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A coupled set of equations, initially derived by Benney, is used to study the linear stability of weakly-nonlinear gravity- 
capillary waves to resonant triad and quartet interactions in two dimensions. The eigenvalue system is discussed for each 
class of resonances and certain subtleties regarding Hasselrnan's criterion and long wave-short wave resonances are resolved. 
The eigenvalue system is solved numerically and it is shown that the triad and quartet instabilities that are separated in 
wavenumber space for infinitesimal waves may merge for weakly nonlinear waves. Results are compared with approximations 
due to Benney and predictions of Zhang and Melville. 

1. Introduction 

Considerable advances in the study of the stability of gravity waves have been made in recent years 
with extensive use of numerical techniques. The general scheme, pioneered by Longuet-Higgins [1, 2], is 
to use numerically derived solutions for the nonlinear steady wave to calculate the matrix for the linear 
stability problem. The unstable modes and growth rates are then computed from the solutions to the 
eigenvalue problem. Subsequently, McLean et al. [3] and McLean [4] examined three-dimensional 
instabilities of two-dimensional gravity-wave trains. Encouraged by this work, we recently extended the 
numerical method to study the instabilities of deep-water gravity-capillary waves (GCW's), with results 
reported in Zhang and Melville [5]. 

In order to cheek the numerical scheme, we required an independent method of studying the instabilities 
in some range of parameter space. A search of the literature showed that a number of authors had 
considered the stability of weakly nonlinear GCW's but most of the published work did not contain 
quantitative results of sufficient detail for our purposes. This paper presents the results of our attempt to 
fill this gap. 

Benney [6] studied the interaction between long (gravity) and short (gravity-capillary) waves in deep 
water, deriving a set of coupled equations which were used to examine the stability of a uniform train of 
GCW's. Benney's analysis showed that triad interactions (two short waves plus one long) may be significant 
if 

CpL --T-~ Cgs, (1.1) 

where CpL and C o are the phase and group velocity of the long and short waves, respectively. The linear 
growth rate of the triad instability is implied in a third-order algebraic equation (after correction of some 
minor errors) valid in the neighborhood of the resonance condition (1.1); however, no quantitative 
predictions of growth rates were presented. Djordjevic and Redekopp [7] were concerned with similar 
instabilities in shallow water and Benney [8] with the class of long-wave short-wave systems. Ma [9] and 
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Ma and Redekopp [10] studied a set of coupled equations similar to those derived in [7], but their main 
purpose was to consider envelope soliton solutions. In [10], it was shown that the growth rate of the triad 
interaction is 

C[s- CpL 
O(e4/3) when I Cg s [ <~O(e2/3), 

where e is a measure of  the short-wave slope. During the course of this work, Ma [ 11 ] reported a numerical 
study of the instabilities of pure capillary waves in which triad interactions were not considered. 

Here we follow Benney's [6] scaling and use a similar multiple-scale approach. A set of coupled 
equations for the surface displacement of  the long and short waves and the velocity potential of the long 
wave is derived. These are physically equivalent to the set derived by Benney [6], which were expressed 
in terms of  the surface displacement of the short waves and the velocity potential of the long wave. Our 
explicit consideration of the surface displacement of  the long wave leads to a linear eigenvalue system 
for the stability analysis. This analysis shows that the linear growth rate and bandwidth of the triad 
instability for the uniform deep-water GCW train are both O ( e / T ) ,  when normalized by its frequency 
and wave number, respectively. (The dimensionless surface tension parameter T is defined below.) Thus 
the growth rate and bandwidth are respectively slower and smaller than those found by Ma and Redekopp 
[ 10] for shallow water. As e increases the bandwidths of the quartet and triad instabilities grow and merge. 

