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Transcritical two-layer flow over topography 
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Meseachusetta Institute of Technology, Cambridge, MA 02139, USA 

(Received 4 February 1986 and in revised form 25 August 1986) 

The evolution of weakly-nonlinear two-layer flow over topography is considered. The 
governing equations are formulated to consider the effects of quadratic and cubic 
nonlinearity in the transcritical regime of the internal mode. In  the absence of cubic 
nonlinearity an inhomogeneous Kortewegae Vries equation describes the interfacial 
displacement. Numerical solutions of this equation exhibit undular bores or sequences 
of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large 
supercritical Froude numbers, a locally steady flow is attained over the topography. 
In that regime in which both quadratic and cubic nonlinearity are comparable, the 
evolution of the interface is described by an inhomogeneous extended Korteweg- 
de Vries (EKdV) equation. This equation displays undular bores upstream in a 
subcritical regime, but monotonic bores in a transcritical regime. The monotonic 
bores are solitary wave solutions of the correspondmg homogeneous EKdV equation. 
Again, locally steady flow is attained for sufficiently large supercritical Froude 
numbers. The predictions of the numerical solutions are compared with laboratory 
experiments which show good agreement with the solutions of the forced EKdV 
equation for some range of parameters. It is shown that a recent result of Miles 
(1986), which predicts an unsteady transcritical regime for single-layer flows, may 
readily be extended to two-layer flows (described by the forced KdV equation) and 
is in agreement with the results presented here. 

Numerical experiments exploiting the symmetry of the homogeneous EKdV 
equation show that solitary waves of fixed amplitude but arbitrary length may be 
generated in systems described by the inhomogeneous EKdV equation. 

1. Introduction 
In a series of recent papers (Wu k Wu 1982; Akylas 1984; Mei 1986; Cole 1985) 

a number of authors have studied' the transcritical forcing of nonlinear long waves 
by surface pressure or bottom topographic perturbations. In each case solitary waves 
of elevation have been found to evolve upstream of the forcing for some range of 
Froude numbers and forcing strength. Thus it appears, that for a certain parametric 
range, steady solutions may not be found for this claas of problems (Miles 1986). 

In this paper we examine the transcritical flow of a two-layer fluid over bottom 
topography. In many respects this particular problem is a very good example of this 
class of problems since we expect transcritical conditions to be relatively common 
in meteorology and oceanography. In addition, the generation of internal solitary 
waves by flow over topography has been a controversial subject in coastal oceano- 
graphy (Lee & Beardsley 1974; Maxworthy 1979), a context in which this generation 
mechanism has not been considered. Further, unlike the problems cited above, there 

f Present addreas: Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. 
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are at least two types of lowest mode solitary waves for a stratified flow (Kakutani 
& Yamasaki 1978; Miles 1979). The first is a generalization of the Boussinesq solitary 
wave of the single-layer fluid, while the second is a monotonic non-dissipative bore 
between two regions of steady flow. This second type occurs at  a parametric limit 
in that regime in which cubic nonlinearity is comparable to quadratic nonlinearity. 
In  the absence of this second type of wave many of the results for transcritical forcing 
of a single-layer free-surface flow carry over to the two-layer fluid. It is the presence 
of the non-dissipative bore for this class of problems that is the primary novel feature 
of this study. 

This work also bears on the problem of upstream influence in stratified flows that 
has been studied since the work of Long (1954). In  this context the problem is to 
determine whether a steady flow over topography, which is calculated from known 
upstream conditions, is an asymptotic solution to an initial-value problem, or 
whether disturbances associated with the topography can propagate far upstream 
leading to new steady conditions just upstream of the topography. Baines (1984) has 
recently presented an extensive study of two-layer flow over topography based on 
hydraulic theory and laboratory experiments ; using the experimental data to guide 
the class of solutions sought. Internal hydraulic jumps and drops are modelled by 
shock solutions ; however, the nonlinear hydraulic theory does not account for the 
effects of dispersion that are evident in the experiments. 

The results presented here complement the modelling of Baines (1984). The weakly 
nonlinear dispersive model cannot account for breaking and hydraulic jump/drop 
formation, whereas the nonlinear hydraulic model cannot account for the dispersive 
effects. Of particular interest to the present study is Baines’ (1984) observation of 
a laminar, upstream bore that ‘mainly consisted of a forward face which propagated 
without discernable change in shape ’. Using results of the KdV theory of Benjamin 
(1966) Baines conjectured ‘that steady-state inviscid bores are not possible in 
two-layer or stratified finite-depth systems, and that attempts to set up such a bore 
will result in the continuous production of a sequence of solitary waves. This 
conjecture is far from proven, however.’ We will return to Baines’ conjecture in $5. 

