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On long nonlinear internal waves over slope-shelf 
topography 
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An experimental and theoretical study of the propagation and stability of long 
nonlinear internal waves over slope-shelf topography is presented. A generalized 
Kortewegde Vries (KdV) equation, including the effects of nonlinearity, dispersion, 
dissipation and varying bottom topography, is formulated and solved numerically 
for single and rank-ordered pairs of solitary waves incident on the slope. The results 
of corresponding laboratory experiments in a salt-stratified system are reported. Very 
good agreement between theory and experiment is obtained for a range of 
stratifications, topography and incident-wave amplitudes. Significant disagreement 
is found in some cases if the effects of dissipation and higher-order (cubic) nonlinearity 
are not included in the theoretical model. Weak shearing and strong breaking 
(overturning) instabilities are observed and found to depend strongly on the 
incident-wave amplitude and the stratification on the shelf. In  some cases the 
instability of the lowest-mode wave leads to the generation of a second-mode solitary 
wave. The application of these findings to the prediction and interpretation of field 
data is discussed. 

1. Introduction 
Numerous in situ and remote-sensing observations demonstrate the ubiquitous 

nature of long, first-mode internal waves in many of the world’s marginal seas, 
straits and coastal waters (Fu & Holt 1982). As these waves propagate for long 
distances in water of varying depth the effects of dissipation and topography are 
important in determining wave evolution. In an earlier paper (Helfrich, Melville & 
Miles 1984) one aspect of this problem, the scattering of solitary waves in a two-layer 
system by a gradually varying change in depth, was investigated theoretically and 
numerically. In this paper the evolution and stability of long internal waves over 
bottom topography are examined further by a combination of laboratory experiments 
and theoretical modelling. 

Observations of internal waves in regions where topography is expected to be 
important include the Andaman Sea measurements of Osborne 6 Burch (1980) and 
the Sulu Sea data of Ape1 & Holbrook (1983). Both showed large-amplitude waves 
(heights of 80-90 m and lengths of 2 km) propagating into shallower water. Halpern 
(1971) and Haury, Briscoe & Orr (1979) measured smaller-scale internal wave groups 
in the Massachusetts Bay. The waves were moving towards the Massachusetts 
coastline. Similar phenomena have been measured in lakes (Thorpe 1971 ). 

The wave-generation process typically involves stratified tidal flow over an 
isolated topographic feature and has been extensively studied (Maxworthy 1979 ; 
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Farmer & Smith 1980). On the other hand, the fate of these waves away from the 
generation region is not well understood. Since waves are generally observed to 
propagate into regions of decreasing depth (Fu & Holt 1982) dissipation, reflection 
and stability may all be expected to influence wave evolution. 

Haury et al. (1979) observed overturning instabilities in the Massachusetts Bay 
measurements in a region of slowly changing depth. The exact mechanism was not 
identified although a shear instability was suggested. Sandstrom & Elliott (1984) 
conducted a field study along similar lines on the Scotian Shelf and found that 
large-amplitude waves, presumably generated at the shelf break, were completely 
dissipated within a distance of 10-30 km inshore of the shelf break. Estimates of the 
local Richardson number gave values of less than 0.25 leading to the conclusion that 
shear instability led to the dissipation. In addition they concluded that boundary 
and interfacial shear were significant, though not large enough to explain all the 
observed dissipation. The Sulu Sea data also emphasize the need to consider the 
influence of wave damping on evolution (Liu, Ape1 & Holbrook 1984). 

The evolution and stability of these waves over variable topography is a topic which 
has consequences for the coastal environment. Haury et al. (1979) and Pingree t 
Mardell (1981) discussed the effects of wave stability and breaking on vertical mixing. 
Internal wave breaking may be an effective mechanism for mixing nutrient-rich water 
from the bottom to the biologically active upper layer (Sandstrom & Elliott 1984). 
Additionally, instabilities may play a role in the transfer of tidal energy to the 
high-frequency portion of the energy spectrum. The measurements of Haurey et al. 
demonstrated that wave energy, originally tidal, could be transferred to the scale of 
turbulence by breaking. It is known that places such as the Andaman Sea, the Gulf 
of California and the north-west Australian shelf, where tidally generated waves are 
observed, are regions of significant tidal dissipation (Miller 1966). Waves incident on 
the coast have also been suggested as a mechanism for coastal seiche excitement a t  
Palawan Island in the Sulu Sea and at Puerto Rico (Giese et al. 1982). 

Most previous efforts to describe the evolution of these waves have employed 
Korteweg-de Vries (KdV) theory. Lee & Beardsley (1974) used it to describe the 
initial evolution, in constant depth, of waves observed in the Massachusetts Bay and 
Osborne & Burch (1980) use it to analyse the Andaman Sea observations. KdV theory 
assumes a balance between nonlinearity and dispersion parameterized by two non- 
dimensional variables 

( l . l a ,  b)  

where a,, is a wave-amplitude scale, D is the water depth and 1 is a wavelength scale. 
For this balance to occur the nonlinear parameter a and the dispersive parameter 

must be of the same order of magnitude and small : 
The additional parameters associated with topography and dissipation are 

= O(a) -4 1. 

respectively 
1 6 (vl/c)B A = -  y=-=-  
L ’  D D ’  (1.2a, b )  

where L is the horizontal lengthscale of depth variation, 6 is the boundary-layer 
height scale, c is the linear long-wave phase speed and v is a representative kinematic 
viscosity (eddy viscosity for the field, molecular viscosity for the laboratory). The 
(almost) two-layer stratification is specified by 

