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The instability and breaking of deep-water waves 
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An experimental study of the evolution to breaking of a nonlinear deep-water wave 
train is reported. Two distinct regimes are found. For ak 6 0-29 the evolution is 
sensibly two-dimensional with the Ben jamin-Feir instability leading directly to  
breaking as found by Longuet-Higgins & Cokelet (1978). The measured side-band 
frequencies agree very well with those predicted by Longuet-Higgins (1978b). It is 
found that the evolution of the spectrum is not restricted to a few discrete frequencies 
but also involves a growing continuous spectrum, and the description of the evolution 
as a recurrence phenomenon is incomplete. It is found that the onset of breaking 
corresponds to  the onset of the asymmetric development of the side bands about the 
fundamental frequency and its higher harmonics. This asymmetric evolution, which 
ultimately leads to the shift to  lower frequency first reported by Lake et al. (1977), 
is interpreted in termsof Longuct-Higgins’ (19786) breaking instability. For ak 2 0.31 
a full three-dimensional instability dominates the Benjamin-Feir instability and 
leads rapidly to  breaking. Preliminary measurements of this instability agree very 
well with the recent results of McLean et al. (1981). 

1. Introduction 
This paper reports on an experimental study of the evolution to breaking of a 

uniform deep-water wave train. The processes that may precede and cause deep- 
water breaking are poorly understood, although significant advances have been made 
in recent years (see below). The surfaces of natural water bodies are unbroken only 
in the lightest winds (illelville 1977), with much of the mass, momentum and energy 
transfer occurring during relative short periods of high winds. It follows that a better 
understanding of wave breaking is required to understand these processes further. 
Theoretical difficulties arise through the nonlinearity of the surface boundary condi- 
tion and the unsteady nature of the flow. Further difficulty arises in so far as breaking 
may be a transitional phenomenon separating laminar from turbulent flow, the latter 
introducing its own collection of unsolved problems. 

I n  addition to its role in surface mixing, breaking also serves to limit the amplitude 
of surface waves and in this context Stokes’ (1880) highest wave, incorporating the 
120” corner flow, is perhaps the first solution corresponding to a wave at  the point of 
‘incipient breaking’. Stokes’ solution was for a steady irrot,ational flow with a free 
surface. It took almost one hundred years for one of the restrictions of Stokes’ solu- 
tion to be lifted, namely irrotationality. This was done by Banner & Phillips (1974) 
who proposed that viscous wind-drift layers would exist in the neighbourhood of the 
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wind-driven surface, leading to an augmentation of the orbital velocity and per- 
mitting the fluid velocity to equal the phase velocity a t  a significantly smaller wave 
amplitude. The equivalence of fluid and phase velocities, in this steady model, 
corresponds to the point of incipient breaking. Subsequently Longuet-Higgins & 
Cokelet (1976) used numerical techniques to  follow the evolution of the surface to 
breaking following an initial pressure perturbation. In  addition to demonstrating 
that pressure perturbations may lead to breaking, Longuet-Higgins & Cokelet’s work 
was noteworthy for introducing a numerical technique to study unsteady surface 
flows; a serious weakness of Banner & Phillips’ (1974) model is the assumption of a 
steady flow. 

Almost a decade earlier Benjamin & Feir (1967) had demonstrated that weakly 
nonlinear free-surface waves are unstable to side-band instabilities. Their analysis 
was for a linear perturbation to the weakly nonlinear solutions and predicted expo- 
nential growth over a finite band of perturbation.frequencies. Employing Whitham’s 
average-Lagrangian method, Lighthill (1967) found that the linear perturbations 
restabilized for ak > 0.34, where a is the wave amplitude and k the wavenumber. 
At this point (ak = 0.34) the equations governing the evolution of the wavenumber 
and amplitude change from elliptic to hyperbolic form. I n  the hyperbolic regime the 
group velocity splits into two real characteristics as first noted by Whitham (1965). 

Quantitative confirmation of Benjamin & Feir’s analysis was claimed by Lake 
et al. (1977) who conducted laboratory experiments on the evolution of nonlinear 
wave trains. A subsidiary result of their work was the observation that uniform, or 
nearly uniform, wave trains of large initial steepness may pass through a modulation/ 
demodulation cycle involving wave breaking. While their main concern was not the 
process of breaking, they had demonstrated that intrinsic hydrodynamic instabilities 
lead to breaking in the absence of any forcing. 

Subsequently Longuet-Higgins (1978a, b)  used a normal-mode analysis to examine 
the stability of strongly nonlinear waves to small (linear) perturbations. He confirmed 
the Benjamin-Feir analysis as an asymptotic result, the restabilization first predicted 
by Lighthill, and also found a new and very strong instability a t  ak N 0.41, con- 
jecturing that it corresponded to the initiation of a plunging breaker. The boundary 
of the unstable region corresponds to the point a t  which the frequency of the per- 
turbation is zero relative to the unperturbed wave. It is of interest to note that 
Lighthill’s (1967) results show an equivalence of the nonlinear phase velocity and the 
upper branch of the group velocity at ak E 0.41 (cf. Lighthill 1978, figures 113, 115). 
The association of this strong instability with breaking was later confirmed by 
numerical experiments (Longuet-Higgins & Cokelet 1978) that permitted the 
assumptions of the linear stability analysis to be relaxed. The numerical solutions 
were periodic in space with a length of twice the initial wavelength. The numerical 
results demonstrated that waves having an initial steepness ak as small as 0.25-i- 
evolved to breaking with oscillations in both amplitude and wavenumber such that 
waves finally broke with an individual steepness of about 0.39, somewhat less than 
the steady limiting steepness of ak = 0.443. 

