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Mach reflection of a large-amplitude solitary wave 
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Reflection of an obliquely incident solitary wave by a vertical wall is studied 
numerically by applying the ‘ high-order spectral method ’ developed by Dom- 
mermuth & Yue (1987). According to the analysis by Miles (1977a, b )  which is valid 
when ai < 1, the regular type of reflection gives way to ‘Mach reflection’ when 
$,/(3a,)i < 1, where a, is the amplitude of the incident wave divided by the quiescent 
water depth d and $i is the angle of incidence. I n  Mach reflection, the apex of the 
incident and the reflected waves moves away from the wall a t  a constant angle ($*) 
say), and is joined to the wall by a third solitary wave called ‘Mach stem’. Miles 
model predicts that the amplitude of Mach stem, and so the run-up at the wall, is hi 
when = ( 3 4 ; .  

Our numerical results shows, however, that the effect of large amplitude tends to 
prevent the Mach reflection to occur. Even when the Mach reflection occurs, it is 
‘contaminated’ by regular reflection in the sense that all the important quantities 
that characterize the reflection pattern, such as the stem angle $*, the angle of 
reflection k,, and the amplitude of the reflected wave a,, are all shifted from the 
values predicted by Miles’ theory toward those corresponding to the regular 
reflection, i.e. $* = 0, $, = and a, = a,. According to our calculations for a, = 0.3, 
the changeover from Mach reflection to regular reflection happens at  $, z 37.8”, 
which is much smaller than ( 3 4 4  = 54.4’, and the highest Mach stem is observed for 
$i = 35” ($,/(3ai); = 0.644). Although the ‘four-fold amplification’ is not observed 
for any value of $, considered here, it is found that the Mach stem can become higher 
than the highest two-dimensional steady solitary wave for the prescribed water 
depth. The numerical result is also compared with the analysis by Johnson (1982) for 
the oblique interaction between one large and one small solitary wave, which shows 
much better agreement with the numerical result than the Miles’ analysis does when 
$, is sufficiently small and the Mach reflection occurs. 

1. Introduction 
The problem of oblique incidence of a solitary wave with small wave height (ai 4 

1) on a vertical wall was studied theoretically by Miles (1977a) b )  as a special case of 
oblique interaction of two small-amplitude solitary waves. He found that the regular 
type of reflection, in which a, = a, and $r = $i, gives way to another type of 
reflection, called ‘Mach reflection ’ from its geometrical similarity to the cor- 
responding reflection of shock waves, when e = $J(3ai); d 1. In  Mach reflection, the 
apex of the incident and the reflected waves moves away from the wall a t  a constant 
angle $*, which we call here the stem angle, and is joined to the wall by a third 
solitary wave called ‘Mach stem ’. According to Miles’ theory for Mach reflection, $r 

is not equal to ~i but has some larger value which depends only on a, (see ( 1 . 4 ~ )  
below), while a, is smaller than ai and decreases to zero with $i (see (1.3a) below). 
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Among other things which Miles’ model predicts, the most striking one is that the 
amplitude of Mach stem a M ,  and so the maximum run-up at  the wall, becomes 4a, 
when $, = ( 3 4 ;  (see ( 1 . 2 ~ )  below). As this is twice that predicted by linear theory, 
it would be quite troublesome for coastal structures if such an amplification of the 
incident wave actually happens not only when a, is small as assumed in Miles’ 
analysis but also for larger values of a,. 