(1.3a, b )  
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(a)  Physical scales 

Location a0 1 D d, L c u = -  hp V 
P 

Andaman Sea -80 m 2000 m 1500 m 500 m 250 km 2 m/s 0.002 500 m 1-10 cmz/s 
(eddy viscosity) 

Mass. Bay -1Om 300m 80m 30 m 10 km 0.5m/s 0.002 30m 1-10 cmz/s 
(eddy viscosity) 

Laboratory -2 cm 100 cm 30 cm 10 cm 700 cm 15 cm/s 0.3 2 cm 0.01 cmz/s 
(molecular 
viscosity) 

(b)  Non-dimensional parameters 

Location 

Andaman Sea -0.053 0.56 0.008 2-7 x 10-4 0.3 
Mass. Bay -0.13 0.07 0.03 3-10 x 10-3 0.4 
Laboratory -0.07 0.09 0.14 9 x 10-3 0.1 

TABLE 1.  Representative scales in the ocean and laboratory 

and the ratio of the depths of the layers, where hp is the scale height of the pycnocline, 
p* is the upper/lower layer density, po is a reference density, and Ap = p-  - p + .  Here 
e is the interface parameter and cr is the Boussinesq parameter. If e 4 1 then the 
system is nearly two-layered. 

Physical scales and the non-dimensional parameters typical of the Andaman Sea 
and Massachusetts Bay internal waves are listed in table 1, where d + is the scale depth 
of the upper/lower layer. A range of eddy-viscosity values from 1 to 10 cm2/s was 
used in the calculations. The assumption of weak nonlinearity is satisfied in both 
cases. In the Andaman Sea /3 9 O(a)  ; however, Segur & Hammack (1982) found from 
laboratory experiments that the KdV equation was valid for /3 as large as 1Oa. Table 
1 also shows that the depth variations are slow, A 4 1. If A % a,/3 topographic 
influences would dominate nonlinearity and dispersion. Similarly, y % 1 so that the 
influence of viscosity is limited to a small region near the boundary. 

KdV theory for internal waves incorporating slowly varying topography and 
dissipation has not previously been tested. There may be some parametric regions 
in which the theory is inadequate, such as for large h when reflection becomes 
important or if instabilities not modelled by the theory develop. Madsen & Mei (1969) 
found good agreement between KdV theory without dissipation for surface waves 
over slope/shelf topography. However, the extrapolation of this conclusion to 
internal waves is not straightforward owing to possible interfacial instabilities and 
differences in the KdV equation for surface and internal waves. 

To determine the validity of the KdV theory for variable depth a comparison of 
theoretical models with laboratory experiments over slope-shelf topography is 
presented. Table 1 lists the typical parameter values studied in the experiments. 
Similarity with the field examples is preserved if a representative value of eddy 
viscosity is used in the oceanic calculations. Thus, extrapolation of conclusions from 
the laboratory to the field should be possible. 

The experiments focus primarily on the problem of an internal solitary wave 
propagating up a slope to a shallower region of constant depth. Although field 
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observations generally show groups of nonlinear waves, the usefulness of KdV theory 
is best tested in the simple case of a single incident wave. Some studies of multiple 
incoming waves will be discussed. 

The experiments were conducted around the ‘ turning-point ’ problem. A solitary 
wave in a two-layer system is a wave of depression/elevation for dJd- >< 1.  In an 
inviscid system if a solitary wave of depression propagates up a slope through a point 
where d, = d-, it can no longer exist as a wave of depression. The incident wave 
scatters into a train of oscillatory waves from which one or more solitary waves of 
reversed polarity may emerge asymptotically (Helfrich et al. 1984). This behaviour 
is due to the coefficient of the quadratic nonlinear term in the KdV equation changing 
signs upon passing through the turning point. In the region of the turning point 
higher-order cubic nonlinearity becomes important (Miles 1979; Helfrich et al. 1984). 
Investigation of this topographic scattering should provide a good test of the KdV 
theory for internal waves over bottom topography. 

In $ 2 the governing equation, including variable topography, boundary-layer 
damping, continuous stratification and cubic nonlinearity, is formulated. Section 3 
contains a description of the experimental set-up and procedure. The theoretical 
model predictions for the continuous stratification and two-layer models are compared 
with the experimental data in $4. In  $5 observed wave instabilities, second-mode 
wave generation and mixing are discussed. A discussion of the results and application 
to oceanic conditions is presented in $6. 

2. Evolution equation 
We wish to obtain an evolution equation for long nonlinear internal waves over 

slowly varying topography. We consider a continuously stratified system, with the 
two-layer limit resulting when €40. Cubic nonlinearity is included as the first 
correction when the coefficient of the quadratic term becomes small. In the 
continuously stratified case this occurs when the pycnocline is near mid-depth, a 
situation which must be encountered for shoaling topography. 

In table 1 representative values of the non-dimensional parameters for both coastal 
ocean and laboratory situations support the following assumptions used in the 
formulation of the governing KdV equation. The nonlinear and dispersive parameters 
are assumed to be in balance: p = O(a)  4 1 .  The slope of the bottom topography is 
slow, A = O(a),  though the depth change relative to a reference depth D may be O(1). 
Boundary damping is not dominant, y < O(a), but is important in wave evolution 
over long distances. The Boussinesq parameter is small, (T 4 1.  Thus a rigid lid is 
assumed. The interface parameter E is assumed to be O(a),  although this assumption 
may be relaxed. A schematic of the problem system is shown in figure 1. 

