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Three-dimensional instabilities of nonlinear 
gravity-capillary waves 

By JUN ZHANG AND W. K. MELVILLE 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

(Received 12 September 1985 and in revised form 28 May 1986) 

Linear three-dimensional instabilities of nonlinear two-dimensional uniform gravity- 
capillary waves are studied using numerical methods. The eigenvalue system 
for the stability problem is generated using a Galerkin method and differs in detail 
from techniques used to study the stability of pure gravity waves (McLean 1982) and 
pure capillary waves (Chen & Saffman 1985). It is found that instabilities develop 
in the neighbourhood of the linear (triad, quartet and quintet) resonance curves. 
Further, both sum and difference triad ressonances are unstable for sufficiently steep 
waves in consequence of which Hasselmann’s (1967) theorem is restricted to weakly 
nonlinear waves. The appearance of a superharmonic two-dimensional instability 
and bifurcation to three-dimensional waves are noted. 

1. Introduction 
Considerable progress has been made on the stability of uniform deep-water waves 

in the last two decades. For weakly nonlinear gravity waves, perturbation methods 
have shown that the uniform wavetrain is unstable to modulation (long-wavelength) 
perturbations (Lighthill 1965; Benjamin & Feir 1967). This is the well-known 
Benjamin-Feir instability, which results from a quartet resonance. Weakly nonlinear 
gravity-capillary waves (GCWs), are unstable not only to  the above quartet 
resonance, but also to a (sum) triad resonance. Using perturbation methods, Benney 
(1976) studied the triad interactions of GCWs in deep water and Djordjevic & 
Redekopp (1977) considered finite-depth effects. Triad instabilities of weakly non- 
linear deep-water GCWs have been studied in some quantitative detail by the present 
authors (Zhang & Melville 1986). That study confirmed Hasselmann’s theorem 
(Hasselmann 1967) for weakly nonlinear GCWs and provided quantitative predictions 
for testing the numerical procedures of this paper. 

In  recent years, a number of innovative numerical schemes for studying the 
instabilities of finite-amplitude uniform waves have been developed. These schemes 
are all based on the numerical calculation of waves of finite amplitude. This was first 
done for gravity waves (Schwartz 1974; Cokelet 1977), and more recently for GCWs 
(Hogan 1981, 1982). A numerical scheme was developed by Longuet-Higgins 
(1978a, b )  to investigate the stability of finite-amplitude gravity waves in deep 
water, but the analysis was confined to two-dimensional perturbations. Instability 
to three-dimensional perturbations was examined by McLean et al. (1981) and 
McLean (1982). It was shown that three-dimensional instabilities exist for all 
wavelengths and are dominant when the wave is sufficiently steep. The same 
numerical scheme was recently used to investigate the instabilities of pure capillary 
waves in deep water (Chen & Saffman 1985). 
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Encouraged by the results of McLean et al. (1981), we undertook this numerical 
investigation of the instability of GCWs in deep water. Gravity-capillary waves 
range from pure gravity waves at the largest wavelengths to  pure capillary waves 
a t  the shortest lengths, and a complete investigation of GCWs is beyond the scope 
of a single paper. Our study here is focused on the instabilities of GCWs for p > 2 ,  
where p is the non-dimensional surface-tension coefficient, defined in $2. For 
0 < p < 2, especially p = +, the instability of GCWs is complicated by the appearance 
of additional resonant phenomena (Wilton’s ripples) which are not considered here. 

In  our initial numerical investigation, we used the numerical scheme of McLean 
et al. (1981). However, we found it produced slow convergence for sufficiently steep 
GCWs, and introduced undesirable singularities in the eigenvalue system. A modified 
numerical scheme was developed and used in our investigation. To demonstrate the 
necessity of the improvement, let us briefly review the difference between the 
two-dimensional numerical scheme (Longuet-Higgins 1 9 7 8 ~ )  and its three- 
dimensional counterpart (McLean et al. 1981). The compromise in the extension from 
two dimensions to three was that the linearized perturbation equations were only 
satisfied on the discrete points of the wave profile (McLean et al. 1981) instead of on 
the continuous curves (Longuet-Higgins 19784. I n  the two-dimensional numerical 
scheme, the convergence is only concerned with the truncation of modes in the 
eigenvector ; however, in the three-dimensional numerical scheme, the length of 
intervals between two neighbouring points or the number of the discrete points 
between the two adjacent crests should also be appropriately considered according 
to the sampling theory (Oppenheim, Willsky & Young 1985). In  McLean et ul. (1981), 
the number of modes in the truncated eigenvector was rigidly set to  be equal to  the 
number of discrete points between two adjacent crests; the convergence of the results 
was checked by increasing this number. I n  this way, the effects of the two numbers 
on the convergence are treated equally ; nevertheless, the number of discrete points, 
or the sampling rate, depends on whether the continuous curve can be recovered from 
its discrete points, while the number of modes in the eigenvector are determined by 
the convergence of the eigenvalue as in the two-dimensional case. The influence of 
the two numbers on the convergence is quite different. I n  the computation of the 
three-dimensional instability of gravity waves or gravity-capillary waves, i t  was 
found that the number of the discrete points required t o  avoid ‘aliasing’ is generally 
much larger than the number of modes required for convergence of the eigenvector. 
The order of the matrices formed by McLean et al. (1981) in the eigenvalue-system 
problem (see (12)), was essentially determined by the required number of the discrete 
points. Consequently, this order is much larger than the necessary order, namely the 
number of the modes in the eigenvector. We consider these two parameters 
separately. As a result, faster convergence and a non-singular eigenvalue system are 
achieved. 

