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Estimates of the Joint Statistics of Amplitudes and Periods 
of Ocean Waves Using an Integral Transform Technique 

K. T. SI-IUM AND W. K. MELVILLE 

Department of Civil Engineering, R. M. Parsons Laboratory, Massachusetts Institute of Technology 

An integral transform method is used to obtain continuous time series of wave amplitude and period 
from ocean wave measurements. The joint statistics of these two variables are determined and directly 
compared with the theoretical probability densities predicted by Longuet-Higgins (1975, 1983). Good 
agreement is found for data from both calm and hurricane sea states. This method avoids the ambiguities 
in the definitions of wave amplitude and period found in earlier comparisons of field data with theory. 

1. INTRODUCTION 

A knowledge of the joint probability density (JPD) of ocean 
wave heights and periods is of interest to oceanographers and 
engineers. Such distributions complement the power spectral 
estimates by providing information on the signal in the time 
domain rather than the frequency domain. Despite the practi- 
cal importance of having good estimates of the. JPD, especially 
for extreme wave conditions, considerable ambiguity exists in 
the comparisons of the available theoretical distributions with 
those obtained from field data. Much of this ambiguity arises 
from the definitions of wave height and period used in data 
analysis, which are usually rather arbitrary. The most popular 
definition is based on a "zero-crossing wave" defined as the 
part of record between alternate zero crossings of the water 
surface. The wave amplitude is then defined as the maximum 
displacement of the water level between zero crossings and the 
wave period is the interval between alternate crossings. How- 
ever, available theories on the statistical distributions of these 
two variables involve approximations that apply only for 
waves from narrow band spectra. 

In this paper an integral transform technique is used to 
uniquely define the amplitude and period as continuous func- 
tions of time for a given wave record. The main advantages of 
this method are that it corresponds directly to the usual theo- 
retical descriptions, with essentially no arbitrariness, and that 
it lends itself to fast and efficient implementation through the 
use of the fast Fourier transform. A similar technique was 
employed by Naess [1982] to deduce the extrema of the wave 
envelope (defined as the magnitude of p(t) in(2) below) for the 
case of a narrow band spectrum, by Melville[1983] to analyze 
laboratory measurements of the instabilities of deep-water 
waves, and by Tayfun [1983] to compare the envelope ap- 
proach with conventional crest-to-trough distributions of 
wave height measurements. However, the method does not 
appear to have been previously used to obtain the joint den- 
sity of amplitude and period of ocean waves, 

The general problem of finding the JPD of ocean waves was 
considered by Longuet-Higgins [1975]. His treatment is based 
on the idea of Fourier analysis, i.e., the wave field •(t) is the 
sum of a large number of sinusoidal components of different 
frequencies and random phases, 

M 

•(t)-" Z A•n COS (Crnt q- •? (1) 
n•l 

in which A• is the (real) amplitude, a• is the angular frequency, 
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and Ipn is the phase angle of the nth component. The function 
•(t) can also be written as 

ge { • An exp [i(ant + Ckn)]} = ge {p(t)eiø(t)e i<a>t} (2) n=l 

in which p(t)e iø{t) can be expressed as 
M 

• A n exp {i[(an- (a))t + 4n]} 
n=l 

and is the complex envelope function of amplitude p(t) and 
phase O(t), modulating the carrier wave e i<*>'. The mean fre- 
quency (a) was chosen such that the first moment of the 
frequency spectrum #• vanishes, where 

ß t 1 

•r-- • 5 (O'n --•o'>)rAn2 (3) n=l 

The joint density of p and • was then obtained by applying 
the Law of Large Numbers, assuming that the number of 
components, M, is large. It takes the form 

p(p, t•) = -- (2•t2)- 1/2 exp - + (4) 

which is the fundamental result of Longuet-Higgins ['1975]. 
However, not all values of p and 

' 

= (5) 
in this theoretical distribution correspond to values of zero- 
crossing amplitudes and periods. To compare this theoretical 
distribution with actual wave records, only those values of p 
at the wave crests should be taken into account, with the wave 
period being the interval between succeeding instants at which 
the phase function O(t)+ (a)t equals multiples of 2•. To 
avoid such complications, the narrow band assumption was 
introduced. This required that the energy spectrum of the sur- 
face wave concentrates around some mean frequency. The 
wave record can therefore be considered as a simple sinusoidal 
carrier wave with a slow amplitude modulation. The distri- 
bution of wave crests can then be approximated by that of the 
amplitude function p and that for wave period can be evalu- 
ated from a binomial expansion about the mean frequency in 
the expression for the joint statistics: 

This approximate density, however, failed to describe the 
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Fig. 1. Logarithmic plot of the power spectrum for the data from 
the Pacific Ocean over 1.75 hours sampling at 2.60 hertz. Each value 
is an arithmetic mean of seven adjacent frequency components cen- 
tered about that frequency. 