The growth rates obtained from this weakly nonlinear theory compare very well with the strictly numerical 
results [5] for e, 1/T<< 1. They are also shown to be consistent with Benney's [6] equation (3.21) when 
the bandwidth of  the triad instability is small, but differ significantly as the bandwidth increases and the 
triad and quartet instabilities merge. In addition to these quantitative results, our analysis recovers 
Hasselman's [ 12] criterion which distinguishes between sum and difference resonances. Hasselman showed 
that a weakly nonlinear uniform wavetrain of (positive) frequency a~o and wave number ko is unstable/ne- 
utrally-stable to the sum/difference interaction described by 

kl+k2=ko, to1 ± to2 = too . (1.2a, b) 

Equation (1.1), the resonance condition for long-wave short-wave interaction, is just a first order approxima- 
tion (O(T-~)) of  (1.2) in the present context. However, both sum and difference interactions satisfy (1.1), 
in consequence of which it is only a necessary but not a sufficient condition for instability, a point that 
does not appear to have been explicitly considered in studies of the coupled evolution equations. We 
show that for e sufficiently small, the velocity matching point (1.1) is not inside the triad instability region, 
and the significant disturbance components are the long wave and the lower side-band short wave. 

In Section 2 we review the derivation of  the coupled equations. In Section 3, these equations are used 
to study the instabilities of weakly nonlinear uniform GCW's. In Section 4 numerical solutions of  the 
associated eigenvalue problem are compared with the numerical results of [5] and the predictions of [6]. 

2. Derivation of the coupled evolution equations 

Since the purpose of  this paper is to gain further insight into instabilities of gravity-capillary waves and 
to obtain the numerical results for checking our strictly numerical scheme, we only consider two- 
dimensional surface gravity-capillary waves in the deep water. The three-dimensional case may, however, 
be extended in a straightforward manner, with more tedious algebra. 
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The flow is incompressible, irrotational, and of  infinite depth. The pressure on the free surface is constant 
and the wave slope is assumed to be small. The governing equations for the velocity potential ~b(x, z, t) 
and the wave profile z = '0(x, t) are 

d~xx + ~bzz = 0, - c o <  z < '0(x), (2.1) 

'0, + "0x~bx - ~b, = 0 on z = '0(x), (2.2) 

I 2 ~,, + g'0 +~(~,~+ d,~) T'0x~ 
p(1 + -02) 3/2 - 0 on z = '0(x), (2.3) 

Iv l-,0 a s  z ~ - o o ,  ( 2 . 4 )  

where g is the gravitational acceleration, T is the surface tension coefficient and p is the density. The 
coordinates are fixed in space with z-axis being positive upwards, and waves moving in the positive 
x-direction. 

The derivation of  the coupled long and short wave interactive equations essentially follows [6]; therefore, 
only the outline of this derivation is given below. A small parameter iz 2 is defined to be the ratio of the 
short (capillary) wave length lc to the long (gravity) wave length Is: 

~z2=~. (2.5) 

The nondimensional variables are indicated by primes, and given by, 

x = l cx ' ,  z = l c z ' ,  t = t=t', 71 = 77c'0', ck = ckcck' (2.6) 

l¢=/z ~ , t¢=/Zkg]  , (2.7) 

"0c e_eo l / :13/2 
l--~" = e ,  4'~ - U ° ¢ , ( 2 . 8 )  

where e is a small parameter, measuring the wave slope, and it is assumed that 

AS. = lz 2, (2.9) 

where a = 0(1) .  
Using equations (2.6)-(2.9), we nondimensionalize equations (2.1)-(2.4), and expand (2.2) and (2.3) 

on z = O, dropping the primes on the dimensionless variables: 

~b~ + ~bzz = O, - o o <  z<O,  (2.10) 

" 0 t - ~ z - $ . ' 0 ~ z z + $ . ¢ 4 # x ' 0 x - l e 2 n 2 f f / ) z z z + $ . 2 " 0 ( ~ ) x ' Y l x ) z  = 0 ( $  '3) o n  z=O, (2.11) 

+~$.(4'x+4'z) i 2 2 I 2 2 2 3 2 2 ok, - "0,~, + $.'0ck,, + A e T ?  t 2 2 +~$. 71 ~b,.z+~$. '0(~b~+q~.).+~e " 0 , . d l x = O ( $ .  s)  o n z = O ,  
(2.12) 