For small amplitudes, the instabilities of GCWs ( p  > 2) are found to  be similar to 
the results shown by Chen & Saffman (1985). For sufficiently steep GCWs, the 
difference resonant instabilities occurred in the regions adjacent to  the corresponding 
linear resonance curve. It is worth noting that the difference instabilities were not 
found in other studies of surface waves. A significant finding is the appearance of 
the difference triad instability, in consequence of which Hasselmann’s theorem is 
restricted to weakly nonlinear GCWs. These phenomena may not be restricted to 
surface waves, since triad resonances are also found in nonlinear optics and in 
internal waves; hence these findings may have implications for those fields as well. 
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2. Formulation 
The equations governing surface GCWs on an irrotational, inviscid, homogeneous 

fluid of infinite depth in a frame moving with the speed c of the unperturbed wave 
are 

vz(b = 0, - o o < z < y ,  (1) 

9 N -cx, Z C - W ,  (2) 

J = “1 + 7 3  ryy - 27,7?/ rzl/ + (1  + 7;) 7,,1(1+ 7: + 7;1-f7 (4) 
where g, T and p are the gravitational acceleration, surface-tension coefficient and 
density respectively. The velocity potential is denoted by $(x, y, z, t ) ,  and ~ ( x ,  y, t )  is 
the free-surface displacement. The sum of the principal curvatures of the surface is 
denoted by J .  The wave is assumed to move in the positive x-direction, and the z-axis 
is positive upwards. 

For two-dimensional uniform periodic GCWs, the above equations are independent 
of time and it is convenient to use the velocity potential $ ( x , z )  and the stream 
function @(x, z )  as independent variables. Then, following Stokes (1880), the spatial 
coordinates are given by 

( 5 )  

5 = -+ 9 x “ ‘ a  2 en$./c sin 
c n 

at the surface @ = 0, and $4- 00 as 2.1 - a. The Fourier coefficients a,, and the 
phase velocity c, are functions of the non-dimensional surface-tension coefficient 
p(  = k2T/pg)  and wave steepness ka,  where a is the wave amplitude (half the 
peak-to-trough height) and k is the wave number. The coefficients an and hence ~ ( x )  
may be determined to great accuracy by numerical methods (Hogan 1980). 

Following McLean (1982), we consider the stability of two-dimensional steady 
GCWs subject to arbitrary infinitesimal three-dimensional perturbations. The 
velocity potential and surface displacement are then given by 

(6) 1 7(x, y> t )  = 7 ( 4  + TI (%,  y, % 

9@3 y, z , t )  = a x ,  2) + 9’(x, y, 2, t ) ,  
where, the overbar and prime denote the two-dimensional steady waves and the 
perturbation respectively. 

Substituting (6) into (3) ,  linearizing the perturbation on the surface of the 
two-dimensional steady wave, and subtracting the steady solution, we obtain 

VqY = 0, -oo < 2 < ?(x), \ 

& + O ,  z&-Co ,  

9; + 7’ +7,& + $, 9; +7, ?,, 7’+?, ,, 7’ - m 1  + 7:riIl;y + (1 +73-t 7 ; x  

rl+7,,r,r‘+,r~+Ts9~-?,,7‘-9: = 0, = 7 ( 4 .  

(7)  
2 -a- - 

--3(1+7,) ~7~,7,7’J = 0, = ~ ( x )  

7-2 
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190 J .  Zhang and W .  K .  Mehille 

Without loss of generality, we have set k = 1 and g = 1 .  The terms with an overbar 
may be obtained from the numerical solution of the steady problem by using the 
Chauchy-Rieman relation. 

The three-dimensional perturbation in the moving frame is of the form 

m 1 (8) 

7’ = exp{i[px+qy]-c~t) X d, exp(inr)+*, 

4‘ = exp {i[pz+ qy] - c ~ t )  X 

n=-m 

m 

b ,  exp (inz) exp {z[(p + n)2 + q2]i} + * 
n---oo 

Where * represents the complex-conjugate. The coefficients b ,  and d, are to be 
determined, and v is the frequency of the perturbation relative to the two-dimensional 
steady, periodic wave. The perturbation wavenumbers p and q are arbitrary real 
numbers; however, there is a degeneracy in the choice of p .  From (8), p may be 
changed by an arbitrary integer m without modifying the physical eigenfunction ; 
the only thing that changes is the labelling p + p + m ,  d,+d,+,, b,+b,+,, 
- cc < n < 00. A change of the sign of q, is equivalent to  the change of direction of 
the y-axis ; nevertheless the physical eigenfunction remains invariant. Therefore, the 
instability region of GCWs on the @,q)-plane is symmetric about the p-axis. 
Furthermore, the physical eigenfunction remains unchanged if the sign of p is 
changed, for we may keep the physical eigenfunction unchanged by exchanging its 
complex-conjugate terms and changing the sign of q and -q owing to the symmetry 
about the p-axis. Based on the above analysis, only positive p and q are considered 
in this paper. 

