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The propagation of long, weakly nonlinear interfacial waves in a two-layer fluid of 
slowly varying depth is studied. The governing equations are formulated to  include 
cubic nonlinearity, which dominates quadratic nonlinearity in some parametric 
neighbourhood of equal layer depths. Numerical solutions are obtained for an initial 
profile corresponding to  either a single solitary wave or a rank-ordered pair of such 
waves incident in a monotonic transition between two regions of constant depth. The 
numerical solutions. supplemented by inverse-scattering theory, are used to 
investigate the change of polarity of the incident waves as they pass through a 
‘turning point ’ of approximately equal layer depths. Our results exhibit significant 
differences from those reported by Knickerbocker & Newell (1980), which were based 
on a model equation. In  particular, we find that more than one wave of reversed 
polarity may emerge. 

1. Introduction 
Recent field observations have provided evidence of packets of long, first-mode 

internal waves in marginal seas and coastal waters (Osborne & Burch 1980; Ape1 et 
al. 1975). Such waves may evolve from disturbances caused by tidal flow over 
topography (e.g. sills and shelf breaks) and propagate for large distances before 
encountering any further significant variation in bottom topography. Solitary waves 
may emerge if the propagation distance is large enough. The generation process has 
been studied in detail (Lee & Beardsley 1974; Maxworthy 1979), but little is known 
about the ultimate fate of the waves as they propagate towards shore or in regions 
wherein the depth of the upper layer is a significant fraction of the changing depth 
of the water column. We consider here one aspect of this problem, the scattering of 
a solitary wave by a gradually varying change in depth. 

Internal solitary waves appear to  have been studied originally by Keulegan (1953) 
(see also Long 1956; Kakutani & Yamasaki 1978), who considered a two-layer liquid 
with a small discontinuity in density and upper and lower depths of d+ and d- and 
found that the interfacial displacement is positive/negative for d, 3 d-. This led 
Kaup & Newell (1978) to suggest that an interfacial solitary wave in water of variable 
depth could reverse polarity on passing through a transition region in which d+-d- 
changes sign. Djordjevic & Redekopp (1978) and Miles (1980) have argued that this 
reversal is impossible if a / d -  4 l / L  < 1,  where a and 1 are the amplitude and 
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characteristic length of the wave and L is the length of the transition, but their 
arguments are inapplicable if l /L  << a / d - .  On the other hand, Knickerbocker & 
Newel1 (1980) have shown that  such a reversal is possible in the latter case for a model 
KdV (Korteweg-deVries) equation in which the coefficient of the quadratic term 
varies linearly over L ; however, their conclusion needs testing for the internal-wave 
problem in consequence of their neglect of cubic nonlinearity, which dominates 
quadratic nonlinearity and limits the attainable amplitude of a solitary wave in some 
neighbourhood of d- = d+ (Long 1956). 

We consider here the formulation and solution of the equations that govern internal 
solitary waves in a two-layer fluid ofgradually varying depth. Significant dimensionless 
parameters are 

a = -  a p = - ,  d2 a=p&z!% I h = z ,  1 ( l . l u ,  b,  c,  d )  
d '  12 P- +p+ 

where a is a characteristic amplitude (which may be either positive or negative), d 
is a characteristic depth, 1 is a characteristic length of the wave, p+ is the density 
of the upper/lower layer and L is a characteristic length of the depth variation. The 
parameters a, p and h are small by hypothesis, and a,  which is a measure of 
nonlinearity, serves as the basic perturbation parameter ; the parameter 8 may be in 
(0, 1) but is ultimately assumed to  be small. 

The parameter j3, which measures dispersion, is O(a)  for a Boussinesq solitary 
wave (which represents a balance between quadratic nonlinearity and dispersion) ; 
however, j3 = O(a2)  if (d- -d+l / (d- fd+)  = O(a) ,  in which regime cubic nonlinearity 
is comparable to, or dominates, quadratic nonlinearity. 

The parameter h is assumed to  be O ( p )  in the derivation of the generalized KdV 
equation in $2. If h @ j3 the effects of variable depth dominate those of nonlinearity 
and dispersion, and (see $2) a generalization of Green's law holds over the transition 
region. 

We obtain numerical solutions of the resulting evolution equation for a transition 
between two layers of constant depth (in $4). We also determine asymptotic solutions 
through the use of inverse-scattering theory (IST), which uses intermediate numerical 
solutions as initial data, in $5. 