Here we present a theoretical and experimental study of transcritical two-layer 
flow over topography in that regime in which the effects of weak nonlinearity, 
dispersion, topography and the near-critical Froude number all enter at the highest 
order. The resulting equation is either a forced KdV equation or extended KdV 
equation which includes cubic nonlinearity. The equations are derived in $2. 
Experimental and numerical techniques are described in $3 and the results presented 
in $4. 

During final preparation of this paper we became aware of recent theoretical and 
numerical work by Grimshaw & Smyth (1986) and Smyth (1987) which anticipates 
some of the results of this work for the inhomogeneous KdV equation ($4.3) but does 
not consider the effects of cubic nonlinearity. A comparison of our results with theirs 
is given in $5. 

2. Forced evolution equation 
The two-layer flow has an equilibrium interface at y* = 0, and upper and lower 

boundaries at y* = d: and y* = d! + H * ( x * ) S ( t * ) ,  respectively, where S ( t * )  is the 
Heaviside unit step function. In  the absence of the bottom topography (i.e. t* < 0) 
the basic flow is in the positive x-direction with a speed U in both layers. 
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The non-dimensional governing equations for two-layer inviscid incompressible, 
irrotational flow with an interface at y* = q*(z*, t * )  are 

/3#xx+#yy = 0 (Y * a.rl), (2.1) 

where the dimensional variables, denoted by an asterisk are related to the dimen- 
sionless variables by 

I 

The Characteristic height and length of the topography are H ,  and 1, respectively. 
The characteristic depth of the fluid is h,, po is a characteristic density, and c, is the 
phase speed of linear non-dispersive long waves. The characteristic displacement of 
the interface is a. The parameters a, /3, y and E are small by hypothesis. The parameter 
p, which measures dispersion, scales according to 

= O(aa), D = O(a), (2.8) 

where a is a measure of nonlinearity (cf. Helfrich, Melville & Miles 1984). The 
parameter E which measures the departure of the Froude number from unity is 0(/3). 
The parameter y which measures the height of the topography is given by 

y = aBB, (2.9) 

where the parameter B is O(1). This scaling ensures that each of nonlinearity, 
dispersion, topography and transcritical effects enters at the highest order. 
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The forced evolution equation is obtained by expanding the solutions for #(z, y, t ) ,  
which satisfy (2.1), (2.4) and (2.5) in powers of /3 to  give 

a w +  a 4 ~ ~  + 

#+ = @+ (2, t )  - B ( W  -d+ Y) -+$ (hY4 ++ Y3 +@d: Y) -+ O($), (2.10) 

and then following Whitham's (1974, 513.11) derivation of the Korteweg4e Vries 
equation,t but retaining both quadratic and cubic nonlinear terms. 
Since we are interested in the upstream conditions we restrict the solution to waves 

moving in the negative 2-direction relative to the undisturbed flow. In addition, to 
ensure that the boundary condition (2.4) is a consistent approximation to a free 
surface, we msume that cr 4 1. The final evolution equation then becomes, 

q t + ( F - 1 ) q 2 - ~ ( d - 1 1 1 - 2 a d - 3 q 8 ) 7 ] 2 - ~ d d , q , 2 2  = g H Z + o ( a P ) 7  (2'12) 
where a, = (d2 + (- y-ld:}. (2.13) 

As a result of Galilean invariance of the dynamics, the homogeneous form of (2.12) 
could have been anticipated. The right-hand side represents the topographic forcing, 
in which Pmay be set to unity; an approximation that is Consistent with the neglected 
higher-order terms. 

Equation (2.12) may be recast in terms of new (primed) variables 

11 t 2- (P- 1)  t q' = - 
A' " = r  x t =  f '  

(2.14) 

to give (dropping the primes) 

where 

and 

(2.16) 

t Following Whitham, the kinematic conditions and dynamic condition at the interface can be 
written in terms of q and the vertically-averaged horizontal velocities in both layers a,. The 
kinematic conditions can then be used to obtain a relationship a- = Z-(E+,q)  which when 
substituted into the dynamic condition gives two equations in ii+ and 7. The subsequent steps then 
exactly parallel Whitham's procedure. 
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FIUUBE 1. Amplitude and nonlinear speed corrections for monotonic bore solution, F and (7, 

respectively, as functions of R, the ratio of the lower-layer depth to totel depth. 