The experimental and numerical work cited above provides evidence that a 
uniform train of plane deep-water waves may evolve to breaking through intrinsic 

t This was the smallest ak considered in the unstable region. 
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hydrodynamic instabilities without external forcing. However, the experimental 
observations by Lake et al. (1977) (as they regard breaking) are qualitative and the 
numerical results of Longuet-Higgins & Cokelet (1978) were constrained by an 
imposed spatial periodicity of two wavelengths. The experiments reported here were 
undertaken to provide a more complete description of the processes leading up to 
breaking, and breaking itself. 

It was anticipated initially that the experiment would be two-dimensional; how- 
ever, it was impossible to generate plane waves for ak > 0.29. Indeed, a very rapid 
transition from two- to three-dimensional waves took place. During the course of 
this work it was found that Su (1980) had observed similar behaviour in a much 
larger facility and Saffman & Yuen (1980) had interpreted Su’s measurements as a 
bifurcation from the plane-wave solution as found from the Zakharov equation. 
While the main concern of the experiments reported here was with plane waves, 
preliminary observations of these three-dimensional effects are given in an appendix. 

2. The experiments 
The experiments were conducted in the glass channel a t  Scripps Institution of 

Oceanography. The channel is 28 m long, 50 cm wide and was filled to a depth, h, of 
60 em. The waves were generated by a hydraulically actuated servo-controlled paddle 
driven by a sinusoidal signal generator. In  all of the experiments reported here the 
frequency w,, was 2 Hz, giving a linear wavenumber k ,  = 0-161 em-* and kh  = 9.67, 
so the waves were deep-water waves ( k h  

A beach of slope 1 : 20 began a t  a point 16 m from the paddle and extended for 
12 m, the latter half of which was covered with ‘horsehair’ to provide additional 
dissipation. 

Surface displacements were measured with fine-resistance wave gauges which have 
been described elsewhere (Flick et al. 1979). There appears to be continuing un- 
certainty regarding the dynamic response of mechanical wave gauges and to our 
knowledge there is no standard method of calibration. We concluded that the only 
reliable method was a direct test in situ. Preliminary experiments were conducted by 
generating a strongly modulated wave train having a carrier wave of 2Hz and 
measuring the surface displacement in the breaking region with both the wave gauge 
and high-speed (500 frames/s) cinematography. The height between the crest of the 
breaking wave and the following trough was measured from the film and compared 
with the calibrated wave-gauge output. Over a limited series of comparisons (6  
breaking waves) the mean error B was 0.5% with an r.m.s. error of 7%. The low 
mean error supports the conclusion that there was virtually no consistent error in 
the wave-gauge readings, and the larger r.m.s. error was most likely due to the difi- 
culty of reading the (turbulent) crest position from the film. In  addition, the wave- 
gauge records of breaking waves were low-pass filtered in steps of 10Hz from 
10-100 Hz and it was found that the cut-off (whether in the surface displacement or 
the gauge response) occurred a t  approximately 50 Hz. 

Preliminary experiments showed that the transients following the initiation of 
paddle motion were long-lived, and influenced by the beachgeometry. It was concluded 
that the initial random perturbations were very small and it required the small 
multiple reflections from the beach and the paddle to lead to perturbations a t  the 

I ) .  
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paddle that were large enough to evolve to  breaking in the length of the channel. 
Measurements were begun approximately 20 min after the paddle was started, by 
which time the starting transients had disappeared. Data from five wave gauges 
were sampled continuously for a total of 819.2 s a t  100 Hz. The data were recorded 
on digital tape for subsequent processing. The wave gauges were statically calibrated 
before and after each series of measurements which lasted from 2 to 4 hours. 

In  all of these experiments the frequency w was kept constant and the wave 
amplitude a was varied. The wave amplitude is defined by 

- 
a = 0.5(7i,,,-amin)zko=41.91 

- 
where amax, amin are averages over approximately 100 waves of the crest and trough 
elevations respectively. The variable x is the distance downstream from the equi- 
librium paddle position. The linear wavenumber is denoted by k,; xk, = 41.9 was 
the position of the first measuring station. For fixed w,, the wavenumber k varies 
with a and was determined graphically from the tabulated results of Holyer (1979). 
This contrasts with most theoretical and numerical studies where k is fixed and w 
varies with a.. 