With these scaling assumptions the governing KdV equation for the wave 
amplitude A ( X ,  s), normalized by a,,, can be deduced from Grimshaw (1981) and the 
boundary-layer analysis of Kakutani & Matsuuchi (1 975) and Miles (1976) to be, in 
non-dimensional form, 

where ~lnc++lnI, ,) ,  
d 

dX 
A = - (  (2 .24  

(2.2h) 
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and 

FIQURE 1. Definition sketch for continuously stratified system. 

0 0 0 

I ,  = p4 '2d~,  I, = ]-h ~ 4 ' ~  dz, I2 = ~4~ dz. (2.3 a - c )  

Here the horizontal and vertical coordinates (x, z )  are normalized by ( I ,  D), time t by 
1/U and mean density p ( z )  by po. The water depth h is a function of the slow spatial 
scale X = ax and phase variable, 

s = :-t,  

specifies rightward propagating disturbances. The vertical structure function 4(2 ; X) 
is found from the eigenvalue problem for the linear phase speed c ( X ) ,  

( 2 . 5 ~ )  

4(o) = 4(-4x))  = 0. (2.5b) 

In  order to compare predictions of the theory with laboratory data the coefficient 
for boundary damping ( 2 . 2 ~ )  has been modified to include dissipation due to the tank 
sidewalls by inclusion of the terms 2d,/W where W is the tank width and d, is the 
dimensional depth of the upper/lower layer. This is a good approximation provided 
6 = h,/D = O(a). For e = O(1) the horizontal velocity is not vertically uniform over 
most of each layer and ( 2 . 2 ~ )  would overestimate the sidewall influence. Since the 
difference between kinematic viscosity between fresh water and sea water is less than 
3% a t  20 "C (Myers, Holm & McAllister 1969) an average value is used in ( 2 . 2 ~ ) .  

2.1. Cubic nonlinear correction 
Under certain circumstances i t  is possible for the coefficient of the quadratic nonlinear 
term in (2.1), al, to become small. When the coefficient becomes O(a)  the order of 
the entire quadratic term becomes O(a2)  and cubic nonlinearity, O(a2) ,  may balance 
or dominate quadratic nonlinearity in some parametric region (Miles 1979). The KdV 
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balance between nonlinearity and dispersion is lost in this equation. In the context 
of a two-layer system the appropriate balance is 

If Id+-d-l/D = O(a) then p = O ( a 2 )  and cubic nonlinearity, which limits the 
maximum attainable wave height (Long 1956), should be incorporated into the 
theory. 

The evolution equation corresponding to a two-layer system with slowly varying 
topography with /3 = O(a2) and h = O( /3) was derived by the multiple scales expansion 
method in Helfrich et al. (1984). The inclusion of the cubic nonlinear term for the 
case of continuous stratification is based on that derivation and Miles (1979, equation 
(5.6)). Thus, when p = O(a2)  the cubic nonlinear correction in the continuous case 
is - (313/cIo) A2A, where 

0 

I3 = I-, pq5’4 dz. (2.6) 

Gear 6 Grimshaw (1983, equation (84)) showed that (2.6) is not complete and should 
include another term. However, in the limit of a two-layer system this correction is 
identically zero and for continuous but thin interfaces, the leading behaviour is given 
by (2.6). 

The effects of nonlinearity, dispersion, slowly varying topography and boundary 
damping all enter without interaction at the highest order resulting in the extended 
KdV equation (EKdV) 

O0 aA 1 -sgn (5-5’) 
ds’, (2.7) 

aA aA aA a 3 ~  
A A + - + a l A  - -a2A2  -+pl - = 6, ax as as as3 

where 3 4  
CIO 

a2 = -, 

and A ,  a,, pl, and 6, are given by (2.2). 

1979). 
For constant depth and no damping (2.7) has the solitary-wave solution (Miles 

A = ao(cosh28-p sinh20)-’, 

where 

and 0 < ,u < 1 .  For a given stratification, depth and wave amplitude, the wavelength 
scale 1 is found from 

and ,u is given by 
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2.2. Two-layer model 

In  the limit of a two-layer system the coefficients of the EKdV equation (2 .2a-c) ,  and 
(2.8) become (Helfrich et al. 1984) 

1 dc A = - -  
2c dX' 

3 (d+-d- )  a =- 
2c (d+d-)  ' 

3 I (d:+d!) 
c (d+d-)' (d++d-) '  

a =-- 

( 2 . 9 ~ )  

(2.9b) 

( 2 . 9 ~ )  

(2 .9d)  

where (2.10) 

Here the layer depths d ,  are normalized by the total depth D at some reference 
location and the phase speed c is normalized by U = (gD)+. 

The third term in the brackets in (2.9e) explicitly accounts for interfacial damping 
and is found from an analysis similar to the bottom boundary layer (Helfrich 1984). 
For analytical tractability, the interface is assumed to be flat for the viscous 
boundary-layer problem. If this assumption is not made a fully nonlinear analysis 
results because the boundary-layer scale y is comparable to the wave-amplitude scale 
a. The kinematic boundary condition applied at z = aA in the inviscid problem is 
applied at z" = (a/?) A x A, where A = O(1) in the non-dimensional formulation. 
Leone, Segur & Hammack (1982) made the same flat interface assumption when 
deriving a relationship for the adiabatic viscous decay of a solitary wave in a two-layer 
system. 