3. Linear resonant condition 

wave has zero amplitude. The eigenvalue is given by 
Substituting (8) into (7), we may consider the special case in which the unperturbed 

~2 = - @ + n ) ( ~ + T ) i f w , ,  ( 9 4  

U, = [ ( p  +n)2 + q2]! {I + T[@ + n)2 + q2])4 (9b) 

where U, is the positive linear frequency of the eigenfunction with the wavenumbers 
(p + n, q )  in the stationary coordinates. The f signs in (9a) represent the direction of 
propagation of the disturbance relative to the unperturbed wave. 

As shown in both the pure-gravity-wave and the pure-capillary-wave cases, it is 
expected that weakly nonlinear GCWs are unstable to  disturbances with wavenumber 
(n, +p,  q), (n2 +p, q), whose eigenvalues for zero-amplitude GCWs are equal: 

fl&(P, q) = a$*@o, q), (10) 

( 1 1 4  

w 1 f w 2  = NU,, (1lb) 

This equation is equivalent to the linear resonant condition in the stationary 
coordinates : klfk2  = Nk,, 

where kj is the direction of propagation of the wave and wi > 0 as given in (9b), and 
the subscript 0 denotes the unperturbed wave; N = 1 , 2 , 3  refer to triad, quartet and 
quintet interactions respectively. Figure 1 (a, b)  shows the linear resonance curves for 
triad, quartet, quintet interaction for T = 3.0 and 7.0 respectively. 

Following Hasselmann (1967), the instabilities may be classified into sum inter- 
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FIQURE 1 .  Resonance curves from the linear dispersion relationship for gravity-capillary waves 
(cf. equation (11))  for (a) = 7.0. - , Sum triad : - --, difference triad ; 
_ _ _ _ _ _  , difference quartet; ---, difference quintet. 

= 3.0, and (b)  

actions and difference interactions in accordance with the choice of different or the 
same signs on both sides of (10); or, equivalently, according to whether the plus or 
minus sign is used on the left-hand side of (1 1 ) .  The resonant curves shown as non-solid 
lines in figure 1 (u, b )  are difference interactions. Hasselmann (1967) showed that 
uniform weakly nonlinear waves are unstable to the sum triad interaction and 
neutrally stable to the difference triad interaction. 

For finite-amplitude GCWs, numerical methods are used to search for the 
instabilities of GCWs in the (p, 9)-plane. It will be shown below that the difference 
instabilities, including the triad-difference instability, may occur for some finite 
amplitudes. The difference resonance curves, unlike the sum resonance curves, are 
not closed, but the search for instabilities in the (p,p)-plane must be confined to a 
finite region. We chose to set 0 < p < 1 and 0 < q < 1 ,  for the following reasons. The 
lower-order resonant interactions, such as triad, quartet and quintet instabilities are 
all observed in this region. For p, q too large, the instabilities may be insignificant 
in practice as a result of strong viscous damping. 

4. Numerical scheme 
The series in (8) is truncated with n in ( - M , M ) ,  where M depends on the 

convergence of the eigenvalue. I n  particular, M is chosen as small as possible, 
provided that the further increase of M will not significantly change the eigenvalue. 
Therefore, the neglected terms are insignificant for the resonant interactions studied 
in this paper. 
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192 J .  Zhang and W.  K.  Melville 

The numerical scheme, used by McLean et al. (1981) and McLean (1982), is to 
substitute the truncated series (8) into (7)  and then let (7) be satisfied at 2M+1 
points spaced in equal arclength increments between two adjacent crests of the 
unperturbed wave. The number of unknowns ( d - M ,  d,, b-M,  . . . , b M )  in the truncated 
series (8) is 4M+ 2, equal to the number of equations satisfied a t  those 2M+ 1 points; 
thus the eigenvalue system is 

where B, D are (4M+2) x (4M+2) matrices, whose elements are given in terms of 
p ,  q ,  T ,  $z, $ z , 7 j x ,  . . . ; uT = (kM, . .., b,, . . ., b,, d - M ,  . . , , d o ,  .. ., d M ) ,  and u is the eigen- 
vector with the eigenvalue IY. Instability corresponds to Im IY > 0. 