Kakutani & Yamasaki (1978)' and Miles (1979), have shown that the homogeneous 
form of (2.16) admits a family of solitary wave solutions given by 

q(x, 7 ;  p )  = qp = 2p( 1 +p)-' [coshs 0-p sinh* el-', (2.17 a) 

8 = Kx+&&+eo, K = 2pi(l+p)-l, (2.17b'c) 

mdqisrealandboundedfor -00 < 8 <  m f o r O < p < 1 w i t h 8 0 ~ l .  
They also found the isolated solution 

~ ( x , 7 ;  1) = q1 = t(i+tanhe), (2.18a) 

e = x+47+e1, (2.18b) 

which corresponds to a non-dissipative bore. It is the presence of this second class 
of permanent-form solutions which motivated this study and distinguishes it from 
the other recent studies of transcritical forcing. 

From (2.17) and (2.18) it may be men that the maximum solitary wave speed occurs 
for p = 1 and (from (2.14)' (2.16) and (2.18b)) is given by 

c,, = CO(1 +Q(R)), (2.19a) 

where 

and 

(1-2R)' 
8( 1 - 3R+ 3R8) ' Q(R) = 

a- 
(d+ + d-) ' 

R =  

(2.19 b) 

is the ratio of the depth of the lower layer to the total depth. 
It is well known that the homogeneous form of (2.16) admits solitary wave solutions 
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of elevation (depression) for R < t (>a). For each R < 
only one monotonic bore solution of elevation (depression) having an amplitude 
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(>+) there exists one and 

where 
1 (1-2R) 
2 (1-3R+3R2)' 

F(R) = - (2.20b) 

Curves of G(R) and F(R) are shown in figure 1. 

3. Experimental methods 
The experiments were carried out in the tilting glass flume at  the R. M. Parsons 

Laboratory, MIT. The flume was set in a horizontal position and the ends sealed to 
provide a working section 15 m long by 0.45 m wide, with a nominal depth of 
0.15 m. Following Baines (1984), the two-layer experiments were carried out with an 
upper layer of dyed kerosene (p = 0.80 g/cm3) and a lower layer of fresh water 
(p = 0.986 g/cm3). 

The forcing was imposed by an inverted sech2-shaped$ lucite topography mounted 
to a carriage and immersed in the upper (kerosene) layer. The carriage was driven 
by a stepper motor controlled by a variable frequency generator. In a typical 
experiment the carriage was positioned at  one end of the channel, accelerated under 
manual control for approximately 5 seconds and thereafter run at constant speed 
until it reached the opposite end of the channel. 

The flow was monitored at two stations. A t  the first station encountered by the 
carriage (5 m downstream of the starting location of the centre of the topography), 
the displacement of the interface was measured using a Reticon camera that gave 
an analogue output proportional to the displacement of the dark/light transition 
between the essentially opaque kerosene and translucent water. In some experiments 
it was not possible to image a single transition over the dynamic range of the Reticon 
camera and this led to ambiguity and ' drop-out ' of the analogue signal. This drop-out 
was considered acceptable as the primary use of the data at this station was to give 
a reference time which, with the velocity data at  the second station, permitted us 
to measure the speed of the disturbance. This data is included in figures 5 and 10 
since it does provide more than just timing information. 

The resolution of the camera was in the range 10-2-10-1 mm. A t  a second station 
9.25 m from the starting position, a Disa laser anemometer was used to measure the 
horizontal velocity in the water, 5 cm from the bottom of the channel. A t  the same 
station still photographs were taken with a Hasselblad 500 ELM camera for 
comparison with the velocity measurements. 

The analogue signals from both the Reticon camera and laser anemometer were 
digitally sampled at 20 Hz and stored for later processing. The analogue signals were 
also displayed on a digital oscilloscope from which preliminary measurements (e.g. 
travel times between stations) could be made to confirm the quality of the data. 

t Equation ( 2 . 2 0 ~ )  was also used to define the amplitude parameter, a, in (2.6), and the 
apparently large values of a in the examples considered below follow in part from this convention. 