Fig. 2. A band-passed wave record and its envelope function over 
200 seconds for band pass [I] (swell) of data from the Pacific Ocean; 
v - 0.21. 

asymmetry about the mean frequency in the joint statistics as 
found in wave data of finite bandwidth spectra. 

In the above derivation, the joint distribution of zero- 
crossing amplitudes and periods were obtained from an 
asymptotic expansion (as the bandwidth approaches zero) of 
the joint distribution of the continuous amplitude and phase 
function. This approximation led to limitations on the band- 
width for which the expressions are valid. Moreover, the zero- 
crossing definitions become arbitrary as the waves become 
irregular and have multiple extrema in between crossings. We 
shall therefore make a more direct comparison between theo- 
retical densities and wave data. Instead of the zero-crossing 
wave, we will define the amplitude and period as time series 
which can be deduced from the water surface elevation record 

TABLE 1. Parameters for the Various Band Passes Studied and 

the Range and Chi-Square Values for the Corresponding Histograms 

Band Pass 

Calm Sea 

Data [I] [II] [III] Hurricane Sea 

Range of 6.9-20.0 2.4-6.9 1.5-25.0 2.0-20.0 
band pass, s 

v 0.21 0.24 0.73 0.41 

(z), s 12.7 4.0 7.6 10.2 
/•o, m2 0.120 0.044 0.167 10.11 
1 -- K 0.981 0.984 0.877 0.944 
L 0.981 0.983 0.876 0.942 

Wave slope 0.017 0.106 0.057 0.246 

Amplitude 
Range, m 
Degrees of 

freedom 

Chi-square 
values 

Wave period 
Range, s 
Degrees of 

freedom 

Chi-square 
values 

Parameters for the Histograms 

0.06-1.44 0.04-0.96 0.075-1.80 0.6-14.4 

48 45 45 24 

163 72 63 48 

1.0-29.0 1.5-13.0 2.5-37.0 3.2-30.8 
47 47 24 

144 38 307 102 

•(t). Assuming that •(t) can be formulated as in (2), the imagi- 
nary part of p(t)eiø(')ei<*>' is given by the Hilbert transform of 
the original surface elevation under the restriction that the 
function p(t)eiø(')d <•>' has no negative frequency components 
in its Fourier transform domain. With both real and imagi- 
nary parts of the complex function known, time series of am- 
plitude p(t) and phase O(t)+ (a)t (and hence frequency) are 
readily obtained. The details of this procedure are given in the 
appendices. 

The initial aim of the work reported here was to test the 
fundamental result of Longuet-Higgins [1975] ((4) above) 
against field data by applying this demodulation technique 
and avoiding the additional approximations that led to the 
symmetric distributions. During the course of this work it was 
learned that some of our results had been anticipated by 
Longuet-Higgins [1983]. In this most recent paper, it was 
shown that that the JPD is given by 

p(R, T) = 

where 
(6) 

R = p/(21ao) •/2 (7a) 

T=z/(z) (7b) 

are the nondimensional amplitude and period, respectively. 

1.5 I 

1.13 

500 550 

I i 

TIME IN SECONDS 

The parameters v, (z), tt, K, L, and chi-square values are given in Fig. 3. A wave record and its envelope function over 200 seconds 
(9), (8), (3), (C6), (C9), and (11), respectively. for band pass [III] of data from the Pacific Ocean, v = 0.73. 
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Fig. 4. Histogram of wave amplitude for band pass [I] (swell) of 
the Pacific Ocean data over 1.40 hours sampling at 2.60 hertz. The 
curve is the Rayleigh distribution. Density values are per unit normal- 
ized amplitude; (2#o) •/2 = 0.490 m. 

Fig. 6. Histogram of wave amplitude for band pass [III] of the 
Pacific Ocean data over 1.4 hours sampling at 2.60 hertz. The curve is 
the Rayleigh distribution. Density values are per unit normalized 
wave amplitude; (2#o) •/2 = 0.578 m. 

The rth moment gr is defined as in (3), and 

<a> = (8) 

is chosen such that Hi = 0. The function 

L(v) = «[1 + (1 + v2) 1/2] • 1 + v2/4 + 0(v 2) 

is a normalization factor to account for the probability of 
negative frequencies in (4) which should not exist. The dimen- 
sionless parameter v, which increases with bandwidth, is given 
by 

1 
v = -- (/z2//Zo) •/• (9) 

The aim of this paper, then, is to compare direc'tly the above 
thoeretical distribution with the statistics of the amplitude and 
period as evaluated by the Hilbert transform. Field data ob- 
tained in the Pacific Ocean and the Gulf of Mexico are used 

for comparisons of the measured statistics with theoretical 
joint distributions. 

The field data and methods of analysis are described in 
section 2. The results are presented in section 3 and discussed 
in section 4. A brief review of Hilbert transform technique and 
the theoretical joint density of wave amplitude and period 

proposed by Longuet-Higgins [1983] are given in Appendices 
A and B. The form of the distribution appropriate in the 
analysis of digital data is introduced in Appendix C. 