2. Evolution equation 
Let y = 0 be the equilibrium interface, y = & d, (2) the upper and lower boundaries, 

y = yi(x, t )  the interfacial displacement, and $(x, y, t )  the velocity potential (ir- 
rotational motion being assumed except at the interface, across which # may be 
discontinuous). The governing equations, based on the assumptions of incompressible, 
inviscid flow and continuity of pressure across the interface, are then 

where the subscripts x, y, t signify partial differentiation, the prime signifies differen- 
tiation with respect to x, and, here and subsequently, alternative signs and subscripts 
are vertically ordered. 
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The reduction of (2.1)-(2.4) to an evolution equation for yi may be effected by 
substituting the expansionst 

$ = ( l + _ y ( d , a ~ + d / , a , + ; & 3 , a ~ ) - ~ ’ a ~ + . . . ) $ , ( 5 , t )  (Y ZYi) ,  (2.51, 

which satisfy (2.1) and (2.2)+, into (2.3)+ and (2.4), and then proceeding as in 
the derivation of the Korteweg-deVries equation for surface waves (Whitham 
1974, $ 13.11), but retaining both quadratic and cubic nonlinear terms, invoking 
Zd’+/d, = O(A), and introducing the characteristic variable 

s = [$-t. 

The end result is (after dropping the subscript i) 

d-, ~ { ( ~ i y ) ,  +g1 ysss +XC2(d-, y- 2d-3 y’) ys = 0, (2.7) 
where 

p- d?+ ( -  In - lp+  d: 
P +  + P -  

d, = 3 

(2.9) 1 -1 1 c = { S ( P - - P + )  (P-  dI’+P. d l  ) 1 2 .  

The wave speed c may be identified as that of infinitesimal, non-dispersive disturb- 
ances; cf. Lamb (1932), $231 (11)  in the limit k 4 O .  

The parameter 
d 0--- - P - - P +  = a  (2.10) 

P - + P +  

has the admissible range (0, i) ,  but typically is small; the boundary condition (2.2)+ 
is a valid approximation for a free surface if and only if S -4 1 .  Accordingly, we assume 
that 6 + 1 throughout the subsequent development. The corresponding approxi- 
mations to d, and c are 

(2.11a, b) 

It is convenient to introduce the dimensionless variables 

c s  cty C 
r J = o  1 ’  7 = ~ 1 - f o d , d c - 3 d s ,  [=  ;, c = - CO (2.12a, b, c ,  d )  

where co is a reference value of c, and transform (2.7) to 

where 

CT+CUUU+ W@1C-2@2P)Cu = 0, (2.13) 

@l = falZ(d+d-)-2 (d+-d- )d ,  ( 2 . 1 4 ~ )  

4, = fa’l’ (d+ a_)-’ (dt -d+ d- +dZ)  c (2.14b) 

are measures of quadratic and cubic nonlinearity respectively, relative to dispersion 
(4?l1 reduces to Ursell’s parameter 3a12/4d3_ in the limit p + / p -  $0 with d- fixed). If 
h 9 a, p both the dispersion C,, and nonlinear terms CCW and c[, may be neglected 
in (2.13), which then yields C = constant or, equivalently, 

y a c-i, (2.15) 

which is equivalent to Green’s law. 

f The omitted terms within the brackets are O(ydb/la,  ydzd’/k ,  yad/14). 
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3. Solitary-wave solution 
Let d be the total depth, 

d- = d d ,  d+ = (1 -d )d  (0 < d < I ) ,  (3.1 a, b )  

and choose a (note that a < 0 if d > 8) and E according to 

a 2p d(l--d)( i -d)  1 - 12 - (1 +p)Zd(l -d){d3+ (1  - 4 3 )  
- 3 (3.2% b)  a=-=----- 

d i + p  d3+(l-dj3 ' p - d 2  3p(i - d ) 2  

where d is constant and 0 < p < 1 ; then (2.14) reduce to (with c = 1 )  

(42, = l + p ,  ?az = p ,  

and (2.13) admits the solution (Miles 1979) 

(3.3a, b )  

7 = [ = (cosh28-psinh28)-', (3.4) 
where 

c2 = 2dg&d(l-d).  (3.6) 

Note that 0 < p < 1 implies %!: > 4%!z. 