2.3. Numerical methods 
Equation (2.7) was solved using the explicit pseudospectral method of Fornberg & 
Whitham (1978). The vertical-structure eigenvalue problem (2.5a, 13) was solved, 
using a fourth-order RungeKutta shooting technique, at several locations in order 
to determine the phase speed and the integrals I, (j = 0 ,  1 , 2 , 3 )  as functions of x. 
Experimentally measured density profiles were used in the eigenvalue computations. 
Details of the numerical procedure can be found in Helfrich et al. (1584) and Helfrich 
(1984). 

3. Experimental set-up and techniques 
All experiments were conducted in a glass-walled wave tank 0.6 m high, 0.38 m 

wide and 24 m long (see figure 2) .  The straight slope and uniform shelf topography 
was constructed with a false bottom of removable plate-glass sections. Following 
Thorpe (1978) interfacial waves were generated with a flap-type wavemaker consisting 
of a 1.2 m Plexiglas flap hinged to an airfoil section fixed in the interface. Accurate 
and repeatable flap movement was attained using a computer-controlled stepper 
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V 0 *. P 

Wave generator ‘+ 
c P -  

I-L 1CH4 m -4 
. 

motor and threaded rod. Single and multiple solitary waves were generated by moving 
the flap such that the mass flux in each layer approximated that of a wave passing 
the tip of the airfoil (after Goring 1978). An LSI 11/23 microcomputer was used for 
experimental control and data acquisition. 

A salt-stratified system was constructed by filling the tank to a pre-determined 
depth with salt water of known density and then slowly spreading fresh water over 
the salt water with floating diffusers. Precision Measurement Engineering microscale 
conductivity probes (Model 106), vertically positioned by computer-controlled 
stepper motors, were used to measure background-density profiles and interfacial 
displacements. Probes were usually located at the base of the slope and at  several 
other locations on the slope and shelf. 

Interfacial displacements were calculated assuming lowest-mode motion. The 
conductivity probes were positioned within the interfacial region prior to a run and 
measured conductivities (densities) were converted to equivalent vertical displace- 
ments of the static conductivity profile. A test of the accuracy of these measurements 
was made by comparing velocities calculated from measured displacement records 
with fluid velocities measured with a laser-Doppler anemometer. The calculated 
velocity at  the laser measuring depth z, is, from the linear problem, 

where A is the measured dimensional interfacial displacement amplitude and c is the 
dimensional phase speed. The phase speed c and # ( z )  are found by solving the 
eigenvalue problem (2.5a, b) with the measured static density profile. Figure 3 shows 
an example comparison for a scattered wave packet on the shelf. The laser data is 
unfiltered ; thus, high-frequency noise is evident. Agreement is very good, indicating 
that the conductivity probes and lowest-mode analysis give reliable estimates of 
interfacial displacements. Uncertainty in displacement calculations was found to be 
less than 10 % of measured wave heights. 

All experiments with topography were designed so that a solitary wave of 
depression would propagate onto a shelf where the relative layer depths were 
reversed. The ratio of the layer depths on the shelf is given by 
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- 5  I I I I 1 

0 10 20 30 40 50 

Time (s) 

FIQURE 3. Comparison of velocity measured with laser anemometer (-) and velocity calculated 
from measured conductivities (- - -). Data from lower layer 2 m past shelf break. 

(a )  Dimensional parameters 

a0 (cm) D(cm) L(cm) d-,(cm) d+(cm) Ah(cm) hP (cm) 
33.5 244 5.0 

36.0 701 8.0 
-1.4 to -2.5 35.0 488 6.5 11.0 17.5 1.7 to 3.0 

( b )  Non-dimensional parameters 

a A T U & 

0.45 0.017 

0.73 0.053 
-0.03 to -0.075 0.1 to 0.33 0.59 0.035 0.05 to 0.1 

TABLE 2. Ranges of parameters examined experimentally 

where d-, is the depth of the lower layer on the shelf. For r < 1 a turning point is 
encountered on the slope and as r decreases the topographic scattering of the incident 
wave increases. 

Table 2 lists the wave amplitudes, water depths, topography and stratifications 
examined. For all runs the height of the slope, Ah, and the depth of the upper layer 
were constant. The interface thickness was essentially constant with a typical 
maximum slope thickness of 2 cm. The non-dimensional parameters a, A, rand v were 
varied systematically in order to examine their influence on wave evolution, stability 
and the theoretical modelling. 

4. Comparison with experiments 
Several runs were conducted at constant depth in order to test the boundary- 

layer-dissipation model. Figure 4 shows a comparison between the continuous 
stratification model (2.7) and experimental data for the evolution of a single solitary 
wave witha = -0.043 and (d+,  D ,  v) = (1 1 cm, 33.5 cm, 0.0355). The non-dimensional 
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- 1 1  I I , ! a , , , ! , ! , ,  ! I , , , , , ,  

0 5 10 15 20 

FIGURE 4. Model comparison for uniform depth. (a, D, d,, co, a) = (-0.043, 33.5 cm, 11  cm, 
16.0 cm/s, 0.035). -, experiment; - - -, theory. 

streamline displacement 17 = q$(zp) A/ao at the probe depth zp is plotted against the 
retarded time 

t - Jo $ (normalized by D 

for four locations in the tank. Data a t  the first probe location (xo = 0, 2.5 m from 
the tip of the wavemaker) was used to  define a, and provided the initial data for the 
numerical calculations. I n  this and subsequent comparisons the sign of the wave 
amplitudes is contained in a = ao/D. Damping due to  interfacial shear was accounted 
for by altering ( 2 . 2 ~ )  to include the two-layer interfacial damping formulation (cf. 
(2 .9e)) .  The agreement between theory and experiment is very good in both 
amplitude and phase of the evolving wave. Comparisons without interfacial damping 
show an overestimate of wave amplitude by about 20 yo a t  x/D = 40.3. Leone et al. 
(1982) made the same approximation in examining the decay of solitary waves in a 
salt-stratified system. They observed significant differences between their measure- 
ments and predictions which they attributed to residual kinetic energy in the 
boundary layers from a freely propagating fast surface mode. The internal-wave- 
generation method used in this study is volume preserving and does not generate 
fast surface waves. 