Miles’ theory, which is only valid for a, 4 1, predicts that aM becomes four times 
larger than ai when gki = (3ai)i. It also predicts that the Mach stem is a steady 
solitary wave just like the incident and the reflected waves are. We now know, 
however, that there is no steady solitary wave solution with wave height larger than 
0.827d. This implies that the two things, i.e. the ‘four-fold amplification’ of the 
incident wave and the steadiness of the Mach stem, become incompatible when ai > 
0.207. It should also be noted that, according to Miles’ theory, the maximum value 
of ll.i for which Mach reflection happens is given by ( 3 ~ ~ ) ; .  As this quantity increases 
monotonically with ai, it  eventually becomes inconsistent with the assumption of 
‘grazing incidence’ (gki 4 1) which underlies Miles’ analysis on Mach reflection. For 
example, when a, = 0 .2 ,  which we think is a rather modest choice for ai, (3a$ 
corresponds to +, = 44.4” which cannot be called ‘grazing’ by any means. From 
these considerations, we cannot expect Miles’ prediction to hold when the condition 
a, 4 1 is not satisfied, and we think it would be quite informative to study how Miles’ 
prediction is modified when ai is not very small and hence the basic assumption 
ai 4 1 of the theory is no longer satisfied. 

In order to achieve this aim, we integrate numerically the ‘almost ’ full-nonlinear 
system of equations for three-dimensional surface gravity waves by the ‘ high-order 
spectral method’ developed by Dommermuth & Yue (1987) which we will explain 
briefly in $2.1 below. Although this method is basically for spatially periodic wave 
fields, it can be made applicable to the present problem involving solitary waves, first 
by taking the spatial period in the direction parallel to the wall much longer than the 
propagation distance of the solitary wave, and secondly by introducing an artificial 
modification of the values of q and q5s around the offshore boundary which ensures 
that the incident solitary wave has a straight and infinitely long crest line with a 
prescribed angle of incidence $i as well as a uniform wave height along it (see $2.3 
below). 

Funakoshi (1980) also studied the same problem numerically. He used the 
Boussinesq equation with two horizontal dimensions as the basic equation instead of 
the full water-wave equations, and confirmed that all the results predicted by Miles 
actually happen as the asymptotic ( t+oo) state of the initial-value problem. It 
should be noted here that the Mach reflection as described by Miles does not satisfy 
the condition of no normal velocity a t  the rigid wall so long as the length of the Mach 
stem remains finite. The solution is only valid asymptotically as t + cc , as pointed 
out by Miles himself. However, the result obtained by Funakoshi (1980) indicates 
that one can arrive at  such a state which does not differ much from the asymptotic 
state and hence can be reasonably compared with the prediction by Miles’ theory by 
solving the initial-value problem numerically for a sufficiently long time, and this is 
the standpoint from which we are going to investigate the phenomenon of Mach 
reflection here. 

Melville (1980) tried to confirm Miles’ prediction by wave-tank experiments. 
However, as Funakoshi (1980, 1981) discusses, Mach reflection is a very slow process 
unlike fhe regular reflection, and it generally takes a long time for the asymptotic 
situation to be achieved. In Melville’s experiment, the run-up at  the wall is still 
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FIGURE 1. Schematic representation of Mach reflection pattern. 

increasing even at the end of the measurement, suggesting that his experimental 
apparatus does not have enough length to observe such a slow process as Mach 
reflection. 

Because the comparison of the numerical results with the theoretical prediction by 
Miles is the central subject of this work, it is worthwhile summarizing here the main 
results obtained by Miles, which are valid when a, < 1. 

(i) The regular type of reflection gives way to Mach reflection when E = $,/(3ai); 
becomes less than 1. 

(ii) step angle $* (see figure 1) : 

l-e) Mach reflection, ( l . l a )  

regular reflection. ( 1 . l b )  

(iii) amplitude of Mach stem aM (or the maximum run-up a t  the wall) 

(1 +# Mach reflection, (1.2u) 

4/11 + (1 - 1/c2);] regular grazing reflection, (1.2b) 

2 + [ 3 / ( 2  sin2 llri) - 3 + 2 sin2 $,] ai regular non-grazing reflection. ( 1 . 2 ~ )  

(iv) amplitude of the reflected wave a,.: 

a, -/ e2 Mach reflection, 
- - 

ui I 1  regular reflection. 

( 1 . 3 ~ )  

(1.3b) 



640 M .  Tanaka 

(v) angle of reflection ~ r :  

~~ = { (3ai)g Machreflection, 

+i regular reflection. 