2. FIELD DATA AND ANALYSIS 

Two sets of data were analyzed, one from a mild sea state 
and the other from hurricane conditions. The unpublished 
field data from a relatively calm sea were made available by R. 
E. Davis and L. Regier of the Scripps Institution of Ocean- 
ography, La Jolla, California. Measurements were made from 
the Floating Instrument Platform (FLIP) which was stationed 
at 31.52øN, 118.30øW in the Pacific Ocean, 250 miles west of 
San Diego, California in water between 3000 m and 4000 m 
deep. The data were taken on March 26, 1973 starting at 1700 
Pacific Standard Time under calm weather. The record includ- 

ed measurements from resistance wave gages and the pitch 
and roll motions of FLIP. Individual channels were digitized 
simultaneously (within 50 Us of each other) at a frequency of 
2.60 cycles per second from recorded analog data. A total of 
2 •'• (= 16,384) data points spanning 6291 seconds (1.75 hours) 
were used, giving a time interval between data points of 
0.384 s, a frequency resolution of 1.59 x 10 -'• s-•, and a Ny- 
quist frequency of 1.30 s- • in the digital Fourier transform. 

09 

08 

c 06 

- 

• 03 

o_ 02 

0.0 

i i ! i i 

normal [zod caavo amp I I tude 

Fig. 5. Histogram of wave amplitude for band pass [II] (wind 
wave) of the Pacific Ocean data over 1.40 hours sampling at 2.60 
hertz. The curve is the Rayleigh distribution. Density values are per 
unit normalized wave amplitude; (2#o) •/2 = 0.297 m. 
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Fig. 7. Histogram of 12914 values of wave periodflor band pass 
[I] (swell) of the Pacific Ocean data. The curve is [he theoretical 
distribution as given by (C4) and (C5). Density values are per unit 
normalized period' (•) = 12.7 s, v = 0.21. 
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[II] (wind wave) of the Pacific Ocean data. The curve is the theoreti- 
cal distribution as given by (C4) and (C5). Density values are per unit 
normalized period, (z) = 4.0 s, v = 0.24. 

The wave gage measurement was corrected for the pitch 
and roll of FLIP. Since the magnitude of these two angles 
rarely exceeded a few degrees, the change in elevation due to 
pitch and roll motion can be approximated by the product of 
this angle and the distance between the gage and the center of 
hull projected along the corresponding axis of rotation. The 
adjusted gage reading was then found by subtracting this 
product from the original record. The contribution from the 
vertical and lateral translations of FLIP were not accounted 

for since these quantities were not readily measurable. The 
natural frequency for heave motion of FLIP was approxi- 
mately 0.037 Hz (27 s), while that for pitch and roll motion 
was near 0.021 Hz (48 s). These frequencies were prominent in 
the energy spectra but below the frequency range of the wave 
field. They were filtered out by high passing the time series 
above 0.04 Hz. 

The second set of data was recorded in the Ocean Data 

Gathering Program (ODGP) in the Gulf of Mexico and fur- 
nished to us by G. Z. Forristall of Shell Development Com- 
pany. It was taken by an inductance wave staff mounted 
within the legs of an oil rig in 340 feet (• 100 m) of water 
(ODGP station 1). Further details of the measurements can be 
found in papers by Hamilton and Ward [1974], Ward [1974], 

normattzed uave period 

Fig. 10. Joint distribution of 12914 pair of values of amplitude 
and period at 2.60 hertz for band pass Ill (swell) of the Pacific Ocean 
data. Density values are per unit normalized amplitude per unit nor- 
malized period; v = 0.21, (2/to) 1/2 = 0.490 m, (z) = 12.7 s. 

eye of hurricane Camille was within 30 miles (48 km) of the 
structure. It lasted for 4096 seconds, with data points uniform- 
ly spaced at 1-second intervals, giving a frequency resolution 
of 2.4 x 10 -4 s-• and a Nyquist frequency of 0.5 s-• in the 
digital Fourier transform. The significant wave height in- 
creased from 39.5 ft (12.0 m) to 43.0 ft (13.1 m) over this time 
span [Patterson, 1974]. 

Each wave record was filtered with a tapered cosine window 
of length one tenth its duration. This reduced the leakage of 
the spectrum [see Bingham et al., 1967] and decreased the 
total energy in the spectrum by 12.5%. To account for this 
reduction in energy, the averages of one half sum of squares of 
the records at each stage in the analysis above were calculated 
for comparison. In particular, the ratio of the sum of squares 
of the records before and after the cosine window was found. 