The steep front face of the experimental waveform shown a t  x/D = 40.30 is 
probably due to  distortion of the conductivity (displacement) signal as heavy (salty) 
fluid drained down the vertically oriented conductivity-probe tip. Some L-shaped 
probes (probe tips enter the interface normal to the (x,z)-plane) were available 
(x/D = 0, 26.87) and helped reduce this problem. 

Next, the continuous stratification model, employing the two-layer interfacial 
dissipation formulation, is compared with the experimental data. The comparisons 
are generally insensitive to  (T, so only the data for cr = 0.035 will be examined. The 
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r 

- 

(1.41, 1.70) - 

(1.20, 1.41) - 

(0.80, 0.87) 

(0.59, 0.62) 

- 1  I I I 

0 1 2 

FIGURE 5. Extended KdV (- - -) and KdV (- - -) model comparison with composite of wave 
evolutionoverslopshelftopography. @ , A ,  r )  = (-0.05,0.15,0.59)and(L, D,d-, ,co,  a) = (488 cm, 
35 cm, 6.5 cm, 15.3 cm/s, 0.0336). 

comparisons are plots of the streamline displacement q = @(zp) A / a ,  vs. the retarded 
time normalized by co/L ( = -As in the notation of (2.7)) at several locations (6 = z /L )  
on the slope and shelf. In all examples the measured displacements at the slope base 
(6 = 0) were used as the initial conditions for the numerical computations. 

Figure 5 shows a comparison of the KdV theory with and without the cubic 
nonlinear term for (a, A,  r ,  n) = ( -0.055,O. 15,0.59,0.0336). This figure is a composite 
of experimental data from five successive runs since only four conductivity probes 
were available during a run. Wave generation using the computer-controlled stepper 
motor results in excellent repeatability of the incident wave thereby allowing a 
composite picture of wave evolution on the slope to be constructed. The agreement 
between the KdV equation and the data is poor for the measuring stations 6 = 0.8 
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to 1.41. Addition of the cubic term improves the predictions. In particular the 
predicted shape of the evolving wave on the slope and just on the shelf is much better 
using the extended equation. Errors in predicted amplitude using the extended theory 
are confined to the neighbourhood of 6 = 1 .O and are probably due to the abrupt slope 
change at  the shelf break. Measured fluid velocities in this region (discussed in $5)  
are O(c) ,  which conflicts with the assumption of weak nonlinearity. At the last station 
(6 = 2.33) the EKdV theory gives a larger error in phase than the KdV model, but 
does give a better prediction of wave amplitudes in the tail of the scattered packet. 

The phase error is probably the result of retaining the higher-order cubic term in 
the model. Formally, other higher-order terms (O(a/3, p”)) should also be retained in 
the model along with the cubic term outside the turning-point region. A sample 
calculation using the wave characteristics computed with the EKdV model at 6 = 1.2 
showed that the modification to the linear two-layer phase speed from the O(pZ) 
dispersive term (cf. Koop & Butler 1981, Appendix A) would correct most of the phase 
error at 6 = 2.33. However, the influence of the O(a/?) (mixed nonlinear-dispersive) 
terms might also be important but cannot be estimated easily. A test numerical run 
was made for the data of figure 5 using the EKdV model for the evolution on the 
slope (0 < 6 < 1) and then employing the results at  f = 1.0 as the initial conditions 
for the KdV model on the shelf. The phase error at  6 = 2.33 was nearly eliminated 
and the amplitude and frequency predictions were very good. However, there is no 
a priori justification for this hybrid modelling. 

The influence of slope length is examined in figure 6. Two comparisons are shown 
with the EKdV model for runs in which only the slope length was altered, other 
parameters were held essentially constant (a, r ,  a) = (-0.04,0.73,0.355). Figure 6(a) 
is for the longest slope ( A ,  L)  = (0.12,701 cm) and shows good agreement at the two 
stations on the shelf. Figure 6 ( b )  is for the shortest slope ( A ,  L)  = (0.33,244 cm). The 
agreement is excellent at both measuring stations even though A x lOa, considerably 
outside the assumed scaling. Note the small-amplitude shelf behind the incident wave 
at 6 = 0 in figure 6 ( b ) .  The presence of weak reflection, not accounted for in the theory, 
does not noticeably affect the comparison. Typical maximum amplitudes of the 
reflected component are 5-10 % of the incident-wave amplitude. The reflected 
component decreases as the slope length increases and is negligible for the long slopes 
(see figure 6a). 

So far only experimental runs without strong wave instabilities have been 
considered. Figure 7 shows a comparison for (a, A,  r ,  a) = (-0.063,0.15, 0.45, 
0.0356) in which wave breaking, accompanied by significant vertical mixing and 
generation of a second-mode solitary wave, occurred in a region f l  from the shelf 
break (6 = 1.0). Details of the breaking events and second-mode generation are 
discussed in $5. Aside from the station at 6 = 1.0 the results are surprisingly good 
even though the weakly nonlinear theory cannot model any instabilities. Examination 
of measured velocities at  the shelf break and velocities computed with measured 
displacement data indicates that the probe record is an accurate estimate of 
displacement. (The flat crest is a result of the interface being raised above the probe 
level.) At 6 = 1.41 the leading trough and first several wave crests are predicted 
accurately. Errors in amplitude and phase become significant at the rear of the 
scattered packet. This is a characteristic of other comparisons regardless of wave 
instabilities, and the error decreases as r increases. 