( 1 . 4 ~ )  

(1.4b) 

In the next section, we explain the method of numerical calculation. As an overall 
test of the scheme, we also show the result of a two-dimensional calculation for the 
head-on collision of two identical solitary waves, which is equivalent to the normal 
incidence of a solitary wave on a rigid vertical wall. The numerical result for oblique 
incidence is shown and compared with Miles’ theory in $3.  It is also compared with 
the analytical result by Johnson (1982) for oblique interaction between one large and 
one small solitary wave. Conclusions are given in $4. 

2. Numerical method 
2.1. Dommermuth & Yue’s scheme 

We consider the irrotational motion of inviscid and incompressible water under a free 
surface with a constant finite depth. For simplicity, we normalize the space and the 
time in such a way that both the gravitational acceleration g and the quiescent water 
depth d are unity. Then the velocity field can be described by a velocity potential 
$(x, y, z ,  t )  which satisfies Laplace’s equation throughout the water region. where x 
and y are horizontal coordinates and z is the vertical coordinate pointing upward. 

In terms of the velocity potential at the free surface @(x, y, t )  = #(x, y. ~ ( x ,  y, t ) ,  t ) ,  
with ~ ( x ,  y, t )  being the displacement of the free surface, the kinematic and dynamic 
boundary condition on the free surface are respectively 

yt = -V, #s’vh 7 + W[l+ (vh 7)2], (2.1) 

$f =-?1- t [v ,~S]z+~W2[1+(Vhr)2 ] ,  (2.2) 

where Vh 3 (a/ax, a/ay), and W(x ,  y, t )  is the vertical component of the velocity at the 
free surface. The boundary condition at  the bottom is 

# , = O  ( z = - 1 ) .  (2.3) 

We assume that $ can be approximated by a perturbation series in a small 
parameter which is a measure of wave steepness, and write 

where M is the order of approximation. By expanding each $(m)  in a Taylor series 
about z = 0, we have 

Expanding (2.5) and collecting terms of each order, we find 

$“’ (X ,Y,O>t )  = $S(.,Y,t), 

(2.6) $(m)(x,  y , O , t )  = - m-l 2 - 7 $ m - k ) ( X , y , O ,  V k  ak t )  (m = 2 ,3 ,  ...) M ) .  
Ic=l k !  az 

These boundary conditions and Laplace’s equation gives a series of well-defined 
boundary-value problems for $(m) ,  which can be solved successively once #’ and y are 
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prescribed. The crucial point in this procedure is that the original Dirichlet problem 
for $(x, y ,  x ,  t )  with a complex boundary given by z = ~ ( x ,  y, t )  has been transformed 
to a series of Dirichlet problems for qVm)(x, y, z ,  t )  (m = 1,2 ,  . . ., M )  with a very simple 
boundary z = 0. 

When the wave field is periodic in horizontal coordinates with L, and L, as the 
period in each direction, qVm) can be expressed by a double Fourier series as 

with Kk, 1 E [(27ck/L,)2 + (27cf?/L,)2]t. 

The coefficients cimi can be obtained by one two-dimensional fast Fourier transform 
(FFT) when qVm)(x, y,O,t) is given by (2.6), and qVm) is thus obtained quite easily. 
Once #m) (m = 1,2,  . . . , M )  are all known, the vertical velocity at  the free surface W 
can be obtained by 

and then the values of qF and 7 can be updated by the boundary conditions (2.1) and 
(2.2). 

Although 7, $ ( m ) ,  and W are all represented by their Fourier coefficients, the 
products between them are performed in the physical space instead of the spectral 
space. In this respect, the scheme is pseudospectral, and it suffers from the aliasing 
error. We removed this aliasing error by applying the standard ‘$rule’ (see for 
example Canuto et al. 1988) every time two functions are multiplied. 