The square root of this ratio was multiplied to the digital 
Fourier transform coefficients of the filtered function to com- 

pensate for this loss of energy in the cosine window. 

and Patterson [1974]. The record in this analysis was taken z.o ........ 

on August 17, 1969. The data started at 1500 CST when the t/ '• ___DATA 
///tr• • THEORY i ! i I i i i i 

-'-' I.,5 

normal Ized uave period •0•8[ [zed •8•e peFlod 

Fig. 9. Histogram of 11245 values of wave period for band pass 
[lll] of the Pacific Ocean data. The curve is the theoretical distri- 
bution as given by (C4) and (C5). Density values are per unit normal- 
ized period; (z) = 7.6 s, v = 0.73. 

Fig. 11. Joint distribution of 12898 pair of values of amplitude 
and period at 2.60 hertz for band pass [II] (wind wave) of the Pacific 
Ocean data. Density values are per unit normalized amplitude per 
unit normalized period; v = 0.24, (2//o) 1/2 = 0.297 m, (z) = 4.0 s. 
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A band pass was then applied to the spectrum. The mo- 
ments #r for each bandpass were evaluated. The Hilbert trans- 
form was taken, and the wave amplitude and period derived 
as discussed in the appendices. Histograms for these two pa- 
rameters were then plotted using only those data points inside 
the tapered ends of the cosine window. The range of wave 
period was, however, limited to the fundamental range, as 
discussed in Appendix C, and all wave periods outside this 
range were discarded. Their joint densities are presented as 
contour maps in which, as in the histogram for wave periods, 
only data points with periods inside the fundamental range 
(2/f, 50 s) were used (f is the sampling frequency in samples 
per second). This restriction on the range of wave period re- 
quired a modified expression for the theoretical densities, as 
derived in Appendix C. A smoothing technique was employed 
in the contouring in which the modified joint density value at 
each grid point was a weighted average of its original value 
and its eight neighboring points, i.e., 

x*(i, j) = x(i, j)/4 + [x(i -- 1, j) + x(i + 1, j) 

+ x(i, j- 1) + x(i, j + 1)]/8 

+ [x(i-l,j-1)+x(i+ 1, j-l) 

+ x(i + 1,j + 1)+ x(i- 1,j + 1)]/16 

in which x(i, j) was the original density value at grid point (i, j) 
and x*(i, j) was the smoothed value. This smoothing technique 
was applied to both field data and theoretical curves. The 
subroutine for this contouring determined the location of the 
contours by linear interpolation of the density values at adja- 
cent grid points. 

3. RESULTS 

3.1. Calm Sea (Pacific Ocean) 

The power spectrum (Figure 1) consists of two dominant 
peaks: one of period between 8 and 18 s, the other between 3 
and 6 s. The peaks at periods greater than 25 seconds are 
believed to be due to the pitch and roll motions of FLIP and 
are therefore filtered out. Three band passes were thus chosen 
in our study. The first ['I] from 6.9 s to 20 s corresponds to the 
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Fig. 13. Power spectrum of hurricane Camille over 4096 seconds 
sampled at 1 hertz. Each value is an arithmetic mean of seven adja- 
cent frequency components centered about the frequency. 

swell and accounts for 69% of the total energy. The second 
band pass [II] from 2.36 s to 6.9 s corresponding to the wind 
waves accounts for 26% of the total energy. The third [III] 
between 1.5 s and 25 s includes both wind waves and swell 

and contains over 98% of the total energy. Various parame- 
ters for these band passes are presented in Table 1, wherein 
"wave period" refers to the range in frequency domain of the 
band pass. The parameters v, (r), #o, K, and L in Table 1 are 
given by (9), (8), (3), (C6), and (C9), respectively. The character- 
istic wave slope is defined as 

<ky2x/•o (10) 
in which (k) is the wave number corresponding to (r), using 
linear one-dimensional wave theory, and 2x/-•o o is a measure of 
the wave amplitude. 

Figure 2 shows a sample record over 200 seconds of band 
pass [I]. The upper and lower curves are the envelope func- 
tion as obtained from the Hilbert transform (C1). It is interest- 
ing to note that most maxima of the actual record coincide 
with that of the envelope. However, if we define the interval 
between adjacent maxima (or minima) as a period, it is seen 
that the periods for the envelope are only about three to four 
times that of the actual record. Thus the basic assumption 
mady by Longuet-Higgins [1975], that the extrema of the sur- 
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Fig. 12. Joint distribution of 11245 pair of values of amplitude 
and period at 2.60 hertz for band pass [III] of the Pacific Ocean data. 
Density values are per unit normalized amplitude per unit normalized 
period; v = 0.73, (2//o) 1/2 = 0.578 In, (z) = 7.6 s. 

Fig. 14. Histogram of 3276 values of normalized wave amplitude 
for hurricane Camille sampled at 1 hertz. The curve is the Rayleigh 
distribution. Density values are per unit normalized amplitude; 
(2//o) '/2 = 4.50 m. 
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Fig. 15. Histogram of 3109 values of wave period for hurricane 
Camille. The curve is the theoretical distribution as given by (C4) and 
(C5). Density values are per unit normalized period' (•)= 10.2 s, 
v =0.41. 

face elevation densely register the envelope, is not realized in 
this case, even though the bandwidth parameter v 2 is consider- 
ably below the 0.36 narrow band criterion, as suggested by 
Longuet-Higgins [1983]. Figure 3 is a sample of the record 
and its envelope for band pass [III]. Note that the maxima of 
the envelope function are not always attained by the original 
record. 