3. Results 
3. i . Preliminary observations 

Ideally, these experiments would be carried out in a much longer channel so that the 
wave field could dissipate to an evanescent state as x f GO. However, the wave 
channel is of finite length and the waves are dissipated by shoaling on a beach as 
well as by viscosity and breaking in themain bodyof the channel.? Dissipation a t  the 
beach is not complete and some energy, albeit very little, is reflected back towards 
t’he wave generator. This reflection is most apparent following the start of wave 
generation. Groups form first near the head of the wave train and their reflections 
may be followed back along the channel where they are reflected off the paddle. 

For sufficiently large amplitudes the waves underwent a Benjamin-Feir instability 
leading to breaking, and initially the point a t  which breaking started moved slowly 
back along the channel towards the paddle. These starting transients were due to the 
multiple reflections from the beach slowly increasing at  the paddle and providing the 
initial perturbation for the Benjamin-Feir instability. With some exceptions (see 
below) a statistically stationary state was achieved after approximately ten round- 
trips of the channel a t  the group velocity. Subsequently, the waves evolved to 
breaking and then went through a region of breaking that ultimately gave way to a 
region of unbroken waves. The breaking in all cases was ‘gentle’, with no visible air 
entrainment except for a very occasional bubble on the surface. The bcginning and 
end of the breaking region could be determined by direct observation to within 
approximately k 1 m. 

For small-enough initial amplitudes, ak > 0.16, breaking did not occur in the 
length of the channel. For slightly larger amplitudes breaking occurred but the 
process was slowly varying over long time scales such that the point a t  which 
breaking began moved slowly in a range of 5 3 m. It is conjectured that this 

t Radiation damping by capillary generation may also dissipate the gravity waves. 
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behaviour is associated with the weaker attenuation of the beach at  smaller wave 
amplitudes. For a given wave frequency and beach slope the attenuation increases 
with increasing incident amplitude. For the smaller amplitudes the modulated 
reflections which propagate with the group velocity may be of sufficient amplitude 
to produce significant slow modulations of the incident waves. 

The incident waves were essentially plane gravity waves, the only obvious per- 
turbation arising from capillary-wave wakes having their origin near the intersection 
of the gravity-wave crest and the side walls. It was concluded that these result from 
the disturbance caused by wetting of the side wall near the crest. As a crest passes 
it wets the side wall, and between crests the surface film drains until the next crest 
passes by. It appears that  the intersection of the draining film and the following 
wave is the source of the disturbance. 

As mentioned above, true three-dimensional effects became evident a t  sufficiently 
large amplitudes and these will be discussed in an appendix. 

3 . 2 .  Photographic results 

One of the difficulties encountered in comparing theoretical, numerical, and experi- 
mental results is the fact that  the theoretical studies usually examine the evolution 
in time of a wave field that is periodic in space, while experiments are most easily 
conducted for the spatial evolution of a wave field that is periodic in time. The 
transformation is usually made by using the linear group velocity (see below), but 
the difficulties associated with the interpretation of the group velocity of nonlinear 
waves (Peregrine & Thomas 1979)  make a direct observation of the spatial evolution 
of considerable value. To this end we present still photographs of the evolving wave 
field for ak = 0.21, 0.28 in figures 1 and 2 respectively. I n  each case the waves are 
propagating to the right. The left-hand column shows the incident waves just off the 
paddle, the centre column shows the region a t  the onset of breaking, and the right- 
hand column is in the established-breaking region. Photographs in the same column 
were taken under exactly the same conditions. For the photographs in the centre and 
right-hand columns the photographer was asked to shoot to catch breaking events. 
The relatively short duration of the spilling break makes i t  a difficult task to catch 
t'he waves exactly a t  breaking in each instance, and the photographs display waves 
immediately before and after, as well as during, breaking. 

Before discussing the photographs in detail a few general observations are in order. 
The first is the strong temporal periodicity as evidenced by comparison of figures 
1 (j, k )  and figures 2 (9,  h).  Secondly, the individual breaking waves display a longi- 
tudinal asymmetry, with the forward face steeper than the rear, e.g. figure 2 ( h ) .  
Thirdly, there is the very strong modulation in the fully developed breaking region 
with an almost flat surface between breaking waves, e.g. figures 1 (1) and 2 (1). 

For ak = 0.21, figure 1 ,  a linear interpolation of Longuet-Higgins' (1980) results 
for the most unstable mode gives a wavelength of 3.07 times the primary wavelength 
A. The non-integral length of the group would preclude simultaneous breaking of 
waves being observed in the length of channel displayed in the photographs. If, 
however, the predicted length were a rational number then such behaviour should 
be evidenced in a sufficiently long channel. Nevertheless, there is some evidence in 
the photographs (figures 1 ( e ,  g, I ) )  that  the group length is close to  3h.  

For ak = 0.28, the predicted group length is 2.26h, while the photographic evidence 
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ak  

FIGURE 3. Normalized modulation frequency Sw/w,  versus ak. 0 ,  measured values with error 
bars; ---, Benjamin 85 Feir (1967); --, Longuet-Higgins (1978b, 1980); ---, Crawford 
et al. (1981). Experiment corresponding to measurement at ak = 0.20 displayed considerable 
intormittency. 

especially figures 2 (f, g ,  1 )  shows four groups with every second wave breaking, or 
near breaking. Given the predicted group lengths, it is not clear why the integral 
group length should appear so dramatically for ak = 0.28 and not for ak = 0.21. 