This non-symmetric, complex-eigenvalue-system problem may be solved by using 
the 'QZ'  algorithm, and the eigenvalue IY corresponding to  triad or quartet 
instabilities may converge. However, as mentioned before, the scheme has two 
disadvantages. First, the matrices B and D formed by the above scheme are singular 
since two pairs of rows in B and D are exactly the same owing to the periodicity of 
the uniform wavetrain. Although the 'QZ'  algorithm may be used for eigenvalue 
systems whose matrices are singular or nearly singular, the numerically determined 
eigenvalue may be in error owing to this singularity. Wilkinson (1978) quantitatively 
demonstrated this phenomenon and strongly recommended that the singularity of 
the eigenvalue system be extracted before the 'QZ' algorithm is used. Secondly, the 
number of terms in the truncated series (8) is fixed to be the same as the number 
of points between the adjacent crests. Unlike the two-dimensional scheme of 
Longuet-Higgins (19784, in the three-dimensional computation, (7)  is satisfied on 
a certain number of discrete points, instead of on the whole continuous wave profile; 
intuitively, if (7)  is satisfied on more discrete points, its numerical results will be 
closer to the results of continuous analysis. Unfortunately, the increase of discrete 
points inevitably causes the increase of terms in the truncated series (8). Higher-order 
matrices are thus formed, and they need more computation, which may be unnecessary 
for the convergence of the eigenvalue if the number of discrete points does not have 
to be equal to the number of terms in the truncated series. 

The numerical scheme described here avoids the above difficulties. Equation (7) 
is now satisfied, in the global sense, on the v points whose abscissas xi are equally 
distributed between x = 0 and x = 2 ~ ;  the series (8) is truncated at M. M and v may 
be chosen independently but with a weak constraint, i.e. M < tv. This constraint 
ensures that matrices B and D are non-singular. Now the truncation number M is 
determined only by the convergence of the eigenvalue, and the number of discrete 
points 11 is decided solely by adequate sampling. The derivation of the eigenvalue 
system by this scheme is given below. 

The truncated series (8) are substituted into (7).  After cancelling the common 
factor on both sides of equations, we have 

ig  C bj  eijx eYjZ 

IYBU = Du, (12) 

- -  - 

M 

j - - M  M M 

j - -M j= -M 

- 
= $x(x) x bj[i(j+p)] eijx eYiz+qz(x) x b j y j  eifx eYiZ 
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M 

ia C dj  eijx 

M M 

j = - M  j= -M 
x I: dj eijz+$z(x) x dj[i@+j)] eijz, on z = ?(x) (13bj 

where yj = ( @ + j ) Z + @ ) k  (14) 
Equations (13a, b) are satisfied a t  xk = 2nk/v, for k = 0,1, .. ., v- 1, and each 
equation is multiplied by epiZzk and then added together from k = 0 to  k = Y- 1 : 

V-1  M 
ig x bj ei(j-l)xk eYjt(xk) 

k-o j - -M 

"-1 M 

u - 1  M 

+ Z- $Jxk) , 2 dj[i(p+j)] ei(j-z)zk, 
k=O 3--M 

where I is integer. 
Exchanging the order of summation and using the FFT algorithm, we have 

M 

j--M 
irr b, &{eYi~(z)} 
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194 J .  Zhang and W.  K.  Melville 

where 

Equation (17) defines the discrete Fourier transform (FFT). For a v-point FFT, there 
are at most v independent discrete-Fourier-transform coefficients. Therefore, we may 
set 1 = - M, ..., 0, .. ., M, and thus we have 2 x (2M+ 1) independent equations as 
long as 2M+ 1 < v, which is ensured by the weak constraint M < iv. These inde- 
pendent equations are satisfied a t  all these v discrete points in the global sense; 
therefore, this new scheme is a Galerkin method, in contrast to the collocation 
method of McLean (1981). In  order to use the FFT algorithm, we set v = 2n ,  where n 
is an integer. 

These 2 x (2M+ 1) simultaneous equations (16a, b )  may also be written in the 
matrix form (12), where the coefficients of B and D are the first 2M+1 FFT 
coefficients of the corresponding functions shown in (16). These functions, as 
mentioned before, are given by F, p ,  q and q5x, # z ,  %jx, . . . , from the numerical solution 
of the uniform GCWs. 

The eigenvalue system formed by the Galerkin method may also be solved by the 
‘QZ ’ algorithm. For M = 5, the order of matrices B and D is 4M+ 2 = 22, and it took 
about 30 CPU seconds to calculate all the eigenvalues and the eigenvectors on a 
Honeywell Level-68, using double-precision 72-bit arithmetic. For M = 10,20,30, it 
took about 1.5,10,32 CPU minutes respectively to calculate all the eigenvalues and 
the eigenvectors. The CPU time increases rapidly with the increase of M. Newton’s 
method together with the normalization condition for the eigenfunction u*uT = 1 
may be used to confirm the results obtained by ‘QZ’  algorithm. 

For each ka and given p ,  v was chosen so that a further increase in the number 
of points to 2v resulted in a relative error of less than in the transform coefficients 
of (16). The calculations were repeated with M increasing until the relevant 
eigenvalue converged, such that an increase in M of 10 led to a relative error in 
the eigenvalues smaller than with the neglected modes in the corresponding 
eigenvector no more than times the dominant mode. While searching for the 
appropriate truncation integer M ,  the weak constraint M < i i !  should be checked. 
However, in our numerical computation, is usually much larger than M ;  therefore, 
this constraint is always satisfied. 