[v~bl~0 as zJ,-oo. (2.13) 

Equations (2.10)-(2.13) are used to derive the coupled evolution equations. In order to allow for slow 
modulation, we introduce the following cascade of  variables: 

X, X I = EX, X 2 =  E2X, . . . , 

Z, Z l = $.Z, Z 2 = $.22,..., (2.14) 

I, t I m e t ,  12= E 2 I , . . . ,  
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The perturbation expansions for the unknowns &(x, z, t) and r/(x, t) are given by 

~ ) ( X ,  Z ,  t )  : I ~ C 0 ) ( X 1 ,  X 2 ,  . . . , Z 1 ,  Z 2 ,  . . . , t l ,  t2, . . .)  

+ t~bcl)(xl, x2, • . . , 7.2, z2, • . . ,  tl, 12, • . .) e i° + .  

+ ~ ( 2 ) ( X t ,  X 2 ,  • . . ,  Z l ,  Z 2 ,  • . . , t l ,  t 2 ,  • . . )  e 2 i °  + , +  . . . , 

r/(x, t) = r/c°)(x,, x2 , . . . ,  t~, t2 . . . .  ,) + " O ( I ) ( x 1 ,  X 2 ,  . . . , t,, t2, . . .  ,) ei°+* + 

1 " / ( 2 ) ( X I ,  X 2 ,  • . . ,  t l ,  t 2 , . . .  , )  e 2 1 °  + * +  • . . , 

where 

(2.151 

(2.16) 

O = k x - t o t ,  (2.17) 

is the phase of the short wave, and * represents the complex conjugate of the preceding term; &to), r/co) 
stand for the long wave potential and amplitude, respectively, and are real; &(1), ~(i), ~b(2), r/c2) . . . .  
represent the short wave potential, amplitude and their higher harmonics. The wave number and frequency 
of the short wave are given by k and to, respectively. Let 

~b (°)= ~ em-'~b cm°), ~b c")= ~. e'~-'& cm"' for n = l , 2 , . . . ,  (2.18a,b) 
r n ~ l  m = l  

7/'°)= ~ e"-I r / ( ' ° ) ,  r/c")= ~. era-'7/c"") for n = l , 2 , . . . ,  (2.18c,d) 
m = l  m = l  

Using eqs. (2.14)-(2.18), the governing equations may be reduced to a hierarchy of equations according 
to the order of e and the phase function e i"°. 

We may solve the equations step by step in increasing order of e, and finally obtain the coupled set of 
equations, 

~o)  _ ~.z,'tJ°)= - 2 e - ~ (  BB  )x,+O(e2), (2.19a) 

4~o) + AT/(o) _ (o) + O(e2), (2.19b) 
- -  eTIxlx ~ 

V24,co) = O(e2) ,  -co) Oz, -~o asz,-~,-oo, (2.19c) 

3 _ e A ~ B  = r3ik 1 2 , r3 ,o, ik ,o, k (o, l l  
B , , + ~ k ( 1  6 k 2] x, e [ -~-d B,,, x, + -~ i ko~ B B - B,,, L -~ ,l x ,' + -d ,~'~,' + -d ,7 ,i ' J ~ + O ( e 2 ) , (2.19d) 

where 

B = A e x p ( i A x t O / 3 k ) ,  (2.20) 

and A is defined by 

ito e 1 1 0 it°r/(°)lA+o(e2)'/  nct'=- a+ { p ±  - 0,,+o, (2.211 

Therefore, B is proportional to the amplitude of the short waves. 
It may be shown that (2.19a)-(2.19d) are equivalent to (3.3)-(3.5) of [6]. The reason for expressing the 

coupled equations in our form is to have a linear eigenvalue system in later stability analyses. 
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3. Stability of  a uniform short-wave train 

443 

Equations (2.19a)-(2.19d) are coupled: the nonlinearity of  the short wave on the right-hand side of  
(2.19a) forces the long waves, and (2.19d) is a standard nonlinear Schr6dinger equation plus the interaction 
terms between the short and long waves. 