Notwithstanding these differences, these results provide considerable support for 
the conclusion that the Benjamin-Feir instability is followed by wave breaking in 
the manner described by Longuet-Higgins & Cokelet (1978). Further, the similarity 
between the profiles in the fully developed breaking region and a t  the onset of 
breaking suggests that  the results of numerical models up to the point of breaking 
may be used to interpret the processes occurring during breaking (see the discussion 
in $4). 

3.3. Side-band evolution 

The dominant feature of the initial evolution of the wave train is the onset of the 
Benjamin-Feir instability. Benjamin & Feir’s (1967) analysis is asymptotic for 
ak J. 0 and some confusion has arisen from attempts to apply the prediction of the 
sideband frequency outside its region of validity (Lake et al. 1977;  Lake & Yuen 
1977). Higher-order corrections have been obtained by Dysthe (1979), with a non- 
linear Schrodinger equation correct to O(e4), and by Crawford et al. (1981) with the 
Zakharov equation; however, predictions of the fastest-growing sideband? by both 
these methods appear to  be quantitatively acceptable only for ak 5 0.15. As far as 
we are aware, the only exact predictions up to  the limiting wave amplitude are those 
of Longuet-Higgins (1978 b ) .  In  figure 3 we show the modulation frequency 6w versus 
nk,  along with the predictions of Benjamin & Peir (1967), Crawford et d. (1981) and 

Other quantities may be predicted with greater accuracy for larger ak. 
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Longuet-Higgins (19786, 1980). Except for the smallest value of ak, the experimental 
results show very good agreement with the prediction of Longuet-Higgins (1978 b, 
1980), while the asymptotic results, and those based on Zakharov's equation, display 
comparable errors in the range of the experiments.? The result a t  ak = 0.20 cor- 
responds to  a set of measurements which displayed considerable intermittent varia- 
tion in the breaking region, perhaps for the reasons mentioned in $2,  and it is only 
included for completeness. 

Constrained by a relatively short wave channel, Lake et al. (1977, figure 3) dis- 
played the side-band growth for a series of measurements in which side bands of 
different amplitudes were forced a t  the paddle. They then patched the measurements 
together to obtain the evolution in an effectively longer channel. Given the numerous 
discrete lines that appear in the spectra we were concerned to confirm that the 
evolution from essentially random noise was qualitatively similar. Further, we 
wished to see whether the spectra displayed any gross features corresponding to the 
onset and cessation of breaking. Following Lake et al. (1977) we plot in figure 4 the 
normalized sideband spectral estimates relative to the estimate at the fundamental 
frequency versus the distance down the channel, for ak = 0.233, 0-292. The basic 

t Dysthe's (1979) prediction of 60 is worse than that of Crawford et al. (1981) and is not 
shown here. 



174 W .  K. Melville 

I 
n + 

I1 
O r  + + + + + + + +  n 

*. ; 31; ; 3  
c ? Y  
M - 

+ + + - 
+ + +  

+f + I 
I 

u+ 
I1 

-1 
1 0 2  ? X  10' 3 x  1 0 2  4 x  1 0 2  

x k ,  -10 

1 11 
+ + +  - n 

+ 

+ +  + 
+ 

+ 

+ + + +  
+ +++  

+ + f  + 
+ +  

+ 
U U 

I 11 

-1 I I I +  1 
1 0 2  2 x  10' 3 x  1 0 2  4 x  1 0 2  

x k , -  10 

FIGURE 5. Spectral amplitudes at w ,  normalized t o  the value at xk, = 41.9 for: (a)  ak = 0.233, 
( b )  ak = 0.292. I and I1 denote the regions in which breaking was observed to begin and end, 
respectively . 

results are strikingly similar to those of Lake et al. (1977), but here we have also 
shown the regions corresponding to  the onset and cessation of breaking. I n  each case 
(including results not shown here) the side bands are initially of unequal amplitude 
but equilibrate on moving down the channel. Subsequently, the amplitudes diverge 
and in each case the divergence occurs in the neighbourhood of the onset of wave 
breaking, with the lower side band w,, - Sw reaching the larger amplitude a little after 
the upper side band w o  + Sw reaches its smaller local maximum. Subsequently, both 
fall to local minima before growing again. (For ak = 0.292 there is some evidence 
of a second local minimum of the upper sideband.) I n  each case studied this local 
minimum corresponds to the cessation of breaking. I n  each case breaking has been 
accompanied by a reduction in the amplitude of the upper side band relative to  the 
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FIGURE 6. Surface-displacement spectra a t  xk, = 41.9, 138.6,203.0,262.6, 348.1, for ak = 0.233. 
Spectra are sequentially offset by 3n, n = 0,1,. . .,4. Resolution bandwidth = 0.0244 Hz; 
Nyquist frequency = 50 Hz; 40 degrees of freedom. 1 95 yo confidence interval. 

lower side band. In  addition, after breaking, the lower side band has grown to an 
amplitude greater than that of the fundamental frequency 0,. This is the shift to 
lower frequency first discovered by Lake et al. (1977).  