Our numerical scheme has also been checked against other available numerical and 
analytical results : the numerical results of McLean (1982) for finite-amplitude 
gravity waves (5? = 0);  the analytic results of Djordjevic & Redekopp (1977), and 
Zhang & Melville (1986) for quartet and triad resonant interactions in weakly 
nonlinear GCWs. In  our computation of gravity waves, 5? was set to an arbitrarily 
small number; = The instability at h/h = 0.111, (hh is the ratio of wave 
height to wave length) was computed, and together with the corresponding results 
of McLean (1982) are shown in table 1. The comparison between the data clearly 
shows satisfactory agreement for both the quartet interaction in two-dimensional 
perturbations (1, = 0.6, q = 0) and the quintet interaction in three-dimensional 
perturbations ( p  = 0.5, q = 1.15). As expected, however, faster convergence may be 
obtained by the Galerkin method. The relative errors between M = 10 and M = 20 

- -  
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Collocation method? Galerkin method$ 

h lA  P 4 M  Re u Im u M Re u Im u 

0.111 0.60 0.0 10 -0.213688 0.023644 5 -0.215114 0.023096 
20 -0.213876 0.022701 15 -0.214709 0.022827 
30 -0.213873 0.022703 25 -0.214709 0.022827 

- - 10 -0.214711 0.022828 
- - 20 -0.214709 0.022827 

0.111 0.50 1.15 10 0.000278 0.042674 5 0.000 352 0.040 4 14 
20 0.000003 0.041263 15 0.000 00 1 0.040 552 
30 0.000000 0.041268 25 0.000000 0.040552 

- - 10 0.000002 0.040551 
- - 20 0.000 000 0.040 552 

t Data for collocation method are from McLean (1982). 
$ For Galerkin method, !J? = and u = 256. 

TABLE 1 .  Comparison of the rate of convergence between Galerkin and collocation methods 

o.20 t 

0.04 1 / 
0 0.04 0.08 0.12 

1 
I I  \ I  

I I I I I I 1 .  I i 
0.16 0.20 0.24 0.28 0.32 0.36 0.40 

p/2ka 

FIGURE 2. Growth rate of two-dimensional instabilities for !J? = 5.0 (weakly nonlinear theory 
results) - ; for ka = 0.01, - - - - - ;  0.02, - - - - - -; 0.03, 

for the Galerkin method are smaller than those between M = 20 and M = 30 for the 
collocation method. 

For GCWs, the quartet instability rates computed by our numerical scheme are 
also confirmed by the corresponding analytic results derived from the nonlinear 
Schrodinger equation for T =/= 0 (Djordjevic & Redekopp 1977, equation (2.20)). 
Figure 2 shows the comparison of the instability rates varying with p(q = 0), for 

= 5.0 and ka = 0.01,0.02,0.3. For ka = 0.01, the numerical results agree very well 
with the analytical results. The difference between the analytical and numerical 
results increases with increasing nonlinearity. However, i t  should be noticed that the 
non-dimensional quartet instability rate increases with ka for capillary waves while 
it decreases with ka for gravity waves. This qualitative difference of quartet 
instability between the weakly nonlinear gravity waves and GCWs is also predicted 
by the higher-order nonlinear Schrodinger equation (S. J. Hogan 1985, private 
communication). 
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0.15 

0.12 

2 ; 0.09 
h 

Y, 2 0.06 
E 
I 

0.03 

J .  Zhang and W .  K .  Meloille 

- 

- 

- 

- 

- 

p x  10 

0.12 O ' l 5  jl 

p x  10 

p x  10 

FIGURE 3. The growth rate of two-dimensional instabilities for = 20.0 derived from the coupled 
nonlinear Schrodinger equation (--) (Zhang & Melville 1986) and present numerical results 
( x ). (a )  ka = 0.01 ; ( 6 )  0.03; and (c) 0.05. 
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Sum triad 

Sum quartet 

Difference 
triad 

Difference 
quartet 

Difference 
quintet 

Dominant 
eigenrnodes Linear resonance condition 

Both numerical results and analytical results (Zhang & Melville 1986) for two- 
dimensional (q  = 0) instabilities of weakly nonlinear GCWs ( p  = 20) are shown in 
figure 3. For La = 0.01, both results show that the triad instability region and the 
quartet instability region are not connected, with the quartet instability region 
located near the origin ( p  = 0). Satisfactory comparison is observed in figure 3 ( a ) .  
For ka = 0.03, the triad instability region and the quartet instability region have 
merged together. For ka = 0.05, the differences between the two results increase 
slightly, but good quantitative agreement is retained. 