4. Numerical solutions 
Equation (2.13) was solved numerically using the pseudospectral scheme of 

Fornberg & Whitham (1978). The use of this method is in principle straightforward; 
however, considerable difficulty was experienced initially with numerical instabilities 
triggered in the neighbourhood of d-  = &+. The numerical method and its linear 
stability criterion are presented in the Appendix. 

The majority of runs were made for initial data corresponding to a single solitary 
wave in deep water of depth d propagating towards a cosine-shaped transition to 
shallow water : 

d- = d d  (6 x / L  < 0) ,  (4.1 a )  
= d{d+&2!-d,) [ C O S 7 g -  11) (4.1 b )  
= d d ,  ( E >  01, (4.1 c) 

where d > d,. A limited number of runs were conducted for the corresponding 
transition from shallow to deep water, for linearly varying topography, and for initial 
data corresponding to a pair of rank-ordered solitary waves. 

Figure 1 illustrates the scattering of a single solitary wave moving from deep to 
shallow water when A is comparable to a. No solitary waves of reversed polarity 
emerge. 

The example described in figure 2 differs from that of figure 1 only in that h < a. 
The plots are presented in a frame moving with the local linear wave speed, and show 
a lead wave of reversed polarity emerging from the scattered packet on the shelf 
(5 = 1.59). The profile on the shelf comprises several waves of reversed polarity 
travelling faster than the linear wave speed. Subsequent IST solutions (95), using the 
profile a t  6 = 1.02 as initial data, show 12 solitary waves emerging on the shelf. 

Solitary waves in nature usually occur in a rank-ordered sequence, whence it is of 
interest to determine whether the evolution of waves of reversed polarity is specific 
to initial data corresponding to a single solitary wave. The significant dispersion 

(0 < [ < l) ,  
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0 0.2 0.4 0.6 0.8 

FIQURE 1 .  Evolution of a single wave of depression over a transition of decreasing depth for 
(a,,h,d, d,) = (-0.0333, 0.041, 0.6, 0.15). Profiles of 7 = y /a  are shown as functions of the 
dimensionless characteristic time (c, , /L) (j$dz/c(z)-t) at four locations: t; = 0, 0.7, 1.02, 1.23. No 
solitary waves of elevation emerge. 

- 1  I I 1 I I 

0 0.1 0.2 0.3 0.4 

FIGURE 2. Evolution of a single wave of depression over a transition of decreasing depth for 
(ao, A , & ,  d,) = (-0.0667,0.0041, 0.6, 0.15). Profiles of q are shown a t  5 = 0, 0.66, 0.95, 1.59. Note 
the separation of the leading waves from the scattered packet. IST shows 12 waves of reversed 
polarity emerging in this case. 

evident in figures 1 and 2 implies that  two rank-ordered solitary waves separated by 
a distance 0(1) a t  the bottom of the slope may produce significant interaction in the 
transition. Figure 3 shows the profiles for such a numerical experiment; waves of 
reversed polarity are seen to  emerge. Comparison of the results of figure 3 with the 
linear superposition of the solutions for each wave taken separately as initial data 



3 10 K .  R. Helfrich, W .  K .  Melville and J .  W .  Miles 
- 

1 I 

0 0.2 0.4 0.6 0.8 1 .o -1  1 
co, xdu 

FIQURE 3. Evolution of a pair of rank-ordered solitary waves over a transition of decreasing depth 
for (ao1, a,,, A, d, d,) = (-0.0833, -0.0667, 0.016, 0.6, 0.2). Profiles are shown at 6 = 0 ,  0.59, 
0.93, 1.28. As in figure 2, the lead waves are separating from the scattered packet. 

- L (.fa 7 - t  I 

r 

0.20 
- 1  

0 0.04 0.08 0.12 0.16 

FIGURE 4. Evolution of a single wave of elevation over a transition of increasing depth for 
(ao,A,d, d,) = (0.0667, 0.0082, 0.333, 1.0). Profiles are shown at 6 = 0, 0.67, 1.02 and 1.23. No 
waves of reversed polarity emerge. 

shows that significant interaction remains in the region in which waves of reversed 
polarity are emerging. 

Figure 4 describes a transition from shallow to deep water, with h -4 a. There is 
no evidence of waves of reversed polarity. 