It is not a new idea, even within the context of strongly nonlinear water waves, to 
assume periodicity in each direction and express the physical quantities by their 
Fourier series in order to facilitate numerical calculations. For example, Fenton & 
Rienecker (1982) also used Fourier methods in their numerical study of two- 
dimensional interaction between large-amplitude solitary waves. However, as 
Dommermuth & Yue (1987) discuss Fenton & Rienecker’s scheme satisfies the free- 
surface boundary conditions by collocation on the exact free surface, and the 
operation count per timestep increases typically as N3 with N being the total number 
of mesh points. In Dommermuth & Yue’s scheme, on the other hand, the free-surface 
boundary conditions are transformed to M boundary conditions on the undisturbed 
flat surface, each of which can be solved quite easily by the use of FFT, and the 
operation count increases only as N In N in N ,  and roughly as M2 in M .  This great 
reduction in the operation count has enabled us to perform the three-dimensional 
calculations reported here with a reasonably large number of mesh points in both 
directions. (Dommermuth & Yue claim that the operation count of their scheme 
increases only linearly both in N andM when FFT is used. However, we believe that, 
as the double sum in (2.5) and (2.8) suggests, the number of products, and so the 
number of FFTs which need to be called to remove the aliasing error, should increase 
almost quadratically in M instead of linearly.) 

2.2. Initial condition 
The region considered in the numerical calculation is 0 < x < L, and 0 d y < L, (see 
figure 1) .  The impermeable condition at  the rigid wall (x = 0) is automatically 
satisfied by assuming that ~ ( x ,  y, t )  and @(x, y, t )  are both even functions with respect 
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to x. Then 7 and 4' are even periodic functions of x with half-period L,, and are 
expressed by cosine series. With regards to the y-coordinate, we also assume 
periodicity with period L, which is taken sufficiently long, and use an ordinary 
Fourier series with sines and cosines in representing q and #'. We employ the third- 
order steady solitary wave solution obtained by Grimshaw (1971) for the initial 
condition. The wave profile 7 and the propagation speed (or Froude number) F are 
expressed as follows when it propagates in the positive x-direction 

,$? = a s 2 _ ~ 2 ( s 2 - S 4 ) + a 3 ( ~ s 2 - ~ S 4 + 1 0 1  8 0 '  6 )+0(a4), (2.9) 

where s E sech{a(x-Pt-x,)}, ( 2 . 1 0 ~ )  

F = 1++a-&u2+&a3+O(a4), (2.10b) 

a = (@)"l-~a+&a2)+O(a~) =D-1. (2.104 

In our calculations of oblique incidence, the initial solitary wave has a crest line 
which is parallel to the line y = -tan $, x x, and is propagating in the direction ( -sin 
lCri, - cos $i) (see figure 1 ) .  When we compare the third-order steady solution with the 
' almost exact ' solution obtained numerically by the method described in Tanaka 
(1986) for a = 0.3, which is the largest value of ai we consider here, we find that these 
are almost identical in every respect. For example, the Froude number F, the excess 
mass, and the potential energy of the 'exact' solution are 1.13752, 1.36197 and 
0.13360, respectively, and the relative errors to these quantities involved in the 
third-order solution are 3.7 x and 5.3 x lop3, respectively. We think 
this fact justifies our use of the third-order solution as the initial condition, provided 
a, d 0.3. 

The intervals of numerical mesh points Ax and Ay are determined as follows. When 
the wave height ai of the incident solitary wave and the angle of incidence $i is 
prescribed, we require first that 

6.4 x 

Ay = Ax tan $i. (2.11) 

This implies that any straight line connecting mesh points ( i , j )  and (i + 1,  j- 1 )  (or 
the line i +j  = constant) is parallel to the crest line of the incident wave, and that Ax 
automatically becomes much larger than Ay when lCri becomes small and the typical 
lengthscale of variation in the x-direction (i.e. the direction normal to the wall) 
becomes much longer than that in the y-direction (i.e. the direction parallel to the 
wall). Next we require that the distance between the two adjacent straight lines, 
i+j  = m and i+ j  = m+ 1 (m = some arbitrary integer), both parallel to the crest 
line of the incident wave, is of the typical lengthscale of the incident solitary wave D 
given by (2 .10~) .  These two requirements determine Ax and Ay as 

AX=- 
(2.12) 