Also shown in figure 4 are the growth rates predicted by Longuet-Higgins (1978b) 
based on the wave amplitude a t  xk, = 41.9. The agreement appears to be good; 
however, it  is not clear that such comparisons are terribly meaningful when the 
amplitude of the fundamental frequency varies as shown in figure 5 .  Here we have 
plotted the normalized spectral estimate of the fundamental frequency, relative to 
that at xk,  = 41.9, versus xk,. Also shown are the regions corresponding to  the onset 
and cessation of breaking. The initial decrease results from dissipation as well as 
transfer of energy to  the side bands. Unfortunately it is not possible to  make an 
accurate determination of the dissipation from causes other than breaking (see Miles 
1967). These include viscous dissipation at  the boundaries, surface contamination, 
capillary-wave generation and capillary hysteresis, all of which would lead to a 
monotonic decrease in the curves. Each curve displays an initial decrease to a local 
minimum, which corresponds approximately to the position of the local maxima in 
the side bands (cf. figure 4), before increasing to a local maximum, which corresponds 
to the local minima in the sidebands, Finally, a region of decreasing amplitude is 
measured. In contrast to the side-band amplitudes it is only the cessation of break- 
ing that is coincident with a major feature of these curves: the local maxima. 
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FIGURE 7. Surface-dispIacement spectrum for ak = 0-233, xk,, = 41.9 and ratios of spectra at 
xk, = 138.6, 203.0, 282.6, 348.1 to  that a t  z k ,  = 41-9 (cf. figure 6). Curves sequentially offset 
by 3.n, .n = 0,1,  ..., 4. All technical data as in figure 6. Note the growth of the continuous 
spectrum about o. 

3.4. Spectral evolution 

The evolution of the side bands described in $3.3 is important, but the full spectra 
offer a much more complicated picture of the evolution of the wave train. We 
consider in some detail the spectra for ak = 0.233, 0.292. 

Figure 6 shows the spectra a t  xk, = 41.9, 138.6, 203.0,282*6, 348.1, for ak = 0.233. 
The first two spectra are in the region before breaking, the third and fourth are in 
the breaking region, and the fifth is just downstream of the breaking region. The first 
spectrum, at  x k ,  = 41.9, displays significant peaks at Sw, w,, w o k  Sw, Zoo, 3w,, ..., 
nw,; with n an integer. There is also a peak near 2Sw. I n  the second spectrum addi- 
tional significant peaks are evident a t  nu, Sw; evidence of the modulation of the 
higher harmonics at the frequency Sw. The next spectrum is a t  the beginning of the 
breaking region, where a number of changes are apparent. The peak a t  Sw has become 
more pronounced and that near 26w has shifted to 2Sw. Both of these features reflect 
the increased modulation of the wave train (see figure 1). There has beeia a relatively 
broad-band increase in the continuous spectrum. Numerous lines in the discrete 
spectrum havebecomemoresignificant; for example, the peaks at wo + 280, n(wo Sw). 
Further, the lines evident earlier a t  the higher frequencies ( > 10 Hz, say) have dis- 
appeared in the continuous spectrum. The next spectrum shows the growth of the 
lower sideband relative to the upper sideband (cf. figure 4) and a further destruction 
of the discrete lines a t  higher frequencies. The last spectrum shows a return of some 
of the lines that decreased in the breaking region. These relative changes are shown 
more clearly in figure 7, where the spectrum a t  x k ,  = 41-9, and the ratios between 
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FIGURE 8. Surface-displacement spectra at  rk ,  = 41.9, 122.5, 203.0, 283.6, 348.1, for ak = 0.292. 
See caption of figure 6 for details. Note the loss of the higher-frequency lines and the growth of 
the continuous spectrum as xk increases. The first and second curves are ahead of the breaking 
region, and the fourth and fifth are beyond the breaking region. 

the spectra a t  x k ,  = 138.6, 203.0, 283.6, 348.1 and the spectrum a t  x k ,  = 41.9 are 
displayed. This figure shows the features described above, most notably the broad- 
band increase in spectral density and the decrease in the primary wave and its higher 
harmonics. 

Corresponding results for ak = 0.292 are shown in figure 8 for x k ,  = 41.9, 122.5, 
203.0, 283.6, 348.1, and the same qualitative description applies. 