Figures 4 through 6 are histograms of the amplitude func- 
tions as derived in Appendix C (equation (C1)) for band passes 
[I], [II], and [III]. The solid curves are theoretical densities, 
as given by (B2). The probability densities are shown per unit 
normalized wave amplitude. The wave amplitude for the peak 
density values in the theory are about 0.1 unit lower than that 
of the statistics for band passes [I] and [II]; however, the 
maximum theoretical density values in all three cases agree 
well with those from data, particularly for the high wave am- 
plitudes which are of most practical concern. 

Figures 7 through 9 are histograms for wave period for the 
same band passes [I], [II], and [III] as evaluated according 
to (C2) and (C3). The solid curves are theoretical distributions 
as given by (C4). We see good agreement between the statis- 
tical properties of field data and theoretical distributions. 

Figure 10 is the joint histogram and theoretical joint density 
(equation (C7)) for band pass [I]. Similarly, Figure 11 is for 
band pass [II] and Figure 12 is for band pass [III]. (The 
failure of the JPD contours to converge to the origin in Fig- 
ures 12 and 16 is a result of the smoothing described above.) 
The contours are interpolated from a square grid of 25 x 25 
density values. It was found that a further increase in the 
number of divisions led to very irregular contours in the sta- 
tistics. Many of the qualitative features of the theory are seen 
in the data for the joint densities, as discussed by Longuet- 
Higgins [1983]; in particular, we note the increasing asym- 
metry in the joint distribution as bandwidth increases. 

3.2. Hurricane Sea (Camille in the Gulf of Mexico) 

The power spectrum is shown in Figure 13. It is single 
peaked, as is typical of storm spectra. The high-frequency 
components decay as the negative fifth power of frequency, 
which is characteristic for Pierson-Moskowitz or JONSWAP 

(Joint North Sea Wave Project) spectra. A bandpass of 2 s to 
20 s is applied to the record and accounts for 99% of the 
original energy. 

The histograms for amplitude and period are presented in 
Figures 14 and 15, respectively. The agreement is good except 
at the peak density values in which the values predicted by 
theory are lower/higher than the statistics for amplitude/ 
period. The joint distributions are shown in Figure 16, where 
the contour values are per unit normalized amplitude per unit 
normalized period. A density value of 0.05 corresponds to 1 
count of data per grid, which is the lower limit of resolution. 
Even though it is of interest to study the densities at high 
wave amplitudes, the limited sample size restrict the range of 
resolution of both amplitudes and periods in the joint distri- 
bution. 

Chi-square tests have been performed on both sets of data 
to examine the goodness of fit. The chi-square values are pre- 
sented at the end of Table 1. These numbers are evaluated as 

i+1 

Z2(/) = J •, (• -- ni/j)2 (11) 
in which Z2(I) is the ;(2 value with degree of freedom I, f• is the 
cumulative probability in the interval i, n i is the number of 
samples that have values in the same interval, I + 1 is the 
number of intervals, and J is the total number of data points. 
Despite the apparent good agreement found between the his- 
tograms and theoretical curves, the chi-square values have 
significance values of over 0.99 except for wave period in the 
case of wind waves (band pass [II-J for the Pacific Ocean data). 
(I.e., if the theoretical curves were to agree with the experi- 
mental measurements, there would be less than a 1% chance 
that the chi-square values are as large as shown here.) 

4. DISCUSSION 

It has been shown that the Hilbert transform technique can 
be applied to wave records and the amplitudes and periods 
thus obtained have statistical distributions in good agreement 
with those proposed by Longuet-Higgins [1983] for a band- 
width parameter v of up to 0.73. From the mathematical point 
of view, there is no restrictions on the spectral bandwidth for 
which the derivation of the theoretical densities are valid. In 

other words, no limitations are placed on the frequencies of 

2O 
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Fig. 16. Joint distribution of 3109 pairs of values for wave ampli- 
tude and period for hurricane Camille. Density values are per unit 
normalized period per unit normalized amplitude; v = 0.41, 
(2/.10) •/2 = 4.50 m, <•> = 10.2 s. 
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the sinusoidal components in the frequency space. However, 
for the central limit theorem to be valid, the amplitudes of 
these components have to be of comparable magnitudes. 