The dimensions L, and L, of the numerical region are determined from these mesh 
interval and the number of mesh points by L, = N, x Ax and L, = N ,  x Ay, 
respectively. In most of the calculations shown below we take N, = 128 and N, = 
512. 
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2.3. Condition at the oflshore boundary x = L, 
The condition at  the offshore boundary x =  L, needs some care. As explained 
previously, we assume that q(x,y,t) and qP(x,y,t) are both even and periodic 
functions of x with half-period L, in order to use Dommermuth-Yue's methodology 
taking into account the impermeable boundary condition at  the wall (x = 0). 
However, when we extend the initial condition as described above periodically 
beyond 0 < x < L,, we realize that the crest line of the initial solitary wave is a 'zig- 
zag' and has an angular corner with inner angle ?t - 2$i a t  x = L, (or odd multiples 
of L,) which is pointing toward the direction of propagation (i.e. negative y- 
direction). However, such an angular corner in the crest line would diffuse out as time 
elapses, as discussed below, implying that we need some artifice in the treatment of 
the region near x = L, in order to keep such an angular corner for t > 0. 

Let some part of the straight crest line of a solitary wave be pushed forward and 
become convex toward the direction of propagation. Then each line element of this 
bent crest line would propagate in a diverging direction, and consequently the part 
of the crest line would be stretched. Then the law of energy conservation requires 
that the wave height of this part should be decreased in order to compensate for the 
stretch of the crest line. On the other hand, the propagation speed of a solitary wave 
decreases with its wave height except for the vicinity of the limiting solitary wave 
with wave height 0.827. This implies that the part of the crest line which is convex 
toward the direction of propagation would propagate more slowly, and consequently 
the crest line tends to recover the original straight line. Exactly the opposite thing 
would happen when a part is pushed backward to become concave toward the 
direction of propagation. In  this sense, the solitary wave is stable to a bending 
disturbance. The linear stability analysis of the solitary wave solution of the 
Korteweg-de Vries ( K 4 V )  equation to a bending disturbance with very long 
wavelength was studied analytically by Kadomtsev & Petviashivilli (1970) based on 
the two-dimensional K-dV equation, which is also called the K-P equation named 
after them. Tanaka (1990) also studied this process of the returning of a bent solitary 
wave to a solitary wave with a straight crest line by integrating numerically the 
second-order mode-coupling equation by a fast pseudospectral scheme he developed. 

We plot in figure 2 a perspective view of the free surface at  t = 30 when a, = 0.3, 
$i = 40" in order to see what happens to the crest line of the incident solitary wave 
around x = L,. It can be seen clearly that the angular corner which existed initially 
a t  x = L, has diffused out, and the crest line has become a smooth curve with finite 
curvature. The decrease of wave height around x = L, is also appreciable. The region 
with curved crest line and decreased wave height spreads to a wider region as time 
elapses. Because the problem we are trying to simulate is the interaction with the 
wall of a solitary wave which has a straight crest line of infinite length and uniform 
wave height along it, we need some artifice which prevents this diffusion of curvature 
and depression of wave height from affecting the wave motion in the interaction 
region near the wall. If we try to overcome this numerical difficulty naively by taking 
L, (and so L, because the crest line of the incident wave is inclined) very long, the 
total number of points N ( = N, xN,)  would become so large that the numerical 
calculations would require prohibitively long CPU time. 

The first method we tried was to replace, at some fixed interval of time, qi+l,j-l (= 
q ( ( i + l ) A x ,  ( j - 1 ) A y ) )  and @+l,,-l with q6,r and @, for i, < i GiV,, 1 < j  <Nu,  
with i, being some suitably chosen number (80% of N,, say). Remember that any 
straight line connecting two mesh points (i,j) and (i + 1,j - 1)  is parallel to the crest 
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FIGURE 2. The free-surface displacement without the artificial modification of data around 
x = L,. ai = 0.3, +i = 40, t = 30. 

line of the incident solitary wave. This seems to be the simplest method by which we 
can recover a straight crest line with prescribed angle of incidence and a constant 
wave height along it near x = L,. This method is also convenient for our scheme in 
the sense that it does not disturb the periodicity in the y-coordinate. It turns out, 
however, that as this method modifies the data for the whole range of y, it  is apt to  
affect the reflected wave as well as the incident wave when the reflected wave grows 
and elongates with time. Because this artificial modification of data is suitable 
exclusively for the incident wave, the computation explodes, as expected, soon after 
the tip of the reflected wave comes close to the line x = i, x Ax. 