Because of its simplicity, the two-layer model is often used as an approximation 
when studying long first-mode internal waves. Figure 8 ( a )  shows a comparison of the 
two-layer model with experimental data for (a, A ,  r ,  g) = (-0.040,0.15,0.73,0.0356). 
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FIGURE 6. Model comparison for (a )  long slope (A ,  L)  = (0.12, 701 cm) and ( b )  short slope 
( A ,  L )  = (0.33, 244 cm) with all other parameters held constant. (a, r )  = (-0.04, 0.73) and 
(D,d- , ,  co, (T) = (36.5 cm, 8.0 cm, 15.9 cm/s, 0.0355). -, experiment; ---, theory. 

The model captures the qualitative aspects of the scattering process and is accurate 
in wave-amplitude prediction, though errors in phase and frequency are large. In  
particular the time for the leading trough to pass at 6 = 1.41 and 2.33 is not modelled 
accurately. Figure 8 ( b )  shows the same experimental run compared with the 
continuous stratification model. The significant improvement with this model is 
attributable to differences in the linear phase speeds between the models. The two-layer 
model overpredicts phase speed by 3 % for 6 < 0 and 7 % for 6 > 1. Although these 
values are small, the cumulative effect on dispersion of the scattered waves over 
distances of 2-3 L is important. 

Since most observations show rank-ordered groups of nonlinear waves several 
experiments were conducted with two rank-ordered waves to determine if the good 
agreement found for single waves applies to multiple waves. Figure 9 shows an 
example for two waves incident on the intermediate slope length and depth change 
with (a1, u2, A, r ,  (r) = (-0.055, -0.044,0.15,0.59,0.0349). The overall agreement is 
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FIGURE 7. Model comparison for case with wave breaking at shelf break (6 = 1.0). 
(a, A, r )  = (-0.063,0.15,0.45) and (L ,  D ,  LS, cot a) = (488 cm, 33.5 cm, 5 cm, 15.5 cm/s, 0.0356). 
-, experiment; - - -, theory. 

very good. The largest errors, aside from the amplitudes at C; = 1 .O, are in the middle 
of the scattered packet a t  6 = 2.33. In this region the scattered tail of the first wave 
is interacting with the front of the second wave. The disagreement is related to the 
errors in phase and amplitude in the tails of scattered packets for single incident 
waves. Numerical experiments for two rank-ordered waves propagating through a 
turning point (Helfrich et al. 1984) have demonstrated the importance of nonlinear 
interaction between scattered packets. Errors in modelling the tail of the lead wave 
will result in errors in modelling the interaction. Despite this error the agreement is 
quite good and improves as r increases. 

5. Wave instabilities 
Wave instabilities in the shelf-break region were observed under certain conditions. 

The instabilities ranged from interfacial shearing to strong wave breaking and 
overturning accompanied by significant horizontal and vertical mixing. Generation 
of a second-mode wave from this instability of the lowest mode occurred in some cases. 

Figure 10 shows a series of shadowgraph images taken at the shelf break during 
a typical strong breaking event where (a, A ,  r ,  a) = ( -0.067,0.29,0.45,0.0530) and 
(L,  D ,  d-,J = (244 cm, 33.5 cm, 5 cm). The main features of the breaking events are 
not strongly dependent on slope length or density difference. In  frame (a) the leading 
face of the incident wave (propagating from left to right) has elongated and moved 
onto the shelf. Steepening of the rear face is evident. In  contrast to long surface waves, 
nonlinearity in this case tends to steepen the rear face. The nonlinear increase in the 
phase speed is proportional to ( d + - d - ) A .  Upon passing from a region where 
dJd- < 1 to a region where dJd- > 1, the effect of nonlinearity is to slow down the 
crest of the wave (incident wave has negative amplitude) relative to the front and 
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FIGURE 8. Comparison of (a) two-layer model and (b)  continuoue stratification model for same 
experimental run. @ , A ,  r )  = (-0.040,0.17,0.73) and (L, D,d-,, a) = (488 cm, 36.5 cm, 8 cm, 
0.0356). Two-layer c, = 16.5 cm/s and continuous c, = 16.0 cm/s. -, experiment; - - -, theory. 

rear faces, leading to steepening of the rear face. Slight mixing is evident on the rear 
face in frame (a). Note the sharp corner in frame (c) and the wave breaking and 
subsequent flow of mixed fluid down the slope in the following frame. Mixed fluid 
moves onto the shelf (frames (e) and (f)) and then collapses back on to itself (frames 
(8) and (h)). Mixed fluid moves further on the shelf in the form of a turbulent density 
intrusion. 
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(1.41, 1.71) 
-0 
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FIQURE 9. Model comparison for two rank-ordered solitary waves incident on slope-shelf topo- 
graphy. (al, az, A ,  r )  = (-0.055, -0.044,0.15,0.59) and (L ,  D ,  LS, co, (T) = (488 cm, 35 cm, 6.5 cm, 
15.5 cm/s, 0.0349). -, experiment; - - -, theory. 

The initial strong breaking event is two-dimensional with the resulting turbulence 
being clearly three-dimensional. Frame (1 )  shows the nearly horizontal striations 
typical of the decay of turbulent mixing events in stratified fluids (Pearson & Linden 
1983). Their horizontal extent is - f l  from the shelf break. 