$ H = H,, sech2 Kx, H,, = 5.1 cm, K = 0.039 crn-l. 
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4. Results 
4.1. Numerical solutions: extended forced KdV equation ( R  = 0.35) 

Numerical? solutions were obtained for a range of forcing strengths and Froude 
numbers with qualitatively Merent  results. Figure 2 shows a sequence of interfacial 
displacements as functions of x and T(T = $dl t )  for (P,  R, a, 8, y )  = (0.95, 0.35, 
0.472, 0.0154, 0.055). Here the solutions show an undular bore evolving upstream 
leading to a new upstream elevation, with a depression following the topography and 
a trailing wavetrain. 

The qualitative form of the solution depends on the Froude number and the 
strength of the forcing as shown in figure 3. This figure displays solutions at the same 
T(=2,5),fora,p,yandRfixed, a n d F  = 0.95,1.0,1.1,respectively. With theincrease 
in P, the solution goes from an undular bore upstream, to a monotonic bore, then 
to a steady supercritical solution. The first two of these solutions are globally 
unsteady but do ultimately give new locally steady conditions immediately upstream 
of the topography. The monotonic bore solution is clearly obtained, and, to within 
the accuracy of the numerical solutions, has the amplitude and speed of the 
corresponding homogeneous solution. Figure 4 summarizes the qualitative form of 
the transcritical solutions of the forced EKdV equation in the ( P , y )  plane. The 
monotonic bore solution imposes the maximum speed at which disturbances can 
propagate upstream. This then provides a constant Froude number boundary 
between steady supercritical flow over the topography (cf. figure 3) and the 
monotonic bore solution. As P is reduced with y fixed, the upstream disturbance 
changes to the undular bore. As a result of the finite run times it is not clear whether 
there is a sharp transition from monotonic to undular bore and we have marked a 
narrow transition region on the figure. A further decrease in F leads to a transition 
from an undular bore upstream to a solution with no permanent upstream influence 
in the neighbourhood of the topography. 

4.2. Two-layer experimental and numerical results ( R  = 0.33) 
Experiments were run with R = 0.33 and F in the range [0.73, 1.141 and examples 
of the interfacial displacement and velocity in the lower layer are shown in figure 5. 
The gaps in the time series of the interfacial displacement are due to the drop-out 
discussed above. Figure 5(a)  (F = 0.73) shows good agreement between measure- 
ments and predictions of the upstream disturbances. The two numerical curves 
correspond to setting F = 0.73 or 1 in the forcing term (cf. (2.12)), both of which are 
consistent with the order of the neglected terms in the approximate theory. The 
predictions of the disturbance downstream of the topography show only qualitative 
agreement. Figures 5 ( b )  and 5(c) ( P  = 0.83 and 0.94, respectively) show good 
agreement on the length of the upstream disturbance but only qualitative agreement 
on the shape. Again, the downstream disturbance shows qualitative agreement. 
Figure 5 ( d )  (F = 1.09) shows good quantitative agreement, with the primary 
disturbance now essentially locked to the topography. The prediction of the 
amplitude of the plateau downstream of the topography has improved. The 
amplitudes of the trailing waves are poorly predicted but in view of our neglect of 
downstream travelling waves this is not surprising. 

It is of interest to note, especially in figure 5(c) ,  the gradual increase in depth of 

t Solutions were computed using the explicit hite-difference scheme of Vleigenhart (1971), with 
straightforward extensions to include the cubic term. In all numerical experiments the bottom 
topography is given by H = 1-439 for 151 < 0.5. 
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FIQIJRE 2. Example of undular bore evolving upstream in solution of (2.12) at various times T, 
with (P, R, u , / ~ , Y )  = (0.95, 0.35, 0.472,0.0154,0.055). 
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FIGURE 3. Examples of three classes of solution to  (2.12) (steady supercritical, monotonic upstream 
bore, undular upstream bore) at T = 2.5 for various Pwith (R, a, p, y )  = (0.35,0.472,0.0154,0.055). 

the upper layer following the front of the upstream disturbance. Baines (1984) 
interpreted such features as 'rarefactions'. 