One limitation of this approach is the resolution of wave 
period in the time domain (as evaluated from (C2) and (C3)), 
being bound by the range of phase change [q•(t + At) - •b(t)] 
allowed in (C3). Its upper bound depends on the value of 
(the lower limit for phase change in unit time increment; see 
Appendix C) and can be chosen to be arbitrarily large as long 
as it is short compared with the duration of the record ana- 
lyzed. The lower bound is a function of the time interval be- 
tween samples. This value is given by 2At by restricting the 
range of permissible phase change to (g, rr). Alternatively, we 
could have decreased this lower bound to At by defining the 
range of phase change to (g, 2rr). However, this would give a 
resolution of wave period below the corresponding Nyquist 
frequency (= 1/2At) which is the limit on frequency resolution 
in the frequency domain. Furthermore, phase changes in the 
range (rr, 2rr) can as well be interpreted as values in the range 
(-r r, 0) corresponding to negative frequencies [e.g., Melville, 
1983]. To avoid this ambiguity, we limited the range of phase 
changes to (g, 

Note that the derivation of the theoretical densities requires 
that the wave field can be formulated as in (1) by assuming 
random phases •b,. This necessarily requires the waves to be 
linear. It is shown, from the storm data, that the same theory 
can also be applied to sea states in which linear wave theory is 
no longer strictly valid. (A crude measure of the nonlinearity is 
given by the characteristic wave slope as defined by (10) and 
presented in Table 1.) It should be noted that estimating the 
wavelengths from the wave periods and the dispersion re- 
lationship gives an upper bound of the wave length in a wave 
field with an angular spread of wave incidence. (It can be 
easily shown, for the simple case of a two-wave system with 
same frequencies but different angles of incidence, that the 
apparent wave number calculated from records at three adja- 
cent gages decreases from their actual value to zero as the 
angle included between the waves increases from 0 to rr (see, 
for example, Shum [1984]).) A study of the wavenumber distri- 
bution was performed on the Pacific Ocean data using records 
from three wave gages. It was found that the angular spread 
increased with bandwidth. The estimation of nonlinearity 
using (10) should therefore be limited to narrow band spectra. 

The hurricane wave record is from that of a growing sea as 
Camille approached. This time-varying excitation departs 
from the basic assumption of stationarity in spectral analysis, 
and the duration we chose (1.14 hours) is a compromise be- 
tween requirements of stationarity and statistical significance. 

TABLE 2. A Direct Comparison of the Goodness of Fit Between 
the Theoretical Distributions and Wave Data for the Various Band 

Passes Studied 

Data I-I] [II] [III] Camille 

Parameters for the Band Passes 
v 0.21 0.24 0.73 0.41 

Wave slope 0.017 0.106 0.057 0.246 

Chi-Square Values 

For amplitude 130 59 47 48 
For period 94 42 92 102 

Chi-square values with 24 degrees of freedom and •3200 data 
points. 

Compared with statistical analysis of wave periods using 
zero-crossing waves, our present method gives a larger density 
value for low-frequency waves. The reason is that each wave is 
counted as one entry in the zero-crossing wave period statis- 
tics, while in our present method all data points are spaced 
equally apart in time and therefore long-period waves have 
more entries. This consideration applies to wave amplitude 
statistics as well, since large waves are associated more with 
low-frequency waves. However, the correspondence between 
the two methods in wave amplitude statistics are not as 
straightforward as in the case of wave periods. 

From Figure 3 it is found that the maxima of the wave 
envelope and underlying wave record do not always coincide. 
This phenomenon becomes more pronounced as the spectral 
bandwidth increases, and some of the larger values of the 
envelope may not be realized by the actual waves. The statis- 
tics of this end, elope function may overpredict zero-crossing 
amplitudes in the high values, as is observed in previous field 
studies [e.g., Forristall, 1978]. 

The high significance levels found in the chi-square tests 
suggest that the proposed theoretical models should be rejec- 
ted as the distribution of the data. It is found that a significant 
contribution to these high Z2 values come from only a few 
intervals which have large discrepancies between theory and 
statistics (e.g., about T = 0.9 in Figure 7 and T = 0.7 in 
Figure 9). Direct comparison of Z2 values for the four wave 
bands studied using the same number of data points (,-, 3200) 
and degrees of freedom (24) are shown in Table 2, from which 
it can be seen that the ;•2 values are not simply related to 
bandwidth or nonlinearity. From the graphs of amplitude dis- 
tributions (Figures 4, 5, 6, and 14), it is seen that the location 
in the sample space (i.e., the nondimensional amplitudes) of 
the major discrepancies varies. Since the theoretical distri- 
bution (B2) does not depend on any parameters, there are no 
apparent remedies to correct for these high •2 values. We are 
unable to explain the failure in this •2 test despite the appar- 
ent good agreement observed in the graphs. 

APPENDIX A' REVIEW OF HILBERT TRANSFORM 

The Hilbert transform technique has been used previously 
in the study of amplitude and frequency modulation in water 
waves, for example, by Naess [1982] and Melville [1983]. A 
review of this transform is given below. 

Let S(t) be a complex signal with •(t) and r/(t) its real and 
imaginary parts. Given only the real part •(t) of the time 
history of S(t), r/(t) is, in general, undetermined. However, for 
the special case in which the Fourier Transform of S(t) has no 
negative frequency components, r/(t) (and thus S(t)) can be 
found from •(t) by the Hilbert transform technique. It was first 
proposed by Dugundji [1958]. A detailed account of this trans- 
form as applied to digital time series can be found in the work 
of Oppenheim and Schafer [1975]. 