The head of the turbulent intrusion (frames ( j )  and (k)) eventually propagates away 
from the mixing and forms what appears to be a second-mode solitary wave (Davis 
& Acrivos 1967; Benjamin 1967). These waves are characterized by an isolated 
varicose perturbation of the pycnocline and are long with respect to the interface 
thickness, but short compared with the total depth. Figure 11 shows a second-mode 
wave 45 cm past the shelf break for (a, A, t-, a) = (-0.062,0.15,0.45,0.035) and 
(L,D,d- , )  = (488 cm, 33.5 cm, 5 cm). 

These second-mode waves propagate a distance O( 1OD) onto the shelf before being 
damped to an unobservable amplitude. No second-mode waves were observed to 
propagate off-shelf. 

Fluid velocities 20 cm before, at and 20 cm after the shelf break were measured 
for a set of experimental runs in which wave breaking occurred. The conditions were 
the same as the model comparison in figure 7. The measurements showed that the 
maximum on-shelf velocity in the lower layer exceeded the linear long-wave phase 
speed on the shelf, c,, 20 cm before and at the shelf break. Fluid velocities greater 
than the local linear phase speed and the photographs which show extreme nonlinear 
wave steepening leading to a sharp corner in the interface suggest that the strong 
breaking mechanism is a kinematic instability rather than a shearing instability. The 
instability develops rapidly over a distance O(D)  and timescale O(D/c,) .  

The horizontal gradient in x-velocity is very large. When the velocity at the shelf 
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break is a maximum in the off-shelf direction, the velocity 20 cm off the shelf is nearly 
zero. The local vertical velocity can be estimated from the continuity equation 

a- 
Ax w = J:, ; dz - - AU 2, 

Measurements give Au x -O.7cs, Ax x 20 cm and d-, = 5 cm; therefore, w x 0 . 1 8 ~ ~ .  
During the timescale of breaking, the interface would move vertically about 0.180 
or 6 cm for the given conditions. The displacement is 0 ( 1 )  relative to the local 
lower-layer depth. The resulting overturning is not surprising. 

Visual observations and photographs were used to identify the presence and type 
(shearing or overturning) of instabilities for the complete set of experimental runs. 
Figure 12 shows the regions of instabilities and second-mode generation for ( -aO/d-J 
us. h with u = 0.035. Dependence on slope length is quite weak. For a fixed h the 
transition from clean transmission to strong overturning is a relatively small region 
of weak shearing. Figure 13 is a composite of the transition region for all three density 
differences studied. Fewer experiments were run for u = 0.017 and 0.053 than 0.035, 
so the transition regions are not as well defined. In  general the results are not strongly 
dependent on u or h over the ranges examined. 

In addition to the parametric regions of instabilities the amount of incident energy 
lost from the first mode is of interest. Some is lost to viscous stress, some energy is 
radiated as higher-mode waves, and the remainder contributes to local mixing in 
the shelf region. Estimates of energy lost from the first mode were computed as 
follows. The first-mode energy flux through a vertical section between time t ,  and 
t , ,  or work W on the vertical section, is given by 

where p and u are the wave-induced pressure and horizontal velocity respectively and 
are found from the 0 ( 1 )  continuous stratification model. By evaluating (5.1) a t  two 
locations, W, = W(x,) and Wl(xl), the total first mode dissipation is given by 

D, = W,- W,. (5.2) 
The total dissipation is made up of viscous boundary and interfacial dissipation Dv 
and dissipation due to any wave breaking D, between xo and 2,. 

For a given experimental run, W, and W,, where xo is a t  the base of the slope and 
x1 is the last station on the shelf, were calculated from (5.1) using the experimental 
measurements of A(x, t) or the numerical simulations. The times t ,  and t, were chosen 
so that the complete incident wave or scattered wave group was included. Ideally, 
if no breaking or reflection occurs, values of (5.2) from the experimental data and 
the numerical simulation would be equal. With breaking, the difference would be 
equal to the energy lost from the lowest mode during the breaking event. Thus, 

since W, is the same in the numerical (N) and experimental (E) calculations. 
Table 3 lists average values of D,, normalized by W,, for cases with no wave 

instabilities and cases with strong overturning instabilities and second-mode gener- 
ation for all three density differences. The results are consistent and show that in these 
laboratory experiments about 10 % of the incident-wave energy is lost from the lowest 
mode during a strong overturning instability. On average, about 40-50% of the 
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FIGURE 11. Shadowgreph 45 cm past shelf break showing second-mode wave for (a, A,  r, 6) = 
(-0.060,0.15,0.45,0.035) and (L ,D ,d - , )=  (488cm, 33.5cm,5cm).  
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FIGURE 13. Composite of instability regions. u = 0.017, (- - -); u = 0.035, (-); u = 0.053, 
(- - -). 

(b)  strong overturning 
(a) no instabilities instabilities 

AP - 
P Average No. data pts Average No. data pts 

0.017 0.05 3 0.13 1 
0.035 0.00 5 0.10 4 
0.053 -0.02 6 0.09 5 

All runs 0.0 f 0.05 14 0.10f0.05 10 

TABLE 3. Values of dissipation from the first mode due to breaking D,  normalized by the incident 
energy flux W, for caws with (a) no wave instabilities and (b )  strong overturning instabilities 

incident wave is lost to combined viscous dissipation and instabilities between 6 = 0 
and the last measuring station so that when instabilities occur they constitute about 
20 % of the total energy lost from the lowest mode. 