Figure 6 shows the experimental measurements of the excess upstreamt disturb- 
ance speed relative to the linear long wave speed for two topographic heights 
y = (0.3,0.6). Also shown are the excess speed of the dissipationless bore and the locus 
of speeds for disturbances locked to the topography. The experiments show that the 

t Upstream here also includes the limiting case of a disturbance locked to the topography. 
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FIGURE 4. Regions in (F, 7)-plane occupied by 0, locally steady supercritical solution; 0, monotonic 
upstream bore and 0, undular upstream bore; and V, no local upstream influence. Symbol, A, 
marks a transition solution between 0 and 0. (R,  a, 8) = (0.35,0.472,0.0154). 

measured excess speeds are essentially independent of the topographic height for the 
two cases considered and increase from 0.038 (F = 0.73) to 0.085 (F  = 1.09) compared 
to the constant predicted-weakly-nonlinear excess bore speed of 0.043. For larger F 
the primary disturbance is locked to the topography. 

This quantitative disagreement with the theoretical results is most likely due to 
higher-order nonlinear effects resulting from the relatively large penetration of the 
topography. This is supported by figure 7 where we have plotted qrnaX, the maximum 
dimensionless upstream interfacial displacement, as a function of F. Over the range 
of F considered, ar],, is in the range (0.3,l.O) whereas we have assumed ar] 4 1 in 
the weakly nonlinear theory. 

4.3. Numerical solutiolzfl: forced KdV equation ( R  = 0.2) 
A number of numerical runs were made for the forced KdV equation (equation (2.12) 
with the cubic term neglected) with R = 0.2. Although the context here is different 
(internal waves), similar results are reported by Mei (1986) for the same generic model 
applied to ship hydrodynamics. In  figure 8 we show examples of the three 
qualitatively different solutions obtained at T = 0.5 for different values of F with a, 
/I, y fixed. The undular bore and locally steady supercritical solutions are qualitatively 
the same as the corresponding results for the forced EKdV equation (cf. figure 3) ; 
however, the intermediate solution, the sequence of solitary waves of constant 
amplitude, replaces the monotonic bore solution of the forced EKdV equation. 

The regions in which these solutions are found in the (F, ?)-plane me shown in figure 
9 for T < 2 (cf. figure 4). The transition, from solitary waves upstream to supercritical 
flow, is from an unsteady to steady flow in the neighbourhood of the obstacle, and 
corresponds to the upper critical Froude number, Fu, of Miles (1986). It is shown in 
the Appendix that Miles’ prediction of F,’ for a single-layer flow is readily extended 
to two layers and given by (A 3). Thus we have plotted F,’ in figure 9. The agreement 
between the predicted Fu and that obtained from the numerical solutions is within 
the uncertainty introduced by the neglected higher-order terms (cf. 94.2). 

We have also plotted flow regime boundaries derived by Grimshaw & Smyth 
(1986), which are discussed in 95. 
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FIGURE 5(a,b).  For caption see facing page. 
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FICWRE 5. (a) Time wries of interfacial displacement, aq, and normalized velocity measured in the 
lower layer, u?/c,, memured at 5 m and 9.25 m from the initial position of the carriage (light lines). 
Also shown are the corresponding numerical solutions to (2.12) with - , F = 0.73; +, 1.0, 
inthetopographicforcingterm(seetext).(F,R,a,/3,y) = (0.73,0.33,0.51,0.016,0.3).(b)F=0.83. 
(c) F = 0.94. (d) F = 1.09. The horizontal bars show the time of passage of the topography. 
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R Q ~ E  6. Measured nonlinear speed correction to upstream disturbances for (R, a, /3) = (0.33,0.61, 
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FIQURE 7. Meamred maximum upstream disturbance amplitudes for (R,a,/3) = (0.33,0.61, 
0.016), 0,  y = 0.3; 0, y = 0.6 (cf. figure 6). 