In the second method, and this is the method that we employ in all the calculations 
reported here, the artificial modification of data 

(2.13) 

is restricted to a much narrower region than in the first method. First we move along 
the line i + j  = const., which corresponds to the crest line of the incident wave, and 
if the deviation of q from a, becomes larger than 0.5% of ai, we draw through this 
point a straight line normal to the crest line of the incident wave. Then the 
modification of data (2.13) is performed only in the trapezoid enclosed by this line, 
the numerical boundary x = L, and the two lines both parallel to the crest line of the 
incident wave, one in the front and another in the rear of the incident wave. The 
distance between these two parallel lines is tentatively chosen to be 15 times (10 for 
the rear and 5 for the front side of the incident wave) the distance which the incident 
solitary wave has propagated since the straight crest line and constant wave height 
were recovered by this method last time. We applied this artifice with a fixed time 
interval of 1 .  

Once we introduce this artificial modification of data, the system is no longer 
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closed, and does not have any conserved quantity which would be useful in checking 
the accuracy of calculation. Then, in order to know the suitable values of At a,nd M 
for each case, we first run a preliminary calculation without applying the modification 
of data as above whenever ai and/or $i is changed, and monitor the constancy of 
mass, momentum and energy. For example, when we use At = & and M = 3 for the 
case of a, = 0.3, $i = 40", the total energy E which is defined in the fully nonlinear 
manner as 

(2.14) 

remains constant with relative error less than 0.2 % until t = 120, by which time the 
incident solitary wave has propagated more than 136 times the water depth. From 
this result of the preliminary run, we can expect that these values of At andM, as well 
as Ax and Ay chosen by the principle explained in the previous section, would give 
reasonably accurate result for this combination of ai and $i when the artificial 
modification of data as described above is introduced and the system becomes no 
longer closed. Integration with respect to t is performed by the fourth-order 
RungeKutta-Gill method. 

We have employed M = 3 for all the cases reported here, and for two specially 
chosen cases with a, = 0.3, $i = 35", and ai = 0.3, = 20", we have also calculated 
with M = 4. The first case we think is important because it gives the highest run-up 
at the wall in all the cases considered, while the second case shows quite clearly the 
occurrence of typical Mach reflection. We do not think that these relatively small 
values ofM are large enough to obtain very accurate results, and we cannot deny that 
the limitations of the budget and the storage of the computer (FACOM VP2600 of 
Nagoya University) were among the important factors in choosing the values of M 
(and alsoN). However, the difference in the maximum run-up a t  t = 150 between the 
calculations with M = 3 and M = 4 is only 2 % when ai = 0.3, @i = 20°, and it still 
remains about 4% even for the case a, = 0.3, $i = 35" in which the maximum run- 
up at the wall exceeds 90% of the quiescent water depth. From these facts, we 
believe that our results are reasonably trustworthy, not only qualitatively but also 
quantitatively. 

Moreover, it  should be noted that the calculation with M = 3 (or 4) must give a 
more accurate result than the third- (or fourth-)order approximate equation for 
weakly nonlinear long waves. For weakly nonlinear long waves, we have two small 
parameters a ld  and d/h with a being the typical wave height, d the water depth, and 
h the typical horizontal lengthscale, and in the theoretical treatment it is usually 
assumed that 

(2.15) 

With this scaling, the steepness ak  of the wave, which is the only parameter that we 
assume small in the present scheme, is O($).  When we count the order of 
approximation of the calculation by M ,  we are talking about theMth power of a k  and 
not that of 6 as in the perturbation theory for weakly nonlinear long waves. 