A particular solution of  the coupled equations is a uniform short wave train with no long waves; that 
is, 

77 ~°) = O, B = So exp{~iktolSol2 eh}, (3.1) 

where So is a measure of  the wave steepness of  the uniform wave train, and is independent of  x and t. 
We now consider a uniform short wave train perturbed by a long wave and side-band wave disturbances: 

1 to e r , , ( i~e i (~_n , , )+ , ) ,  
c~ (°) =~ k--ie (3.2) 

1 E ~e i (K.x l_Dt l )+ , ) ,  
n (3.3) 

and 

B = k s 0 ( 1  + eB, + eB2) exp{¼ietolSol2h}, 
tO 

(3.4) 

B, =/~, exp[ i (Kx~-  a t , ) ] ,  B2 =/~2 e x p [ - i ( K x , -  12t,)], (3.4a,b) 

where r~ t°), eB~ and eB2 are the modulational disturbances on the short wave profile. We may interpret 
eBt as the higher side-band disturbance (with a slightly higher frequency than the uniform short wave) 
and eB2 as the lower side-band disturbance (with a slightly lower frequency than the uniform short wave), 
respectively. The unknowns, & ~, /~, /~2 may be complex. The long wave potential 4~ (°) is given by (3.2) 
so that (2.19c) is implicitly satisfied. 

Substituting the perturbations (3.2)-(3.4) into the coupled equations (2.19), we have the following four 
simultaneous equations: 

12 A K,, , 2 K ~ ^, 
- 'da+~c=aelso ~(b~ + b2), 

a .  .[K'¢ 
-d C + k- ~ a = - c a  k ~ ] , (3.5a,b) 

12^ 3 [ I _ e A ~ / K ~  ~ 3e /K\2~  e.S. 2 ~ A, 3eKA 
~ b , - ~ [  6k2] \k  ] : - - ~ - [ ~ - ) ~ - ~ l  0l( ~+b2) - -~ -~ -a ,  (3.5c) 

eA K 
= - T  \-k / b* +4 Isol2(b' + 

Expressing K, 12 in terms of  x, t (instead of  x~ and h) eq. (3.5) may be written in the matrix form 

12[X]{u} = [ Y]{u}, (3.6) 
to 



where 

1 
0 

[ X ] =  0 

0 0 O ,  
1 0 0 

0 1 0 
0 0 1 
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[ Y] = 

- K  K 
0 e-- 

k k 

o o 
- r -  

3 K 3[ 1 \ K  3[K'~ 2 
o ) - -  

3 K 8 2 

"~ e-~ 0 1--6 

E 2 

16 

K 
E ~  

k 

E 2 

16 

- 6 T ] k - - 8 ~ k )  +-~ 

and {u} T= (a, ~,/~,/~*) is the eigenvector, corresponding to the eigenvalue fl/w. 
In deriving (3.6), the following equalities were used: 

ISol2=L (3.7) 

eA 1 
k 2 - 7 '  (3.8) 

where ~" = Tk2/pg is the nondimensional surface tension coefficient. The derivation of (3.7) and (3.8) is 
given in Appendix A. 

Equation (3.6) is further simplified to the form 

~[I]{u} = [X]-~[ Y]{u}, (3.9) 
tO 

where [I]  is the unit matrix. The eigenvalue problem (3.9) may be accurately solved by EIGCC algorithm 
[13]. The positive imaginary part of the eigenvalues is the linear growth rate of the instability. 

Before we show the numerical results we may approximate (3.9) by a simpler form in order to reveal 
certain characteristics of triad and quartet instabilities. Using (3.5b), the fourth-order matrix [ Y] may be 
reduced to third-order, at the cost of (3.6) no longer being linear in/2/co. 