5. Numerical results 
5.1. Introduction 

The stability of GCWs was studied in detail for p =  3.0 and 7.0 and the primary 
results are shown in figures 4 and 5 respectively as regions of instability in the 
(p,q)-plane for a range of values of ha. Also shown in the figures is the maximum 
growth rate (for given k a )  normalized by the frequency of the corresponding 
unperturbed wave. The boundaries of unstable regions shown in figures 4 and 5 were 
determined at least to  two significant digits. Since the sum triad and the quartet 
instabilities are symmetric to  p = 0.5, only the left half of their unstable regions is 
plotted. It has been found that even for strongly nonlinear waves most of the 
instabilities are found in the neighbourhood of, and can be identified with, corre- 
sponding linear resonance curves, although the linear resonance conditions do not 
necessarily imply instability even for weakly nonlinear waves. The unstable regions 
are associated with the corresponding resonance conditions by identifying the two 
largest (or dominant) eigenmodes in the eigenvector, (n, + p ,  q )  and (n , -p ,  - q )  say, 
and then using (9) or (11)  to check whether the two dominant eigenmodes and the 
unperturbed wave satisfy the resonance condition. For various instabilities shown 
in figures 4 and 5 ,  the dominant eigenmodes and associated linear resonance 
conditions are presented in table 2. 
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- 
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- 

- 

0.3 ):I 
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0.4 I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
P 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
P 

1.0 

0.9 

0.8 

0.7 

0.6 

4 0.5 

0.4 

0.3 

0.2 

0. I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
P 

FIGURE 4(a-c). For caption see facing page. 

It is useful to introduce some terminology to facilitate the description of the 
numerical results. Each of the linear resonances can be expressed as a ‘triad’ 
interaction: a harmonic of the unperturbed wave with two disturbance modes. Thus 
a pure linear resonance condition is satisfied if only two modes in the eigenvector are 
non-zero. However, for finite-amplitude or even weakly nonlinear waves, there are 
always more than two non-zero modes in the eigenvector. We characterized an 
instability by its corresponding linear resonance if two of the eigenmodes in the 
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1 .o 

0.9 

0.8 

0.7 

0.6 

4 0.5 

0.4 

0.3 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
P 

1 .o 

0.9 

0.8 

0.7 

0.6 

4 0.5 
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0.3 

0.2 

0.1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
P 

FIGURE 4. Unstable regions of the (p, q)-plane for = 3.0, where m, m, , m, 
represent sum triad, difference triad, sum quartet, difference quartet and difference quintet 
respectively. The solid point marks the point of maximum growth rate. 

ka (Im V / W ) , , , ~ ~  x lo3 

(a )  0.05 4.88 
( 6 )  0.15 14.0 
( c )  0.30 22.6 

(el 0.50 30.5 
(4 0.40 20.0 

eigenvector are much larger than the other modes. For some instabilities, however, 
the difference between the second largest mode (the smaller dominant mode) and the 
third largest mode in the eigenvector is not substantial ; we have called it a ‘transition 
instability’, consistent with the fact that  this instability usually happens in the 
region where two ‘exclusive’ instabilities merge. Two instabilities are said to be 
exclusive if they share one of the two dominant modes in their eigenvectors, and can 
not occur coincidentally in the (p ,  q)-plane. The sum triad instability and sum quartet 
instability are exclusive for they have one common dominant mode (1  - p ,  -9) as 
shown in table 2. Similarly, the difference triad and sum triad, and the difference 
triad and sum quartet, are also pairs of exclusive instabilities, sharing the common 
dominant mode ( p , q )  and ( l + p , q )  respectively. Our numerical results did not 
produce any examples of exclusive instabilities occurring coincidentally in the 
(p, q)-plane for given P and ha. 

Between two merging exclusive instabilities, transition instabilities provide a 
buffer, where one instability gradually converted to its exclusive counterpart as will 
be shown in 55.3. The term ‘transition instability ’ is not quantitatively defined and 
such instabilities are not marked separately in figures 4 and 5.  

Two instabilities are said to be ‘overlapping ’ if they may occur at the same value 
of ( p , q ) .  Overlapping instabilities do not share any common dominant mode. As 
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Instability Dominant eigenmodes 
rates 

Instability Im u / w o  1st mode Amplitude? 2nd mode Amplitude 

Sum quartet 0.0131 (1  -P, -4) 1 .o ( 1  + P > d  0.85 

Difference 0.0043 (-P, - 9 )  1 .o (2--P, -4)  0.65 
quartet 

eigenmode is unity. 
f The amplitude of the dominant modes are normalized such that the larger dominant 

TABLE 3. Comparison of quartet instabilities for = 3.0, ka = 0.3, ( p ,  y) = (0.175,O.lO) 

shown in figures 4 and 5, the difference quartet and sum triad instabilities, the 
difference quintet and sum triad instabilities, the difference quartet and difference 
triad instabilities, etc. are pairs of overlapping instabilities; they can occur co- 
incidentally in the ( p ,  q)-plane for given p and ka. 

Stationary disturbances were not specifically studied ; nevertheless some interesting 
stationary disturbances are observed during our search for instabilities. The existences 
of stationary disturbances may suggest bifurcations of the unperturbed waves, and 
will be briefly mentioned in $5.5. 