It is instructive to examine the breaking region in more detail as shown for 
a k  = 0.292 in figure 9(a,  b) .  Figure 9(a)  shows the spectrum a t  xk ,  = 122.5 (just 
before breaking), 154.7, 186.9, 219.1, and 251.4 (at the end of breaking) and figure 
9(b)  shows the spectrum a t  x k ,  = 122.5 and the corresponding ratios a t  x k ,  = 154.7, 
186.9, 219.1, 251.4. Reference t o  figure 4, and the large gradients shown there near 
the onset and end of breaking, and the imprecision in defining the onset and end of 
breaking, all militate against a good quantitative estimate of the net effect of break- 
ing on the spectral evolution. Nevertheless, figure 9 displays some strong qualitative 
features. In  particular, there is a marked asymmetry between the upper and lower 
side bands of not only the fundamental frequency w, but also its higher harmonics 
nu,, showing a decrease of the upper side bands relative to the lower side bands. This 
is shown most clearly for xlc, = 219.1, 251.4. It should be noted that some of this 
asymmetry is evident in the initial spectrum a t  xk ,  = 122.5. These results show that 
the harmonics nw, and their upper side bands are most affected in the breaking 
region. 
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FIGURE 9. (a )  Surface-displacement spectra for ak = 0.292 at xk, = 122.5 (just before breaking 
region), 154.7, 186.9,219.1 (in the breaking region), and 251.4 (at the end of the breaking region). 
Curves are offset by 3n, n = 0, 1, . . . ,4. All technical data as in figure 6. Note the growth and 
destruction of the dense, discrete, higher-frequency lines. ( b )  Spectrum at zlc, = 122.5 and 
normalized ratios at zk,, = 154.7, 186.9, 219.1, 251-4. Noto the asymmetry about no, ( r ~  integer). 
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4. Discussion 
Our measurements show that for ak  in the range 0.16-0.29 a uniform deep-water 

wave train undergoes a Benjamin-Feir instability which ultimately leads to break- 
ing. Our measurements agreL very well with the modulation frequency predicted by 
Longuet-Higgins (19788) and show that the asymptotic results of Benjamin & Feir, 
and results based on the Zakharov equation, display comparable errors over a 
significant range of wave amplitudes. 

Our measurements of the side-band evolution agree qualitatively with those of 
Lake et al. (1977) and show a marked asymmetry between the upper and lower side 
bands which leads t o  the lower side band increasing to  an amplitude greater than 
that of the primary wave. However, our observations also show that the onset of the 
asymmetry corresponds to  the onset of wave breaking. A detailed examination of the 
spectra shows that this asymmetry extends to  the higher harmonics of the primary 
wave and that there is a marked reduction of the energy in these upper side bands in 
the breaking region. The spectra also show that a continuous spectrum evolves and 
that a description in terms of a discrete spectrum only is at best an approximation. 
It should be remembered that the wave train is unstable to a band of frequencies 
rather than a few discrete lines. 

The photographic evidence, especially for a k  = 0.292, shows a remarkable qualita- 
tive agreement with the numerical solution of Longuet-Higgins & Cokelet (1978). 
The photographs also show that the profiles well inside the breaking region are 
comparable with the computed profiles. This suggests that the numerical results may 
be used to interpret not only the processes before breaking but also those in the 
breaking region. 

With this assumption we believe that the asymmetric development in the breaking 
region and the shift to lower frequency may be interpreted in terms of Longuet- 
Higgins’ (19783) and Longuet-Higgins & Cokelet’s (1978) findings. 

It is noteworthy that the Longuet-Higgins instability, unlike the Benjamin-Feir 
instability, is not symmetric in the side bands, but arises a t  the junction of the upper 
side band and the primary wave. I n  addition, near breaking, the instability is strongly 
localized and thus would require the generation of numerous Fourier components a t  
n s w ,  with n an integer. Such components may result from interaction between the 
higher harmonics of w,, ( w ,  & Sw); i.e. no, and n(w,+ Sw).  I n  the breaking region the 
energy contained in the higher frequencies nSw will either be dissipated or scattered 
into the continuous spectrum. This energy may be replenished by transfer from n w ,  
and n ( w o  + Sw), which in turn comes ultimately from the components o,, and oo+ Sw. 
This description is consistent with the measured spectra and can explain the shift to  
lower frequency as the waves pass through the breaking region. The lower side band 
is not directly involved in the breaking instability and the lower side band w ,  - Sw 
of the fundamental frequency w,  will continue to grow as shown by the numerical 
results of Lake et al. (1977). 

It should be noted that while Lake et al. (1977) were unable to  provide a satisfac- 
tory explanation of the shift to lower frequency they did conclude that capillary 
generation or breaking was observed in every case where a shift was measured. They 
suggested that the shift may be associated with dissipation, but considered it unlikely 
that dissipative effects could be so selective over the relatively small frequency 
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difference between wo and w o  f 6w. However, the breaking instability is evidently 
very selective, and if it  is this perturbation which causes breaking then it is almost 
certain that it is this perturbation that is most effectively destroyed (dissipated), 

A partial recurrence occurs with both upper and lower side bands decreasing to  
local minima, that correspond to  the end of breaking, before they begin to  increase 
again. In  the absence of breaking we would expect recurrence to occur a t  approxim- 
ately twice the distance required for the sidebands to  reach their maxima (see Lake 
et al. 1977, figure 9).  However, growth of the continuous spectrum casts considerable 
doubt on the relevance of models which seek to describe the end state of the evolution 
as a series of Fermi-Pasta-Ulam recurrences. If the nonlinearity ultimately leads to  
breaking, as it does here, then consideration of the long-time evolution in the absence 
of breaking is an unrealizable idealization which will lead to  a qualitatively different 
end state. The present results suggest that the wave train may pass through a series 
of partial recurrences tending to lower frequency while the continuous spectrum 
continues to  grow. It is then likely that the discrete spectrum ultimately disappears 
into the continuous spectrum. 