Then, substituting/2/co = [/~ + ] (1 -1 /67" ) ]K/ iq  on the left-hand side of (3.6) we have 

~[l]{u~} = [ Yi]{u,}, (3.10) 

where 

[ Y , ]  = 

(1/7")[1+7"(K/k)Z] 3 (1 - 6~1T) e 
O/oJ 2 

- - 8  
4 16 K 
3 e 2 k 

4 16K 

E 

e 2 k 

16 K 
3 K  e 2 k  

(3.11) 

and {Ul}  T = ( 4 ,  /~1, /~2~) • 
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Two interesting cases in which the uniform wave train is unstable are worth discussing. 

Case 1. 

+ 3 1 [ 1 [ 1  7"(K/k)2]_~(l__6_~)]>>O(e)" (3.12) 
n/~o 

The above inequality may be approximately written as 

cpL- c~s >> o(~, II~), 
Cps 

if we notice ~ 

7"[K/k]: 1+ CpL+ O(e, l /T ) ,  (3.13) 
:~a/to = C~s 

where CpL = ~2/k; Ces = to~K, is the phase velocity of  the short wave; and 

3 to ~+~ 
C " s - 2  k T+I" 

Equation (3.12) ensures that the long wave's phase velocity is quite different from the short wave's group 
velocity. 

In this case, the eigenvalue system (3.11) degenerates to the following form: 

~ , -  CpL/ Cs, , (3.14) 
and 

= 3 K 2 e 2 e 2 

fg l" l  8 k 2 16 -1-6 ~gl~  
(3.15) 

From (3.15), we have 

The instability will occur if 0 <  K / k <  e/x/3, and the maximum growth rate of  the instability is 

ft- 1 2 
lm - -=~eto  , (3.17) 

when g / k = e / v:6. 

It is not difficult to recognize that the instability shown in (3.15)-(3.17) is due to the quartet resonant 
interaction (or side-band instability) in the case of  the pure capillary wave train with infinite depth. The 
same results may be obtained from Djordjevic and Redekopp [7] (eq. 2.21) and [6] (eq. 3.16). 

Case 2. 

[ l [ l + ~ ' ( K / k ) 2 ]  ~/to ~ ( 1 - ~ T ) ]  -- O(e).  (3.18) 

See Appendix B. 
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As the analysis of  Case 1 shows, (3.18) is satisfied near the point where (1.1) is satisfied; hence we rescale 
K / k  near this point in order to linearize the eigenvalue system (3.10) in O/tO. Let 

and 

where 

K 4 
~ = ~--~(1 + eK,),  (3.19) 

O 
-- =/2o(1 + Or), (3.20) 
tO 

1_ g2°=2 6TJ  k" 

It is easy to show that 2 

~ ,  = O(e, 1/T).  

Therefore, (3.11) may be linearized in ~2,, and we have 

(3.21) 

(3.21a) 

where 
lIoII,[l]{u,} = [ Y2]{ut}, 

[Y~]= 

) 2e 2e 1__~ (43 - e K ,  ~ 

3 T \ ~ "  9T 9T 
1 e 2 1 e 2 e 2 

3 T 27 "~  16 16 
1 e E 2 2 1 e 2 

(3.22) 

(3.23) 

The higher order terms O(e/~2) ,  O(g2/~) are neglected in (3.23). 
The eigenvalue system (3.22) is used to study the characteristics of the triad instability. Assume that 

there are only the components of long and lower side band waves in the disturbance (i.e. b~ =0);  eq. 
(3.22) may be further reduced to 

{ a } - ~ t - ~ l - e _ ~  eKr)  9---~ a 
/2o/2,[I] /~2" = 2 1 e 2 /~* " 

- 3  T 27 "~-2+'1-6 

(3.24) 

Equation (3.24) may be solved to give 

(~¢-~ --}~r,~-' + ~ )  + [ (~  ~-~ - I ~ K , ~ - '  - ,~)~ - ~ ~-~]'/~ 
no/2, = 2 (3.25) 