Let the wave record •(t) be the real part of the complex 
signal S(t) having Fourier coefficients Cn e such that 

N-1 

•(t) = Z Cn eein•t 

The Fourier coefficients Cn of S(t) are then given by 

c n=O N/2_•n_•N-1 

c n = 2Cn e 1 _• n _• N/2- 1 

In the time domain, S(t) can be represented as •(t) + i•f[•(t)] 
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where 

1 •_• •(z) = -- & = 

which is the well-known Hilbert transform of a(t). 
It should be noted that this approach will give an accurate 

description of S(t) only if it contains no negative frequency 
components, i.e., c, = 0 for N/2 < n _< N - 1. This is the caus- 
ality requirement in time series analysis, i.e., information does 
not propagate backwards in time. In other words, what hap- 
pens in a subsequent moment would not change the signal at 
any previous instants. We shall discuss this assumption in 
Appendix B. 

APPENDIX B: RELATIONSHIP BETWEEN PARAMETERS 
IN THE JOINT DENSITY OF LONGUET-HIGGINS [1983] 
AND THE FAST FOURIER TRANSFORM COEFFICIENTS 

OF THE WAVE RECORD 

The wave field •(t) is assumed to be composed of a large 
number of sinusoidal components of different frequencies and 
random phases, as in (1). By expressing •(t) as the real part of 
p(t)eiø(t)e i<*>t (and recall (5)), Longuet-Higgins [1983] was able 
to show that the joint distribution of wave amplitude and 
period in terms of nondimensional amplitude R and nondi- 
mensional period T is given by (6). In our present interpreta- 
tion, negative phase increments are acceptable, and the em- 
pirical parameter L(v) is not needed. The joint density there- 
fore takes the form 

p(R,T)-v•/_•Sexp -R2 1+ -1 v 2 (B1) 
from which, 

p(R)=f+••dTp(R, T)=2Re -R2 (B2) 
© p(r) = dR p(R, T)= «v2 Irl [(1 + v2)r 2 - 2T + 1] -3/2 

(B3) 

become negligible at a frequency much lower than the Nyquist 
frequency. We therefore have confidence that the above as- 
sumption is valid in our case. 

APPENDIX C' RESOLUTION OF WAVE PERIOD 

From Appendices A and B, we see that the amplitude and 
period at any instant can be found as follows' Assuming that 
S(t) = p(t)eiø")e i<*>t= •(t) + irl(t), we have 

p(t) = [•2(t) -t- r/2(t)] 1/2 (C1) 

ok(t) = O(t) + (a)t = arctan [rl(t)/((t)] (C2) 

p(t) is therefore the amplitude at time t, and the instantaneous 
period is evaluated as 

2•rAt 
•(t) = (C3) 

½(t + At)- 

Note that the wave period thus deduced is bound by two 
factors. In evaluating the phase function O(t) + (a)t, the prin- 
ciple argument (between 0 and 2•) is assumed in taking the 
arctangent of rl(t)/•(t). The phase change between two consecu- 
tive instants is therefore in the range of (-2•, 2•) plus an 
unknown multiple of 2•. We restrict the phase change to the 
range (5, •). From (C3) above the wave period of resolution is 
thus bound below by 2/f where l/f(= At) is th e sampling 
interval (f/2 is the Nyquist frequency). The upper bound is 
determined by the lower cutoff value for the phase change, 
and the maximum wave period is then given by 2•/(f5). In 
our study, 6 is chosen such that the upper bound of wave 
period resolution is 50 s. 

The results of Longuet-Higgins [1983] were derived using 
the central limit theorem. This leads to finite probability 
values for all values of T in (-oc, oc) in the theoretical distri- 
butions for both wave period and joint amplitude and period. 
To apply these densities to our case, we have to allow for the 
probabilities of periods outside the primary range (T•, T2) 
where T1 = 2/f and T 2 = 2•/(f5). This includes accounting for 
the aliasing of phase changes in intervals (2nz• + 
n .... , -2, -1, 1, 2,... into (5, •) and the phase changes in 
the range (2nz• + z•, 2n7r + 2z• + 5) that have been neglected. 
We can therefore formulate the modified density p*(T) as 

To apply this to our case, we note that •(t) can be rewritten as 

(N/2)- 1 

Re {S(t)} = • 2 Re {Cnee inat} 
.=1 

(N/2)- 1 

- • 21cnel COS (nat + ½n) (B4) 
n=l 

in which ½n is the phase of Cn e. A comparison of (1) and (134) 
shows that if we let A n = 21cnel, an--na, Ckn = ½n, and 
M = (N/2) - 1, we can calculate the moments #r from •(t) and 
the densities (equations (131), (B2), and (133)) are then fully 
determined. 