6. Discussion 
This paper has examined the evolution of single and multiple rank-ordered internal 

waves incident on slope-shelf topography. Specific interest has been on situations 
when a turning point (point of equal layer depths) is encountered on the slope. A KdV 
model including continuous stratification, variable depth, boundary damping and 
cubic nonlinearity, compared very well with experimental data over a range of 
stratifications, topography and wave amplitudes. In particular, cases with relatively 
fast slopes, exhibiting a significant reflected wave, were modelled accurately even 
though the theory only accounts for unidirectional propagation. Comparisons for a 
single solitary wave incident on slope-shelf topography were good for h as large as 
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decreased and the topographic scattering increased. Errors in the amplitudes and 
frequencies of the tail of the scattered packet became significant, although the leading 
trough and scattered crests were well predicted. Comparisons for two rank-ordered 
incident solitary waves were good, provided d-,/d+ > 0.5-0.6. 

It was not possible to delineate the domain of applicability of the theory any 
further because of laboratory constraints. The tank length prohibited examination 
of slope lengths much longer than the lengths tested. There would not have been 
enough shelf for examining the development of the scattered packet. Furthermore, 
the relatively strong role of viscous boundary dissipation in the laboratory would 
dominate the results as L increased, obscuring the roles of a and A. Generation of clean 
incident solitary waves larger than those examined (a,/D < -0.08) was not possible 
with the present wave-generation system. 

Transmission of solitary waves of reversed polarity from the scattering of an 
incident solitary wave was not observed in any of the experiments. In an inviscid 
system, transmission is possible for h < 1011 and the number and amplitudes of solitary 
wave transmitted increases as h decreases for fixed a (Helfrich et al. 1984). Numerical 
experiments including dissipation, however, show that transmission depends on the 
relative influence of damping and topography. At laboratory scale, damping, 
combined with relatively fast slopes, is strong enough to completely dissipate any 
weak waves of reversed polarity which could emerge asymptotically in an equivalent 
inviscid system. In the ocean, damping plays a less important role than in the 
laboratory and transmission of waves of reversed polarity is possible. 

Weak shearing and strong breaking-wave instabilities were observed in the 
neighbourhood of the shelf break and empirical stability boundaries were defined. 
Comparisons of the theoretical model with experiments exhibiting strong breaking 
were surprisingly good even though the events are strongly nonlinear and the model 
does not account for wave instabilities. The experiments also illustrated a mechanism 
of lowest-mode instability which led to significant vertical and horizontal mixing and 
apparent second-mode solitary-wave generation. Large second-mode solitary waves 
may have closed streamlines, and therefore transport mixed fluid (Davis & Acrivos 
1967; Maxworthy 1980). Although entrapment of mixed fluid was not positively 
identified in this study, the possibility of mass transport and the modification of the 
stratification by internal wave breaking may be significant and is worthy of further 
study (cf. Pingree & Mardell 1981). 

Use of the theoretical model to study actual oceanographic situations should be 
straightforward ; however, several questions arise. The first concerns the boundary 
layers. In the laboratory, boundary damping is laminar and the model correctly 
accounts for this process. In  the field the boundary damping will be turbulent. In  
order to use the model an effective turbulent eddy viscosity must be specified. This 
is not completely satisfactory since the concept is heuristic and a priori estimates of 
eddy viscosity, dependent to some degree on wave parameters, are difficult to make. 
Since boundary damping is less important in the field than in the laboratory, use of 
an eddy viscosity, found perhaps by calibration, should not obscure analysis of other 
features of model comparisons with field data. 

Values of h (the slope-length parameter) for oceanic conditions can be smaller than 
the range examined in the experiments (cf. table 1). This is not anticipated to be a 
problem in application of the model. As h decreases the influence of the variable 
topography on wave evolution decreases. This work has shown that the theory gives 
very good results for h in the range O(a-lOa) and Koop & Butler (1981) and Segur 



Long nonlinear internal waves over slope-shelf topography 307 

& Hammack (1982) have demonstrated good agreement between KdV theory and 
experiment in constant depth ( A  = 0). 

Oceanic observations often show wave amplitudes which might not be considered 
weakly nonlinear if the pycnocline depth, rather than the total depth, is used as the 
amplitude normalization scale. From table 1 the Andaman Sea and Massachusetts 
Bay data have values of a,/d+ = 0.16 and 0.33 respectively. Both cases might no 
longer be considered weakly nonlinear. The point at which a weakly nonlinear theory 
is no longer valid is not easily defined theoretically, but comparisons with experiments 
serve to identify domains of validity. Koop & Butler (1981) and Segur & Hammack 
(1982) found good agreement between first-order KdV theory and measured internal- 
solitary-wave characteristics in constant depth for ao/d* as large as 0.2. Adopting 
this amplitude scaling, the results of this study for variable depth gave good results 
for a,/d+ as large as 0.25. Moreover, very good agreement between theory and 
experiment was observed in the shelf-break region where the wave amplitudes were 
quite large and the dynamics are certainly not weakly nonlinear. 

Application of the laboratory breaking criteria to oceanographic scales should be 
possible owing to the kinematic nature of the instability. However, care must be taken 
that field conditions lie inside the parameter range of figures 12 and 13. It is not clear 
that the weak dependence of the instability regions on h will continue for h < 0.1. 
Clearly the dynamical results of the breaking in the laboratory are scale dependent 
and may not apply to oceanographic situations. 

We wish to thank Professor David Benney for helpful discussions on the evolution 
equations and Jack Crocker for building experimental equipment. This work was 
supported by a contract with the Office of Naval Research (Coastal Sciences). 
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