Instability will occur when 

61 , - ~ - 2  3_1 2 2 / 2 " t 1 / 2  / , - ~ , < : _ 1 ~ I  d- ,,~,-1~ 61 ,1~-2  / ~ 2  L. 2 ( 2 ~ 1 / 2 ~ / , - ~ ,  
243 a 16 c 3 \ 3 !  e /  a ~  3 ~ a ~ r a  ~ 2 4 3  a 16 ~ ~ 3 ~ 3 1  ¢ ~ / a  

or  

4 " ~ - 1 - - 2 4 4 - ~ ' - 2  I 2 8 , 2 x l / 2  ,..7--K/k<~-l-244,7,--2 I 2 - -  (3.26) 

2 See A p p e n d i x  B. 
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The normalized bandwidth of the instability is 

A r / k = ~ ( ] ) ' / 2 e / T .  
The maximum growth rate of the triad instability is 

Im/2/~0 = ~(2)1/2e/T, 

(3.27) 

(3.28) 

when 

K / k = ~ - - , - 2 , , . . r - 2  , 2 - - rT-~  - ~ e  . (3.29) 

We notice that (3.29) with e = 0 is the approximation of the linear sum triad resonance condition (1.2) 
to the second order O(1/~.2). Thus, the triad resonance interaction may occur for the 'triad' of the long, 
lower side-band wave disturbance and the uniform short wave. 

Now we assume that there are only the components of long wavelength and higher side-band waves 
in the disturbances (i.e., /~2 = 0). Equation (3.23) is reduced to 

) I{ } 
A -- e g r  

{ a }  3T\81  9T 
---~ . 

I2oOr[l] g~ 1 e 2 1 e2 g~ (3.30) 

~ 27 ~ - 1 - 6  

Solving (3.30), we have 

~ O ~ - ~ r  I t t 6 1  ~ - 2  I r l  ~ - - I  1 2x 25 " - 2  1 " - - 1  ! 2 2 8 2 ~ - 2  1 / 2  = ~ / t ~ l  - ~ e t ~ , l  - i z e ) ± [ ( ~ T  - ~ e K r T  +ize ) + ~ e  T ] }. (3.31) 

Obviously, there will be no instability occurring in the difference triad interaction. 
Equations (3.25) and (3.31) indicate that the triad resonance can only happen in the sum triad interaction 

(among long, low side-band wave disturbance and the uniform wavetrain) for weakly nonlinear GCW's. 
Therefore, Hasselmann's criterion [12] is recovered in the case of weakly nonlinear GCW's; and equation 
(1.1) is only the necessary condition and the first order approximation O(1/T) of Hasselmann's criterion 
in the special case of long and short wave interaction. 

In Section 4, accurate computational results will further confirm this conclusion. 

4 .  N u m e r i c a l  r e s u l t s  

Accurately solving equation (3.9) serves two purposes. First, the results are used to compare with the 
results of the strictly numerical method [5]; secondly, the results may confirm the approximate analysis 
in Section 3, which has shown the characteristics of the triad instability and the recovery of Hasselmann 
[12] criterion in the case of the deep-water GCW's. 

Figures 1 and 2 show the nondimensional linear growth rate of instabilities obtained by (3.9), compared 
with the results given by strictly numerical computation [5] for T = 20.0 and T = 10.0 respectively. In Fig. 
l(a) (ka =0.01), both results show that the triad instability region and the quartet instability region are 
not connected, with the quartet instability region located near the origin ( K / k  = 0). Satisfactory comparison 
is observed in this figure. In Fig. l(b) (ka =0.03), the triad instability region and the quartet instability 
region have merged together; both results show this tendency, and the quantitative agreement is good. In 
Fig. l(c) (ka =0.05), the differences between the two methods have increased slightly but quantitative 
agreement is still retained except near K / k  = 0, where the strictly numerical results show stability. The 
consistency between the two results is also confirmed in Fig. 2 for 7" = 10.0. 
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000 
0 0 0  0.05 

0.15[- 

I (b) 
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10 (K/k) 10 (K/k) 

0,5[- (c) 

0-17' I 

0.06 

0.03 

0.00 . . . . . . . . . .  ~ ~- -.. ~.~It 
0.00 0.05 0.10 0.15 0 2 0  0.25 0.30 

10 (K/k) 

Fig. 1. The linear growth rate of two-dimensional instabilities for "F = 20.0 derived from the coupled equations (2.19) ~ ,  and the 
numerical results of Zhang and Melville [5] ×,  ka = 0.01 (a); /ca = 0.03 (b); and ka = 0.05 (c). 