For cases in which waves of reversed polarity emerge, our numerical solutions 
display qualitative differences from those of Knickerbocker & Newell. They attribute 
the emergence of the wave of reversed polarity to the generation of a shelf behind 
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the incident solitary wave as it propagates up the slope; however, our results show 
no significant shelf development with the slope scaling used here. Other numerical 
experiments (not reported here) show that a very gradual slope is required to obtain 
a significant shelf: we estimate A = O(an),  n = 34,  for figure 2 of Knickerbocker & 
Newell. We conclude that the emergence of the waves of reversed polarity is not 
attributable solely to the development of a shelf. 

5. Asymptotic solutions 
The relatively long times required to compute a clear separation of the solitary 

waves from the scattered packet preclude an extensive study of the asymptotic 
state on the shelf through numerical integration. If, however, d ,  and d-  are constant, 
(2.13) can be solved by inverse-scattering theory, and the asymptotic solution on the 
shelf then can be evaluated using the numerical solution at  the top of the slope as 
initial data. 

FollowingMiles(1981), weseta1 = 2and'4!d2 = I in(2.13),which, byvirtueof(2.14), 
is equivalent to choosing appropriate values of a and 1. The resulting evolution 
equation 

has solitary-wave solutions 

where 

2y(1+y)-' (0 < y < l) ,  ' = cosh2 x - y sinh2 x (5.2a) 

(5.2b, c )  

v is a phase constant, and y is the family parameter. 
Equation (5.1) is reduced to the KdV equation 

B,+12BBu+B,,, = 0 (5.3) 

B = Cu+2C(1-C).  (5.4) 

through the Miura transformation (Miles 1979), 

The asymptotic solution on the shelf is dominated by a discrete set of solitary waves 

where the K,  are the discrete eigenvalues of 

provides the initial data a t  the top of the shelf (7 = T ~ ) .  
This eigenvalue problem was solved by expressing (5.6) in centred finite-difference 

form andevaluating the eigenvalues andeigenvectors by standard methods (Wilkinson 
1965; Dahlquist & Bjorck 1974). 

According to inverse-scattering theory, the eigenvalues of (5.6) and (5.7) should 
be independent of 7 ,  which is a parameter in the scattering problem. As a check on 
the solution of the eigenvalue problem, we compared the magnitude and number of 
discrete eigenvalues computed from initial data taken at  two positions on the shelf; 
see table 1 for some typical cases. For transmitted waves comparable in amplitude 
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[ = 1.02 

Case N -a$)/a, 

( a )  1 0.160 
(6) 2 0.216, 0.019 
(c) 3 0.369, 0.096 

(d) 2 0.225, 0.006 
0.012 

[ = 1.23 

N - u$)/u, 

2 0.155, 0.001 
2 0.201, 0.015 
4 0.354, 0.083 

0.012, 0.001 
2 0.217, 0.006 

TABLE 1. Number N of transmitted waves and their respective amplitudes relative to the incident- 
wave amplitude a$)/a, (i = 1, ..., N ) ,  computed by IST from initial data at  [ = 1.02 and 1.23, for 
the following parameters (a,, A,  d, dJ :  (a )  (-0.04, 0.00246, 0.55,0.368); ( 6 )  (-0.033, 0.0082, 0.6, 
0.2); (c) (-0.05, 0.0082,0.6, 0.2); ( d )  (-0.0667, 0.0041, 0.6, 0.3). Note the weak dependence of the 
results on 6. 

Case IST Numerical 

( 6 )  0.725 0.695 
( c )  0.369 0.371 

TABLE 2. Asymptotic relative ampIitude of first lead wave ( -u!$)/ao) from direct numerical sotution 
and from TST using solutions at 6 = 1.02 as initial data. The three cases correspond to the following 
va1uesofparameters(a0,A,d,d,):(~)(-0.0667,0.0041,0.6,0.15);(b)(-0.0833,0.0041,0.6,0.2); 

(a )  0.941 0.911 

(c) (-0.05, 0.0082, 0.6, 0.2). 

to the incident wave, differences of a few percent in K; (and hence the wave amplitude) 
are observed, with the absolute error remaining of the same order as the wave 
amplitude decreases. Thus the computed number N of solitary waves may be in error 
when the amplitude of the smallest eigenvalue approaches that of the error. We were 
not able to isolate the source of this error, but suspect that  i t  is due in part to the 
finite resolution of the numerical solution used for initial data. 