4.4. Two-layer experimental and numerieal results (R  = 0.2) 
Experiments were run with R = 0.2, y = 0.5 and F in the range [0.71, 1.311 and 
examples of the interfacial displacement and velocity in the lower layer are shown 
in figure 10 (cf. figure 5) .  Figure 10(a) (F = 0.88) shows the undular bore upstream 
with a trailing plateau and lee-wavetrain, in the interfacial displacement. The lee 
waves are not evident in the velocity signal further upstream. We believe that this 
is most likely due to the fact that these are short waves whose velocity eigenfunction 
has decayed significantly above the velocity measurement point. Figure 10(b) shows 
both experimental memurements and numerical solutions of the forced KdV 
equation for F = 1.02. Except for the prediction of an undular jump upstream and 
the length of the plateau following the topography, the agreement is poor. Figure 
10 (c) shows the experimental measurements at F = 1.24. The measurements, espe- 
cially at the upstream station, appear to be approaching a steady supercritical state; 
however, as shown in figure 10(d)  even at F = 1.31 the numerical solution is still 
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FQIJBE 8. Examples of three claeees of eolutione to (2.12) neglecting the cubic term (inhomogeneous 
KdV equation) at T = 0.5: steady rmpercritical; sequence of solitary waves; undular upstream bore. 
(R, a,/3, y )  = (0.2, 0.577,0.0070,0.0625). 
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FIQURE 9. Regions in (F,y)-plane occupied by solutions to inhomogeneous KdV equation: 0, 
lowlly steady supercritical aolution; 0, sequence of solitary wavw upstream; 0,  undulrrr bore 
upstream. (R,a,/3) = (0.2, 0.577, 0.0076). Fu (----) from Miles (1980) and equation (A 3); US 
bounds: ---, (5.3); -a*-, (5.4). 

unsteady relative to the topography showing a train of solitary waves evolving 
upstream while the measurements are essentially ateady. 

Figure 11 shows the measured non-dimensional excess speed and amplitude of the 
leading wave in the upstream disturbance. According to KdV theory with the scaling 
used, these points should be coincident. However, the meamrements diverge 
significantly above F == 0.9 with the dimensionless leading wave amplitude ay,, 
reaching a maximum of 1.6 at F = 1.2 before decreasing for larger F. The large 
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FIGURE 10(a, a). For caption see facing page. 
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FIQURE 10. (a) Time series of interfacial displacement, aq, and normalized velocity in the lower 
layer, u!!/c,, measured at 5m and 9.25m from the initial position of the carriage 
(F,  R,a,B,y)  = (0.88, 0.2, 0.58, 0.007, 0.5). (a) As for (10a) except P = 1.02. Also shown is -, 
the numerical solution to the forced KdV equation. (c) As for (10a) except F = 1.24. (d) Ae for 
(lob) except F = 1.31. The horizontal bars show the time of paasage of the topography. 
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disturbance for (R, a, p, y )  = (0.2, 0.58, 0.007, 0.6). Also shown is -, ( P -  1);  i.e. locally steady 
solution. 

F 

amplitudes here are clearly outside the range of weakly nonlinear theory and imply 
that higher order nonlinearities should be included. 

It should also be noted that the apparently large values of the parameter a and 
the response of the interface (aq) are due in part to the use of h, rather than (d: + di )  
for the vertical scale (cf. ( 2 . 2 0 ~ ) ) .  Values of ag would be reduced by factors of 6.25 
(R = 0.2) and 4.5 (R = 0.33) if the total depth were used as the vertical scale. 
Improved comparisons between the predictions and the experimental measurements 
may also be realized by relaxing the Boussinesq approximation; however, these 
should only be small since the errors are only of O( 1 + Ap/p) in the highest-order terms. 

5. Discussion 
The primary aim of this paper has been to consider the use of inhomogeneous KdV 

and EKdV equations as models of transcritical two-layer flow over topography. 
Comparison of the two model equations over the range of parameters considered 
shows that they both display qualitatively similar supercritical locally-steady 
solutions, and subcritical solutions with undular bores propagating upstream. 
However, their behaviour in the transcritical regime is markedly different for the 
parameter ranges considered. While the homogeneous EKdV equation has two classes 
of solitary wave solutions only the monotonic solution appears upstream of the 
topography in the transcritical regime. This contrasts with the inhomogeneous KdV 
equation which displays a sequence of Boussinesq solitary waves upstream in some 
neighbourhood of critical flow. 

The predictions of the inhomogeneous EKdV equation appears to be confirmed, 
at least for a limited range of experimental conditions with R = 0.33. Due to the 
thinner upper layer it was not possible to completely satisfy the theoretical 
assumption of weak forcing for cases in which the inhomogeneous KdV equation was 
expected to apply (R = 0.2). However, it is possible to compare our results with the 
recent analytical and numerical work of Grimshaw & Smyth (1986; hereinafter 
referred to as GS) and Smyth (1987 ; hereinafter referred to as S). GS considered the 
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more general case of continuously stratified fluid and derived an equation (GS (4.2~~)) 
equivalent to (2.12) without the cubic term. For positive forcing (the case considered 
here), GS postulated the existence of four regimes, based on the value of a detuning 
parameter A ,  which in our notation is given by 