The above discussion applies to ak < 0.29. For larger amplitudes the experiments 
display the onset of a strong three-dimensional instability. The limited measurements 
reported in the appendix show good agreement with the predictions by McLean et al. 
(1981) for the transition from two- to three-dimensional instability, and of the trans- 
verse wavenumber. Results based on the Zakharov equation appear to  be only 
qualitatively correct in both cases. 

Finally, it should be stressed that, while the results here have been compared with 
the predictions for deep-water waves, the forced waves in these experiments (those 
generated by the modulation of the primary wave train) are only marginally so, 
having 6kh in the range 3-5. This does not appear to have led to  any significant 
qualitative differences from the true deep-water case; however, for fixed h, 6kh 4 0 
as ak J. 0 and so care should be exercised in studies of weakly nonlinear waves, 
especially in the laboratory. 

John Miles' initial encouragement and support made this work possible. My 
colleagues at  the Hydraulics Laboratory of the Scripps Institution of Oceanography, 
Mike Butler, Charley Coughran and John Powell, all contributed to  the experiments. 
I am indebted to Larry Ford and his colleagues for their skill and patience in produc- 
ing the photographic work shown here. Dr Henry Yuen kindly made available pre- 
prints of recent work from the TRTI' group. This work was supported by National 
Science Foundation Grants OCE 77-24005 and OCE 80-09461. 

Appendix 
For ak Q 0.29 the approach to  breaking was essentially two-dimensional. How- 

ever, in the breaking region, there was some evidence of three-dimensional effects. 
Moving with a wave group, the first breaking region was sensibly uniform across the 
channel but, as the group passed through the breaking region, a weak three-dimen- 
sionality developed, with the break occurring alternately in the centre and at  the 
sides of the channel. This pattern is evidenced in figures 10 and 11. These photo- 
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FIGURE 10. View of a breaking wave looking back towards the wave generator; ak = 0.21. Not0 
that thc wa\re is only breaking in the centre of the channel. 

graphs were taken looking back up the channel towards the wave generator. Figure 
10 shows the spilling region in the centre of the channel while figure 11  shows the 
spilling region at  the sides of the channel. Low-pass filtering of surface displacement 
records showed that the spilling region becomes discernible a t  frequencies greater 
than 10-20 Hz. This is much larger than the fundamental frequency of 2 Hz and 
thus this particular three-dimensionality may be regarded as weak. 

These weak three-dimensional effects were confined to amplitudes ak < 0.29. For 
slightly larger amplitudes, strong three-dimensional effects arose intermittently 
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FIGURE 11. Same conditions e s  figure 10. Note the wave breaking at the sides of the channel in 
the upper part of the photograph and the capillary waves generated by breaking in the fore- 
ground. 

within I 0  wavelengths of the wave generator; the intermittency undoubtedly being 
due to very-low-frequency oscillations in the tank. For ak 2 0.31 the three-dimen- 
sional effects appeared to dominate the Benjamin-Feir instability. The three- 
dimensional pattern took the form of crescent-shaped perturbations riding on the 
basic waves. These are clearly shown in figure 12. The predominant wavelength of 
the perturbation was two primary wavelengths (e.g. figures 12a, c); however, counter 
examples are evident (figures 12b, d ) .  I n  addition, the velocity of the perturbation 
appeared to be very close to the phase speed of the primary wave; observations 
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FIGURE 12. Three-dimensional instability of deep-water waves looking downstream. Left-hand 
column (u ,  b) :  a k  = 0.315. Right-hand column (c ,  d ) :  a k  = 0.321. 

showed such phase-locking for distances of approximately 10 primary wavelengths 
down the channel. 

At the head of the crescent, wave breaking and capillary-wave generation were 
evident for 20-30 primary wavelengths down the channel from the wave generator. 

During the course of this work i t  was learned that Su (1980) had also observed 
these crescent-shaped perturbations and Saffman & Yuen ( 1980) had interpreted 
them as evidence of a bifurcation from the uniform two-dimensional wave train. 

Subsequently, McLean et al. (1981) undertook a numerical study of the stability 
of the full water-wave equations to  linear three-dimensional disturbances. They 
found two classes of instability. Class I corresponds to  Phillips (1977) ‘figure 8’ 
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resonant diagram and the maximum growth rate is always associated with two- 
dimensional disturbances. Class I1 is fully three-dimensional; the maximum in- 
stability always occurs for p = 0.5 and q + 0 for all but the largest ak, where p and 
q are the ratios of the longitudinal and transverse perturbation wavenumbers, 
respectively, to  the primary wavenumber.? For p = 0.5 the instability is co- 
propagating (i.e. the velocity of the perturbation is equal to the phase velocity of the 
primary wave) in agreement with our observations. Class I1 includes Longuet- 
Higgins’ (1978b) breaking instability as a special case. McLean et al. (1981) found 
that class I had the larger maximum growth rates for ak < 0.28, and class I1 dom- 
inated for laxger ak. This is in good agreement with our observation that the evolution 
of the wave train was essentially two-dimensional for ak < 0.29. Finally, in figure 13 
we have plotted measurements taken from figure 12 along with the points of maxi- 
mum growth rate of class I1 instability predicted by McLean et al. (1981). I n  addition 
we have plotted the corresponding curve predicted by the approximate analysis of 
Saffman & Yuen (1981), and an experimental point attributed by them to Xu (1981).* 

t McLean et al. (1981) claimed that the maximum instability always occurs for p $: 0; how- 
ever, a referee pointed out that Longuet-Higgins’ (19783, figure 2) result at  ak : 0.421 (p = 0) 
(beyond their range of calculation) displays a growth rate greater than the largest growth rate 
presented by McLean et aE. (1981). 