As a further check on the solution procedures, the numerical solution was run for 
an extended period in a few cases to provide a direct comparison with the results of 
the inverse-scattering theory. An example of such a comparison of the largest waves 
evolving in three separate cases is shown in table 2. The differences between the 
numerical solutions and the analytical values obtained from IST are less than 5% 
for lead waves whose amplitudes are comparable to those of the incident waves. These 
differences are comparable with those cited above for the errors in the implementation 
of the IST. 

Numerical solutions through the transition region, supplemented by IST, were used 
to explore a larger parameter space than was practicable with the direct numerical 
solutions alone. Figure 5 shows the number of transmitted solitary waves versus A, 
the transition-length parameter, for fixed values of the incident-wave amplitude, and 
displays an increase in the number of waves as h decreases (the length of the transition 
increases).t The results of figure 5 were used to determine the wave amplitude a t  
transition between N = 0 , l  and N = 1, 2, as shown in figure 6. The transition from 

t Some of the results in this section were obtained with a higher-order contribution to @z in (2.13). 
With amplitudes of the transmitted waves differing by 1-2%, this additional term made no 
significant difference to the asymptotic results. 
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x 
FIGURE 5. Number N of transmitted solitary waves verses A for fixed values of d = 0.6 and 
d, = 0.2, and incident amplitudes a,, = -0.0833 (-a-); -0.0667 ( -Q) ;  -0.05 ( -  Q - ) ;  
-0.0333 (-+-); -0.0167 (-X-). 

IaoI 
0.05 

’ /  
’ /  

0 I r I I I 1 1 1 1  I I 1 I I 1 1 1 1  

0.00 1 0.01 0.1 
x 

FIGURE 6. Incident-wave amplitudes a0 at transitions between N = 0, 1 and N = 1 ,  2 versus 
slope-length parameter A ,  obtained from the data in figure 5. (3, N = 0; 0 ,  1 ; 0, 2. 

the 

N = 0, 1 occurs for la,/ increasing through a value comparable with A. Similar results, 
in figures 7 and 8, show that for a smaller depth change a larger incident wave is 
required to initiate a wave of reversed polarity. 

Figure 9 shows the amplitude of the first transmitted solitary wave versus the 
amplitude of the incident wave for h in the range [0.0041, 0.0411. Our results show 
that the amplitude of the first transmitted wave increases as h decreases. This 
contrasts with the results of Knickerbocker & Newel1 (1980), which show an 
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2 

N 

1 

0 
0.001 0.01 0.1 

A 
FIGURE 7. as in figure 5, except d = 0.6, d, = 0.3. 

I 1 I I I I l l 1  I I I I I l l 1 1  

0.001 0.01 0.1 
x 

FIQURE 8. As in figure 0 with transition data obtained from figure 7. 

asymptotic regime, independent of the transition lengthscale, in which aT = $ao, 
where a. and aT are the dimensionless amplitudes of the incident and transmitted 
solitary waves respectively (note that Knickerbocker & Newel1 found only one 
transmitted wave in their numerical solutions). 

A limited study of the sensitivity of the results to the topographic shape was 
conducted. The result,s for the same depth change are shown in table 3 for a cosine 
transition of half-wavelength L, a linear transition of length L and a linear transition 
of length 2L/7c. The last corresponds to a slope equal to the maximum slope of the 
cosine transition. The differences in amplitude of the lead wave are greater than the 
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0.075 

a!’ 

0 0.025 0.05 0.075 0.10 

I a0l 

FIGURE 9. Amplitude aT of first transmitted solitary wave versus the amplitude a,, of the incident 
wave for d = 0.6, d, = 0.2. -a-, h = 0.0041; -Q-, 0.0082; --b-, 0.0123; -+-, 0.0225, 
- X -, 0.041. 

Shape N -@/a, 

(a )  Half-cosine length L 3 0.28. 0.09, 0.02 
( b )  Linear, length L 2 0.39, 0.11 
(c) Linear, length 2 L j ~  2 0.22, 0.01 

TABLE 3. Dependence of transmitted-wave amplitude on transition geometry (ao, A, d, d,) 
= (-0.0667, 0.016, 0.6, 0.2) from IST using initial data a t  = 1.02 

errors discussed above and suggest that the details of the topography may be 
significant in the application of these results. 