5.2. Development of unstable regions 
Figure 4(a)  ( p  = 3.0, ka = 0.05) shows what we found to be a typical instability 
diagram for ka 1. With the exception of the sum quartet (Benjamin-Feir) 
instability near the origin of the (p, q)-plane (stable a t  the origin), the unstable region 
lies in the immediate neighbourhood of the sum triad resonance curve with the 
maximum growth rate occurring at p = 0.5. I n  figure 4 ( b )  ( ka  = 0.15), the sum triad 
instability region has grown around its resonance curve, and the sum quartet 
instability region has expanded but a stable region appears in the immediate 
neighbourhood of the origin. The two originally disconnected exclusive instability 
regions (quartet and triad) have merged together, with transition instabilities be- 
tween them. In figure 4(c) (ka = 0.30), the sum triad instability region has become 
broader in the q-direction, but is compressed in the p-direction towards p = 0.5 by 
the sum quartet instability region The difference quartet instability has appeared in 
the immediate neighbourhood of its linear resonance curve; part of its unstable region 
overlapping on the sum quartet instability. As shown in table 2 these two instabilities 
do not have any common dominant eigenmodes. The strength of the overlapping 
instabilities are quite different; table 3 shows a typical comparison of the instability 
rates and dominant eigenmodes. I n  figure 4(d) (ka = 0.40) the difference quintet 
instability has appeared in the immediate neighbourhood of its linear resonance 
curve; part of its unstable region is common to the sum triad instability region. They 
are overlapping instabilities. The difference quartet instability has expanded slightly 
along its linear resonance curve. It is now stronger than its overlapping counterpart. 
Table 4 shows the comparisons of overlapping instabilities. The maximum growth 
rate is at ( p ,  q) = (0.50,0.20), still in the sum triad instability region, but is smaller 
than in figure 4(c) (ka = 0.30). This implies that  the sum triad instability is fading. 
The annular sum quartet instability region has broken into two parts; at larger p 
i t  is still connected to the sum triad instability region, and a t  smaller p it  is confined 
near the q-axis. Now it is unstable a t  the origin; this implies the existence of a 
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Instability Dominant eigenmodes 
rates 

Instability Im u / w o  1st mode Amplitudet 2nd mode Amplitude 
at  ( p , q )  = (0.18,O.lO) 

Sum quartet 0.0048 ( 1  + P > d  1 .o ( 1  +P> -9)  0.65 

Difference 0.0089 (-P, - 4 )  1 .o ( 2 - R  -9) 0.39 
quartet a t  ( p , q )  = (0.51,0.20) 

Sum triad 0.0199 (1 -P, -9)  1 .o @, 9 )  0.98 

Difference 0.0039 (3-P, -9)  1 .0 (-P, -9 )  0.926 
t Same as in table 3. quintet 

TABLE 4. Overlapping instability comparison for = 3.0, ka = 0.4 

superharmonic instability, which is discussed in $5.4. In  figure 4 ( e ) ,  the difference 
triad instability has grown along the neighbourhood of its linear resonance curve, and 
is connected to the sum quartet instability region ; they are exclusive instabilities. 
The sum triad instability has disappeared. The previously split sum quartet 
instability region has recombined into a single region. The strongest instability a t  
this value of ka is the sum quartet instability a t  (p ,q )  = (0.14,O.O): the dominant 
instability is two-dimensional. 

Figure 5 shows the instability diagrams for p = 7.0, for the same range of ka as in 
figure 4. The development of the unstable regions is generally similar to that for 
p = 3.0 ; however, a few differences between figures 4 and 5 are evident. I n  figure 5 (c) 
(ka = 0.30), the sum quartet instability has partially appeared in the neighbourhood 
of the linear sum triad resonance curve. The difference quartet instability overlaps 
the sum triad instability (cf. figure 4 (c) in which i t  overlaps the sum quartet) I n  figure 
5 ( e ) ,  the difference quartet instability overlaps the difference triad instability. The 
difference triad instability region now touches the p-axis, whereas it is separated from 
p-axis by the sum quartet instability in figure 4(e ) .  The strongest instability is the 
difference triad instability a t  (p ,  q) = (0.21,0.46) ; the dominant instability is three- 
dimensional. The sum triad instability region has shrunk to a small region centred 
a t  p = 0.5, but does not disappear as in p = 3.0. The difference triad instability 
occurred in the neighbourhood of the sum triad linear resonance curve, while in figure 
4 (e), only a small tip of the difference triad instability region developed on that curve. 