As is observed in Figs. 1 and 2, the bandwidth of the triad instability, normalized by perturbation wave 
number, is approximately proportional to the wave steepness. For very small wave steepness, say,/ca = 0.01, 
the triad instability region is confined to 0.0473 ~< K / k  <~ 0.0490, for T = 10.0. As shown in Fig. 2(a), the 
triad instability region is centered at the point where the linear sum triad resonance condition is satisfied; 
however, the point where the linear difference triad resonance condition is satisfied, and the velocity 
matching point, are outside of the triad instability region. We may further check the eigenvector correspond- 
ing to the eigenvalue whose imaginary part is positive; it is found that the dominant components are 
and /~2", which represent the long wave and the lower side-band disturbances. Hence, it confirms the 
analytic results that the resonance is due to the sum triad interaction. Typical eigenvectors, for the triad 
instability, are given in Table 1. 

The nondimensional maximum growth rates of the triad instability were obtained by numerically solving 
(3.9), and are shown in Fig. 3 as a function of the wavesteepness, ka, for various nondimensional surface 
tension coefficients T. For comparison, also shown are the corresponding results by (3.28). Good agreement 
between the two results is observed for small wave steepness. The above comparison has shown that the 
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Fig. 2. Same as Fig. I, except T = I0.0. 
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0.06 

Table 1 

Components of  eigenvectors 

Modes Amplitude" 

T=7.0 ,  ka =0.01, K/k=O.0715 ~* 1.000 
a 0.847 
~, 0.228 

/;2* 1.000 
a 0.827 
~, 0.172 

~2" 1.000 
0.794 

~1 0.293 

T =  10.0,/ca = 0.01, K/k=O.0481 

= 20.0, /ca = 0.01, K/k = 0.0232 

" The amplitudes of the disturbance components are normalized such that 
I;* = 1 .oo .  
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Fig. 3. The maximum growth rates of the triad instability from (3.9) ( - - ,  , , for T = 10.0, 20.0, 30.0 respectively), and 
equation (3.28) (marked by arrows on the vertical axis). 

assumption of  letting the higher sideband wave be of  zero amplitude is reasonable and (3.28) is a good 
approximation. 

Benney [6] showed the linear growth rate of the quartet and triad instabilities in his equations (3.14) 

and (3.21), respectively. We compared his results 3 with our results for 7" = 20.0 in Fig. 4. When the wave 
steepness is small, the sum triad instability region is narrow and separated from the quartet instability 
region; two results are almost coincident as shown in Fig. 4(a). With increasing the steepness, the sum 
triad instability region begins to connect the quartet instability region; good agreement is still retained 
around the center of  sum triad instability region, whereas large differences are observed at the area where 
the triad and quartet instability regions have merged, as shown in Figs. 4(b), (c) and (d). The large 
differences in the region of  coalescence are expected, since the rescaled equation [6, eq. (3.21)] is valid 
only in the immediate neighborhood of  the triad resonance (K/k = 4 /9T)  while the area of  coalescence 
is not local. 

When the triad and quartet instability regions merge together, the uniform GCW's are unstable to the 
modulational disturbances whose wave numbers are continuously distributed from very small values up 
to the value where the triad instability may occur. Yuen and Lake [ 14] showed that broad-band instabilities 
may lead to complex wave evolution as a result of the higher harmonics of the fundamental instability 
also being within the unstable region. We anticipate that similar phenomena may occur for gravity-capillary 
waves with more complex wave evolution occurring after coalescence, where the most unstable triad 
instabilities may correspond to harmonics of a quartet instability. It is of interest then to consider 
dependence of the wave slope at coalescence as a function of  T. This is shown in Fig. 5, where it may be 
seen that coalescence occurs at larger e as T decreases. 