A number of runs were conducted without the cubic term. Over the range of 
parameters studied we found quantitative rather than qualitative differences from 
those solutions which included the effects of cubic nonlinearity. The differences were 
most pronounced in the neighbourhood of the slope and less so in the asymptotic 
results on the shelf. Laboratory experiments (which will be reported later) show that 
the inclusion of cubic nonlinearity provides a significantly improved prediction of the 
wave profiles over gradual slopes. 

The authors wish to thank Dr Daniel Meiron for a helpful conversation on eigen- 
value solvers. This work was supported by the National Science Foundation with 
an award of computer time at the National Center for Atmospheric Research and 
Grants OCE 77-24005 (UCSD) and OCE-81-17539 (UCSD), and by contracts (at both 
MIT and UCSD) with the Office of Naval Research. 
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Appendix 
Equation (2.13) was solved using the explicit pseudospectral method of Fornberg 

& Whitham (1978)t. The method evaluates the a-derivatives of <(a, 7 )  in Fourier 
space, and steps forward in 7 using a leapfrog procedure. For the constant-coefficient 
KdV equation 

(A 1) u, + uu, + u,,, = 0 
this gives 

~?+~--u?-l + 2i A 7 ~ i m S - - ' { k S ( ~ ~ ) } - 2 i 9 - ~  {sin (k3 A7) B(um))  = 0, (A 2) 
where 

u? = u ( j  A a ,  mA7), 

2x 
NAu 

k=-  v ( v = O ,  k l , . . . )  + i N ) ,  

and B and S -' represent the forward and inverse Fourier transforms respectively. 
Using the same procedure for (2.13), we obtain 

C+'-c?-l +24ih(@y-2%?cy)  5yB-1{kB(<m)) 

- 2iS-'{sin (k3 A7) 9 ( c m ) }  = 0. (A 3) 

A numerical stability criterion for (A 3) may be approximated by considering the 
linear equation 

with A constant. Following FW, (A 4) has the stability condition 

This condition is generalized for (2.13) by setting 

A = 12(@15-2@2c), or A FZ 12(q1-2a2), 

since 5 < 1. The maximum of - 2@2J occurs on the shelf when 4Yl < 0, so that (A 5 )  
becomes 

The condition (A 6) may be very restrictive, since i t  is determined from (el -2@!2)shelf, 
which in some cams may be an order of magnitude larger than @l - 244 prior to the 
slope. To alleviate this problem and optimize the time step A7, we have added and 
subtracted a dummy advective term Cat, in (A 3), where C, is a constant. The 
numerical approximation then becomes 

<T+'--T--'+24i A7(%y ~ T - 2 e ~ 5 y 2 + C a ) 9 - 1 { k 9 ( 5 m ) }  

-22 iF-1{s in (k3A~+C,kA7)F(~m)}  = 0, (A 7 )  

and the stability condition is modified to 

x 1 sin [(:)3A~ +GC, A7 A ~ [ l 2 ( @ ~  - 24k2) + C,] 1 < 1. 

The constant C, is chosen so that  A7 is maximized and (A 8 )  is satisfied during the 
entire run. 

Abbreviated to PW in this appendix. 
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As a check of the numerical solutions, the integral invariants of (2.13), 
M N 

c d r  = 0-2 C cy = constant 
aT --m j=1 

317 

and 

were calculated. Variations in these quant,ities over the duration of a run were within 
k0.l yo of the initial values for most cases and within 

I n  order to compute solutions a t  large values of 6,  it  was necessary in some cases 
to expand the r-domain from 256 to 512 grid points. This prevented the tail of the 
scattered packet from wrapping around (in consequence of the periodic boundary 
conditions). For a few runs, repeated grid expansion would have required excessive 
computational time; in these situations the tail of the scattered packet was truncated 
with a tanh window. The effect of truncation on the asymptotic solutions was tested 
using IST theory. IST solutions for the asymptotic conditions were performed on 
untruncated and truncated initial data. No effect on the IST results were observed 
until the initial data were truncated within N +  2 waves from the front of the packet, 
where N is the number of discrete eigenvalues found from the truncated solution. 
Figure 2 is an example of a run in which the grid was expanded and the tail truncated. 
Only the central 256 grid points are shown in the figure; the truncation is not shown. 

1 yo in the worst case. 
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