1 I have not viewed Su’s (1981) paper. 



Instability and breaking of deepwater waves lP5 

R E F E R E N C E S  

BANNER, M. L. & PHILLIPS, 0. M. 1974 On small-scale breaking waves. J .  Fluid Mech. 65, 

BENJAMIN, T. B. & FEIR, J. E. 1967 The disintegration of wave trains in deep water. Part 1. 

CRAWFORD, D. R., LAKE, B. M., SAFFMAN, P. G. & YUEN, H. C. 1981 Stability of weakly non- 

FLICK, R. E., LOWE, R. L., FREILICH,M. H. & BOYLLS, J. C. 1979 Comtal and laboratory wave- 

HOLYER, J . 1979 Large-amplitude progressive interfacial waves. J .  Fluid Mech. 93, 433-448. 
LAKE, B. M. & YUEN, H. C. 1977 A note on some nonlinear water-wave experiments and the 

comparison of data with theory. J .  Fluid Mech. 83, 75-81. 
LAKE, B. M., YUEN, H. C., RUNGALDIER, H. & FERGUSON, W. E. 1977 Nonlinear deep-water 

waves: theory and experiment. Part 2: Evolution of a continuous wave train. J .  FLuid Mech. 
83, 49-74. 

LIGHTHILL, M. J. 1967 Some special cases treated by the Whitham theory. Proc. R. Soc. Lond. 
A 299, 28-53. 

LIGHTHILL, M. J. 1978 Waves in Fluids. Cambridge University Press. 
LONGUET-HIGGINS, M. S. 1978a The instabilities of gravity waves of finite amplitude in deep 

water. 1. Superharmonics. Proc. R.  SOC. Lond. A 360, 471-488. 
LONGUET-HIGGINS, M. S. 1978b The instabilities of gravity waves of finite amplitude in deep 

water. 11. Subharmonics. Proc. R. SOC. Lond. A 360, 489-505. 
LONGUET-HIGGINS, M. S. 1980 Modulation of the amplitude of steep wind waves. J .  Fluid Mech. 

99, 705-713. 
LONGUET-HIGGINS, M. S. & COKELET, E. D. 1976 The deformation of steep surface waves on 

water. I. A numerical method of computation. Proc. R. SOC. Lond. A 350, 1-26. 
LONGUET-HIGGINS, M. S. & COKELET, E. D. 1978 The deformation of steep surface waves on 

water. 11. Growth of normal-mode instabilities. Proc. R. SOC. Lond. A 364, 1-28. 
MCLEAN, J. W., MA, Y .  C., MARTIN, D. U., SAFFMAN, P. G .  & YUEN, H. C. 1981 Three-dimen- 

sional instability of finite-amplitude water waves. Phys. Rev. Lett. 46, 817-820. 
MELVILLE, W. K. 1977 Wind stress and roughness length over breaking waves. J .  Phys. Ocean 

MILES, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297,459-475. 
PEREGRINE, D. H. & THOMAS, A. P. 1979 Finite-amplitude deep-water waves on currents. 

PHILLIPS, 0. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press. 
SAFFMAN, P. 0. & YUEN, H. C. 1980 Bifurcation and symmetry breaking in nonlinear dispersive 

SAFFMAN, P. 0. & YUEN, H. C. 1981 Three-dimensional deep-water waves: calculation of 

STOKES, C. G .  1880 Supplement to a paper on the theory of oscillatory waves. Mathematical 

Su, M. Y .  1980 Experiments on water-wave breaking on deep water. Part I: Three-dimensional 

SU, M. Y .  198 1 Three-dimenslonal deep-water waves. Laboratory experiments on spilling 

WHITHAM, G. B. 1965 A general approach to linear and nonlinear dispersive waves using a 

647-657. 

Theory. J .  Fluid Mech. 27, 417-430. 

linear deep-water waves in two and three dimensions. J .  Fluid Mech. 105, 177-191. 

staff system. In Proc. Oceans 79, I.E.E.E. and Mar. Tech. SOC., pp. 623-625. 

7, 702-710. 

Phil. Trans. R. SOC. Lond. A 292, 371-390. 

waves. Phys. Rev. Lett. 44, 1097-1100. 

steady symmetric wave pattern. Submitted to J .  Fluid Mech. 

and Physical Papers, vol. 1, pp. 314-326. Cambridge University Press. 

subharmonic instability (unpublished manuscript). 

breakers. Submitted to J .  Fluid Mech. 

Lagrangian. J .  Fluid Mech. 22, 273-283. 