5.3. Transition instability 
Although we do not quantitatively define the transition instability, it  is interesting 
to observe how the instability gradually changes to its exclusive counterpart. 
Figure 6, which depicts how the amplitudes of the three largest eigenmodes 
(1-p, -q),(l+p,q),(p,q)varywithpforfixedq, p a n d k a ,  istypical. Whenp < 0.2, 
the two dominant modes (1 -p ,  - q ) ,  (1 + p ,  q )  are much larger than the third largest 
mode ( p ,  q )  ; therefore, the instability is identified as the sum quartet instability. 
With the increase of p ,  the amplitude of the second eigenmode (the smaller dominant 
mode) gradually decreases as the third mode gradually increases. At p = 0.223, the 
amplitudes of these two modes are equal. As p increases further, the relative order 
of the second and third modes are reversed. The dominant modes now are (1 -p, - q)  
and ( p ,  q ) ,  and the instability is recognized as the sum triad instability. I n  the vicinity 
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FIGURE 5(a-c). For caption see facing page. 

of p = 0.223, the amplitudes of the second and third modes are almost equal, which 
is the characteristic of the transition instability. 

5.4. Superharmonic instability 
In sufficiently steep GCWs, our numerical results show superharmonic instabilities 
at  @, q )  = ( 0 , O ) .  The threshold of the superharmonic instability is ka = 0.3934 for 
p = 3.0, and ka = 0.3673 for p = 7.0. For the superharmonic instability, the real part 
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FIGURE 5. Same as for figure 4 except 5? = 7.0 
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FIQURE 6. The amplitude of the second and third largest components of the eigenvectors as a 
function of p for rf = 3.0, ka = 0.30, q = 0.10. 

of the eigenvalue is found to be zero ; this implies that  the disturbances are stationary 
with respect to the unperturbed waves. The dominant modes of the eigenvector are 
1 and - 1 ,  which have the same wavelength as the unperturbed waves. However, the 
profile of the disturbance is different from its corresponding unperturbed wave. Both 
profiles are shown in figures 7 and 8 for = 3 .O and = 7 .O respectively. 
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FIGURE 7. (a )  Profiles of unperturbed wave for = 3.0, ka = 0.3934,O.M69,O..C958. 

( b )  Corresponding resonant superharmonic perturbations. 
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FIGURE 8. (a )  Profiles of unperturbed wave for = 7.0, ka = 0.3673,0.#i18,0.5024. 
( b )  Corresponding resonant superharmonic perturbations. 
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FIGURE 9(a ,b) .  For caption see next page. 

205 

At the threshold of the superharmonic instability, the profile of the resonant 
disturbance is symmetric, with a 180' phase shift from the unperturbed waves. With 
the increase of the wave steepness, the superharmonic instability increases, and the 
profile of the resonant disturbance becomes more and more asymmetric. The effect 
of the superharmonic instability is to smooth the back face and steepen the forward 
face of the unperturbed waves. 
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FIGURE 9. Three-dimensional crest-symmetric bifurcation from two-dimensional GCWs for 

= 7.0, ka = 0.15, ( p , q )  = (0.5,0.291). (a )  Surface-contour plot. ( b )  Three-dimensional perspective 
plot, (c) Cut through surface at y = x / q .  
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FIGURE lO(a). For caption see facing page. 

5.5 Stationary disturbances 
Two special kinds of stationary disturbances are found in our numerical work. They 
may suggest different bifurcations of the unperturbed waves. 

(i) Three-dimensional stationary disturbance 
It has been found that the real part of the eigenvalue is always equal to zero for 

the sum triad and sum quartet instabilities at  p = 0.5 and 0 respectively. Therefore, 
it is expected that both real and imaginary parts of the eigenvalue are zero at  the 
intersections of the boundary of the corresponding unstable regions and the line 
p = 0.5 or 0, where the disturbances are three-dimensional, and stationary with 
respect to the unperturbed wave. For the sum triad instability of pure capillary 
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FIQURE 10. Three-dimensional trough-symmetric bifurcation from two-dimensional GCWs for 

= 7.0, ka = 0.15, ( p ,  q )  = (0.5,0.323). (a )  Surface-contour plot. ( b )  Three-dimensional perspective 
plot. ( c )  Cut through surface at y = x/q. 

waves, it is known that a t  the lower intersection (smaller q )  and upper intersection 
(larger q)  of the stability boundary with p = 0.5, there are two different three- 
dimensional stationary disturbances, which lead to two different bifurcations of the 
unperturbed two-dimensional waves (Chen & Saffman 1985). We may reproduce 
these bifurcations in the case of GCWs by superposing the stationary disturbance 
on the unperturbed wave. The bifurcations shown in figures 9 and 10 are three- 
dimensional crest- and three-dimensional trough-symmetric respectively, and 
consistent with the strict derivation in the case of pure capillary waves (Chen & 
Saffman 1985). 

(ii) Two-dimensional stationary disturbances 

For sufficiently steep GCWs, a superharmonic instability may occur at  
(p, p) = (0, 0), and the real part of the eigenvalue is always equal to zero. Therefore, 
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a t  the threshold of the superharmonic instability both real and imaginary parts of 
the eigenvalue may be zero, The corresponding stationary disturbance would have 
the same wavelength as the unperturbed wave, but a different profile. This implies 
the existence of a two-dimensional bifurcation a t  the threshold ; however further 
careful study is required to prove this conjecture. 
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Dr John Hogan for comments on an early version of this work. The work was 
supported by the National Science Foundation through grant MEA 82-1 0649 and 
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