d = (P+-]. 8d- 1 f 

-2 Y 
In table 1 we have listed the GS regimes for the inhomogeneous KdV equation along 
with their characterization of the upstream solution, and the regime boundaries for 
our numerical solutions in figures 3 and 8. (In figure 3 we are comparing their 
classification with the solutions to the inhomogeneous EKdV equation.) From table 
2, we see that their classification for broad obstacles appears to show reasonable 
agreement with our results in figure 8; perhaps with the exception of the solution 
at P = 1.2, which appears to be supercritical but falls into the GS resonant regime. 
In  contrast GS would characterize all of figure 3 &B resonant. Further, their resonant 
regime requires a train of identical (Boussinesq) solitary waves upstream. 

We can also compare the GS regimes with our extension of Miles' (1986) prediction 
of the transcritical regime in which the hypothesis of steady flow fails. In  the 
terminology of GS, this transcritical regime is defined by A'?) < A < A$), and is in 
agreement with (A 3), and in figure 9 corresponds to 

-1.76$ < (P-1) < 1.1173. (5.2) 

In  contrast, the GS bounds A ,  and d- are given by 

-0.889 < (P- 1) < 1.76$, 

-0.429 < (P-1) < 0.849, 
for narrow obstacles, and 

for broad obstacles. We have plotted the upper bounds of (5.3) and (5.4) in figure 
9. The latter shows moderate to good agreement with our numerical results. 

The approximate analytical results of GS were corrected by S, who showed that 
the upstream solution in the resonant regime w&s not a train of identical solitary 
waves, but rather a train of modulated cnoidal waves with the wave at the leading 
edge of the upstream disturbance having a modulus 1 and hence corresponding to 
a solitary wave. In  figure 12 we show a comparison of the amplitude of the leading 
wave in our upstream disturbance (see figures 7,lO and 11) plotted against the results 
of GS (figure 6a)  and S (figure 1). Also shown are our corresponding numerical results 
for figure 10 (a, b, d). The agreement between the numerical results and experimental 
measurements for R = 0.2 is poor for smaller d, improves as d approaches unity and 
then deteriorates again as d increases further. For larger d the experiments appear 
to show a more rapid approach to a steady supercritical solution, while the numerical 
solutions still show solitary waves propagating upstream. There is no agreement 
between the GS numerical results and our measurements for R = 0.33. This contrasts 
with the relatively good agreement between the numerical and experimental results 
of figure 5. Notwithstanding the relatively good agreement between the leading wave 
amplitude and the numerical solutions for 0 < d < 1, R = 0.2, figure 10 reveals 
significant quantitative differences in the upstream disturbance. Unfortunately, 
Smyth restricted the comparison of his analytical solution with the numerical 
solutions of GS to the leading-wave amplitude. 

Where direct comparisons are possible, our experimental results appear to agree 
with those of Baines (1984). In  figure 13 we compare our measurements of upstream 
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-3  -2  - 1  0 1 2 3 4 
A 

FI~URE 12. Dependence of the leading upstream wave amplitude, a, on A, the GS detuning 
parameter (S, figure 1). 0,  experimental measurements, and e, numerical predictions, for R = 0.2 
(cf. figures 10, 11). Experimental measurementa for R = 0.33, with A, y = 0.3, and V, y = 0.6. 

, GS numerical solution, and --- , hydraulic approximation (cf. GS, figure 6 4 .  ---, 
Smyth’s (1987) modulation theory (cf. S, figure 1). 

bore amplitude versus speed for R = 0.2,0.35 (0.33)t and jump height versus Froude 
number for R = 0.2. In  figure 13(a) it  is evident that our measurements are within 
the scatter of Baines’. Our memurementa of the bore amplitude versus Froude 
number for R = 0.2 fall a little below Baines’ and are for a slightly larger relative 
topographic height. Nevertheless, for experiments of this kind the agreement should 
be considered good. Unfortunately, Baines did not show comparable data for 
R = 0.35. 

Given this agreement with Baines (1984), and the agreement between the inhomo- 
geneous EKdV model and our experiments for R = 0.33, it  appears that Baines’ 
observation of dissipationless bores and rarefactions are consistent with our obser- 
vations and the predictions of the EKdV model. Baines’ conjecture regarding the 
impossibility of inviscid bores in two-layer systems is not supported by these results. 