In the above formulation, it is apparent that if 
M > (N/2)- 1, the original assumption in the Hilbert trans- 
form (that c n = 0 for N/2 _< n _< N - 1) is violated. However, 
it is well known in the theory of digital Fourier transform that 
if the original time signal contains frequency components 
above the Nyquist frequency (which equals 1/2At), their con- 
tributions will be aliased in the Fourier transform space as 
lower-frequency components. In the energy spectrum of the 
wave record we studied, the high-frequency components 

p*(T) = •q(T) 2If < T < 50 

p*(T) = 0 otherwise. 
(C4) 

where q(T) is the sum of the original probability density at T 
and that due to aliasing and • accounts for the "lost" prob- 
ability due to the exclusion of phase changes in the intervals 
(2nz• + z•, 2nz• + 2z• + 5), n = +_ 1, _+ 2, _+ 3,... 

It can be shown that 

where 

q(T) = •' JnP(rn) (C5) 
n = --oo 

and J, is the Jacobian 

1 + nT(z)f 

aT (1 + nT(z)f) 2 

The parameter • equals 1/(1- K) where K is the integral of 
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p(T) over the ranges 

-•' f(r) rn- fi f (z)' 

1 1 1 1 ) 'm + fi f (z)' m- 0.5 f •'z) 

11) m + 0.5 
1 

where m = 1, 2, 3,... and fi = 6/2rr. From Appendix D, we 
can express 

K= • P 1 1 -P 1 1 
m= 1 m + 0.5 z) rn - fi f (z 

+p • _p 
m-0.5 f•z> m+ fi 

p -2 _ + (C6) 

in which P(T) is given by (D4). In actual computation the 
infinite sum is truncated when the next term in the sum does 

not change by more than 10 -5 of the previous sum. It was 
found that this takes no more than two terms. 

For the joint density, p(T.) in (C5) should be replaced by 
p(R, T.), and K is the integral of p(R, T) over the same ranges 
of T divided by 2R exp (-R2). To obtain the theoretical 
values for the distribution in (R•, R2; T•, T2), we note that the 
sum of probability in this range plus the aliasing contributions 
is given by 

1 {Q(R 1, R2' T•, T2) 1--to 

+ • R•, R2' 1 + nT•(z)f'l + n•2(z)f .=-- 

n:P O 

Here the excluded probability contribution is similar to (C6) 
above with K replaced by 

•c= • Q R1, R 2 ß 1 1 1 1 
m= 1 rn -- fi f (z)' m + 0.5 f (z 

m + 

( + Q f(r) + Q f(r), 
(C8) 

and Q(R 1, R2' T•, T2) is the integral 

dR p(R, T) 
1 

as evaluated in Appendix D. The total contribution of these is 
given by the factor 1 - L with 

© L = dR dT p(R, T) 
1 

1 { 1 - T1 25'2] 1/2 =• '[(1- r,) 2 + T 1 } [(T2- 1) 2 + T22v2] 1/2' 

APPENDIX D: INTEGRALS OF p(R), p(T), 
AND p(R, T) 

The integral 

, R2dR dT p(R, T) Q(R• R2' T•, T2)= 
•R1 1 

can be evaluated by substituting 

u =- - 1 du = T2 
giving 

fr r 2d T p(R, T) 
1 

f(1/T1 - 1)/v 2 R2 = du • exp [- R2(1 + u2)] d(1/T2-1)Iv 

u2 2 f(1/rl- •)U/v exp ( t 2) = Re- • o(1/T2-1)R/v dt - 

= Re-•2{erf I•-(•-•- 1)]- erf [--Rvv (•2 - 1)]} 
Thus (D1) can be integrated by parts, noting that 

1 

- • d(e- •) = Re- • dR 
2 

d[erf (=R)] = • = exp (-=2R2) dR 
to give the final result 

(D1) 

(D2) 

ß {erf [R2(1 + (1/T• - 1)2/v2) 1/2] 

- erf [R,(1 + (1/T 1 - 1)2/v2)'/2]} 

1 1 -1 1 +7 -1 
ß {erf JR2(1 + (l/T2 - 1)2/v2) '/2] 

- erf JR1(1 + (1/T 2 - 1)2/v2)'/2]} 

-e-•2•{erf [--• (•-•- 1)]- erf I--• (•--- • - 
+ e-•{erf I--• (T•- 1)]- erf I--• (•2- 

= 2Q(R•, R2' T1, T2) (D3) 

It can be found in standard integral tables [e.g., Gradshteyn 
and Ryzhik, 1980] that (B3) and (B2) can be integrated to give, 
respectively, 

P(T) =; p(T) dT = « sgn (T) 
T-1 

[(1 - T) 2 q- v2T2] 1/2 

(C9) 

R) dR = -exp (-R 2) 

(D4) 

(DS) 

This number is compared with 1 - K in Table 1. which is the well-known Rayleigh Distributionß 
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