The coupled equations (2.19) demonstrate the interaction between long and short waves. They may be 
used to analyze the stability of the uniform short wave train (GCW's). The validity of  the analysis is, 
however, limited to small values of e and 1 / T  due to the assumptions made in the derivation of equation 
(2.19). However, the large 7" corresponds to wave trains with very short wavelengths, and this may restrict 
the practical application of the results. First, the strongest triad interaction happens for T slightly larger 
than 2. 4 Second, waves of very short wavelength are subject to strong viscous dissipation which may 

Results based on Benney's theory were computed after the correction of minor algebraic mistakes in his equation (3.21). 

4 With the exception of trivial solutions, the linear sum triad resonance condition is satisfied only for T >/2. 
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Fig. 5. The wave steepness ka for the onset of  coalescence of the triad and quartet instability regions, shown as a function of T.. 

dominate nonlinear effects, with the result that the triad resonant interactions may not be observed. 
Therefore, full numerical methods are necessary to extend the study into parametric ranges of more 
practical interest as has been done in [5]. 
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A p p e n d i x  A 

In Section 2, we have the following equations: 

( :/c,,- 
1 o = , ,  , "  27) 

Let the subscript d denote the dimensional variable. From exp( ixk)=  e x p ( i x a k / I c ) =  exp(ixakd), we have 

k = lckd. (A.1) 

Similarly, 

K = Kd lc ,  to = tctod, g'2 = tJ2d. (A.2,3,4) 

From (A.2)-(A.4), we notice 

K / k  = K d / k d ,  .Q/t0 = ~"~d/tod" (A.5) 

Using (2.7), (A.I) may be written as 

/ k ~ r ~  ''2 . 
= , , r  ''2, 
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where 

~ . = k  2T 

Pg 

is the nondimensional surface tension coefficient. Therefore 

2 = k 2 / ~ .  

Using (A.7), we obtain 

eA / k 2 = lz2/ k 2 = 1/T. 

In Section 2, we have 

71d = ~7:7, ~c/ Ic= e, 

where rl is the nondimensional amplitude of the wave train. Therefore 

"Od - -  ~dkd 'lTdkd ~' 
77- 

~7c ~Tcka k~cl lc ke' 

where e' = 7/dkd, the wave slope of the wave train. 

Taking 

g ' =  E, 

that is the nondimensional wave slope is the same as the real wave slope, we have 

n = 1/k. 

From (2.16), T/--" 77 (tl) e l ° + . ;  therefore, I~lm,x------21V/Ot)l. Also from (2.20), (2.21) and (3.4), 

i ~ , , l _ _ k i B i  k2 --~lSol =klSol, 
hence, 

ISol=½. 

A p p e n d i x  B 

Neglecting higher order O(e 2) error, eqs. (2.19a) and (2.19b) may be combined to give 

e,~o, ~°~-2-T-(Ba ),<,-~-e>,,, . . . .  ,. t~' ,+A~bz,  _ eAto , e to) 

Substituting (3.2), (3.4) into (B.1), using (3.7) and (3.8), eq. (B.1) may be reduced to 

e 1 
T \ k /  

Using (B.2), we have 

1 I1 + 1"(KIk)  2] _ Oleo[1 + ~ ' ( K I k )  2] 

T O/~o K / k  

(A.6) 

(A.7) 

(3.8) 

(2.6, 2.8) 

(A.8) 

(A.9) 

(3.7) 

(B.1) 

(B.2) 
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Not i ce ,  CpL = 1 2 / K  a n d  Cps = k / w ,  w h e n c e  

1 [ l + T ( K / k )  2] CpL [ 1  \ 

W e  h a v e  a s s u m e d  

K 4 
-£ = ~-~(i+ ~r,), K,~O(1), 

12 2 
1 - 6 T ) (  + eke) (1  + / 2 , ) .  

Subs t i t u t i ng  (3.19) a n d  (3.20) in to  (B.2),  we  h a v e  

J~r = O(E, I/T). 

(3.13) 

(3.19) 

(3.20) 

(3.21a)  
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