The existence of a globally unsteady transcritical regime for these inhomogeneous 
equations points to the need for caution in attempting to use steady hydraulic models 
in related flows. Even the solutions which attain a locally steady form in the 
neighbourhood of the topography do 80 only after a long time. In  particular, for all 
the flows considered here, locally steady solutions are only attained after a time 
T = O(1). In the context of comtal oceanography in which d f ,  d? may be 0(102 m), 
I x O( lo8 m) and c,, = O( 1 ms-l), this can lead to times of about 1-10 days for locally 
steady flows to be established. 

The solutions to the inhomogeneous EKdV equation would appear to present a 

t The differences between our measurements for R = 0.33 and Baines’ for R = 0.35 should be 
small. 
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novel mechanism for frontogenesis, with the monotonic dissipationless bores provi- 
ding a frontal transition. While these are propagating-wave solutions, their speed 
relative to the topography in the transcritical regime is small (cf. @re 1) and in 
nature they may a p p r  as quasi-steady features. This model may also have some 
application in meteorology with with regard to  orographic fronts. 

Finally, the symmetry properties of the homogeneous form of equation (2.16) 
afford a novel form of solitary wave. Miles (1981) showed that the homogeneous form 
of (2.15) is invariant under the transformation 

q* = 1-7. 

Thus if 7 is a forward-facing bore of amplitude unity (2.18a), 
q* = t( 1 - tanh O),  

and corresponds to a rearward-facing bore. We anticipated that in that parametric 
regime in which the forward-facing bore was realized upstream of the topography, 

FIGWBB: 13. (a) mot of measured upstream bore speed versus amplitude for 0,  R = 0.2, and ., 
R = 0.33. Open symbols are corresponding data from Bainea (1984, @re 12) for 0, R = 0.2 and 
0 , O . S  respectively. (a) Measured upstream bore amplitude versus Froude number for 0, R = 0.2, 
7 = 0.6 compared with corresponding meaeurements of Bainea (1984, figure 20c) for 0, y = 0.32; 
a, 0.4. 
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T= 8 
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40 0 -30 

FIQTJRE 14. Solutions to (2.12) with topography given by H = H ( z )  S ( 0 )  S(2--T) where M is the 
Heaviside unit step function. Note that a solitary wave bound by forwd- and rearward-facing 
monotonic bore solutions is generated upstream (F, R, a, p. y )  = (0.988,0.36,0.472,0.0154,0.092). 

X 

cessation of the topographic forcing may lead to the complementary bore at the rear 
of the upstream disturbance. An example of such a numerical experiment is shown 
in figure 14. Here the forcing was initiated at time T = 0 and terminated at T = 2. 
A plateau of permanent form evolves upstream with the bore solutions at the front 
and rear. Since the time of cessation of the forcing is arbitrary the length of the 
solitary wave 80 formed is also arbitrary. Thus it is possible to generate solitary waves 
of arbitrary length in contrast to the Boussinesq solitary wave, for which there is 
a relationship between the wave amplitude and length. 

We thank Elizabeth Macomb for assistance with the experiments. This research 
was supported by the Office of Naval Research (Coaatal Studies). 

Appendix. Unsteady transcritical flow 
Miles (1986) has recently shown that with scaling assumptions for nonlinearity, 

dispersion and transcritical forcing consistent with those made in $2 and (2.7), the 
hypothesis of steady flow past an obstacle fails for the single-layer flow in a shallow 
canal of upstream depth D if F E U/(& is in the transcritical regime 

l-(# < P < l+(w) 9A f , 

where A is the cross-sectional area of the transverse obstacle. The corresponding 
evolution equation for the dimensionless surface elevation is 

?rt+(F-1)12--~')12-~62, ,  = W F H Z  (A 2) 

where the normalization corresponds to (2.6) with h, = CT = 1. 
Now (2.12) without the cubic term, may be renormalized to match (A 2). Therefore, 
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any conclusion based on (A 2) will also apply to the two-layer case under 
renormalization. 

It is a simple matter to show that if (A 1) holds true for the two-layer KdV case, 
the hypothesis of steady transcritical flow fails in the transcritical regime 

W .  K .  Melville and K .  R. Helfrich 

where 

Thus the effect of the stratification is to change the effective area of the topography. 
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