instability is quite weak (O(At6)) ,  however, and the r.m.s. 
norm of {$k, $} grows only as (1 +31At6/192)k to leading order. 
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Appendix B. Fourier-cosine coefficients of the wave-paddle velocity 
The following Fourier-cosine series frequencies w,, amplitudes U,, and phases On 

of (5.1) approximates the measured time history of the wave-paddle velocity. These 
data are used as input in the numerical simulation. 

n 
1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 
71 

Wn 

0.1519 
0.3038 
0.4558 
0.6077 
0.7596 
0.9115 
1.0635 
1.2154 
1.3673 
1.5192 
1.6711 
1.8231 
1.9750 
2.1269 
2.2788 
2.4307 
2.5827 
2.7346 
2.8865 
3.0384 
3.1904 
3.3423 
3.4942 
3.6461 
3.7980 
3.9500 
4.1019 
4.2538 
4.4057 
4.5576 
4.7096 
4.8615 
5.0134 
5.1653 
5.3173 
5.4692 

u n  

0.5654 x 
0.1377 x 
0.2450 x 
0.4459 x 
0.8974 x 
0.6153 x 
0.9940 x lo-* 
0.1119x 10-1 
0.1252 x 10-1 
0.1222 x lo-' 
0.1455 x 10-l 
0.1238 x 10-1 
0.1080 x 
0.9421 x 
0.6281 x 
0.3658 x 
0.7860 x 
0.1616 x 
0.2440 x 
0.2539 x 
0.5133 x 
0.1549 x 
0.1825 x 
0.2818 x 
0.1226 x 
0.1780 x 
0.9739 x 
0.1163 x 
0.1759 x 
0.2447 x 
0.2248 x lo-' 
0.2514 x 
0.3029 x 
0.1961 x 
0.1650 x 
0.1056 x 

'n 

3.0297 
-2.1163 
-0.9151 

0.2571 
1.4644 
2.4358 
1.4715 
0.2868 

2.1047 

1.2493 
1.9636 
2.2129 
2.6601 
3.0376 

1.4726 
1.8683 
2.3050 
2.3894 

- 1.6385 

-1.1489 

- 3.1064 

- 1.9536 
- 2.8750 

1.7837 
0.9362 

2.3082 
-2.9200 

- 1.4878 
-3.1 163 

0.8967 
-2.5408 

1.4337 
- 2.1868 

1.0234 
3.0634 

- 1.8554 

n 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 

"n 

0.2279 
0.3798 
0.5317 
0.6836 
0.8356 
0.9875 
1.1394 
1.2913 
1.4433 
1.5952 
1.7471 
1.8990 
2.0509 
2.2029 
2.3548 
2.5067 
2.6586 
2.8105 
2.9625 
3.1144 
3.2663 
3.4182 
3.5702 
3.7221 
3.8740 
4.0259 
4.1778 
4.3298 
4.4817 
4.6336 
4.7855 
4.9375 
5.0894 
5.2413 
5.3932 
5.5451 

u, 
0.9869 x 
0.1527 x 
0.2545 x 
0.4492 x 
0.1541 x 
0.9238 x 
0.1 154 x 10-1 
0.1 107 x 10-1 
0.1266 x 10-1 
0.1364 x 10-1 
0.1392 x 10-1 
0.5689 x 
0.1058 x lo-' 
0.2670 x 
0.3360 x 
0.4146 x 
0.3672 x 
0.2907 x 
0.1448 x 
0.9563 x 
0.2960 x 
0.2719 x loW3 
0.3097 x 
0.2959 x 
0.1698 x 
0.4430 x 
0.1568 x 
0.1725 x 
0.1729 x 
0.2910 x 
0.2095 x 
0.3096 x 
0.1904 x 
0.2321 x 
0.2289 x 
0.6005 x 

'91 
0.1389 
1.3747 
2.8300 

- 2.07 14 
-0.3737 
- 1.3082 
-2.1312 

2.5881 
0.2799 

0.0107 
2.6881 
2.9378 
2.7790 
1.7339 
2.201 1 
2.6224 
3.1352 

- 2.5568 

-2.8378 
- 2.991 1 

2.1860 
1.8677 

- 1.9432 
-2.6032 

2.5802 

2.7947 
1.8697 

2.6254 

2.7748 

2.4319 

-0.0013 

- 1.6396 

-0.7237 

-0.6301 

- 2.3772 
-0.7142 
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