2.4. Test calculation for normal incidence (two-dimensional problem) 
Before proceeding to the three-dimensional calculation of oblique incidence, we 
performed one calculation for the head-on collision of two identical solitary waves, 
which is equivalent to the problem of reflection of a normally incident solitary wave 
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FIGURE 3. The free-surface displacement versus x and t of a solitary wave of a = 0.3 reflecting 
from a wall. t = 0, 2, 4, ..., 70. 

by a rigid vertical wall, as an overall check of our numerical scheme except for the 
artificial modification of data described above. This problem has already been 
investigated by various authors (see, for example, Byatt-Smith (1988) and the 
references therein). 

The initial condition of our calculation consists of two third-order solitary waves 
(equations (2.9) and (2.10)) with ai = 0.3 which are separated 1 4 0  (!z 34.2) apart 
withB given by ( 2 . 1 0 ~ ) .  With this condition, the surface displacement at  the middle 
point of the two solitary waves is less than 1.7 x iO-6.  As the Froude number F given 
by (2.10b) is about 1.14 when ai = 0.3, the solitary waves would collide around t = 
15. Various parameters of the numerical calculation are chosen as follows: N, = 256, 
Ax = $D, L, = N, x Ax = 64D, At = i, and M = 3. By the end of the calculation t = 
70, the total energy E defined by (2.14) has changed only less than 0.13 % of its initial 
value, and the total CPU time is about 1.5 s on FACOM VP2600 of Nagoya 
University. 

Figure 3 shows the surface profile a t  various timesteps at  a constant interval for 
0 < t d 70. Although ai is not the same, the present result looks very similar to that 
obtained by Mirie & Su (1982) (see their figure 2). Our result reproduces the 
significant secondary wavetrains trailing each of the solitary waves which was 
predicted theoretically by the third-order perturbation analysis of Su & Mirie (1980). 
It is also observed clearly that both the wavelength and the amplitude of each of the 
secondary wavetrains decrease as the distance from the solitary wave increases in 
accordance with Su & Mirie’s prediction. 

Fenton & Rienecker (1982) also investigated the same problem by solving 
numerically the full system of equations for surface gravity waves by their Fourier 
method, but did not succeed in reproducing such secondary wavetrains. Byatt-Smith 
(1988) argues this drawback of Fenton & Rienecker’s calculation as if it were intrinsic 
to all the ‘Fourier methods’ which impose some artificial periodicity on the wave 
field and represent 7 and q5 by their truncated Fourier series. However, our numerical 
result shown above indicates that this is not the case and that the ‘Fourier methods’ 
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are capable of describing the dispersive tail as well as the main part of the wave 
correctly if they are used properly. We suppose that the drawback of Fenton & 
Rienecker’s calculation has stemmed from just the insufficiency of the length of 
spatial period they imposed on their calculation. 

We observe from our numerical result that the maximum value Aa of the transient 
loss of amplitude of the solitary wave which occurs immediately after the reflection 
is about 0.0150. The perturbation analysis by Byatt-Smith (1988) shows that this 
quantity is O(a:) and is given by 0.4938 x a:, giving 0.0133 for the present value of 
a,( = 0.3). Bearing in mind the rather coarse discretization in both x and t as well as 
the relatively lower order of nonlinearity (M = 3) and large value of maximum runup 
( -  0.649), the agreement between theory and numerical result seems to be quite 
satisfactory. The calculation with M = 4 gives Aa = 0.0132, and the agreement with 
Byatt-Smith’s prediction is still better. The numerical result seems to have 
converged by this value of M ,  and any further increase of M makes no difference in 
Aa. We believe that our numerical scheme is also able to detect the final loss of 
amplitude, which Byatt-Smith’s analysis predicts to be O(a!), if the value of M is 
suitably chosen. However, this problem is not relevant to the main subject of this 
work, and we will not pursue i t  any further here. 

3. Results for oblique incidence 
3.1. atdependence (9i/(3ai)i - 0.74) 

In  order to see how the effect of large amplitude modifies the predictions given by 
Miles for waves with small amplitude, we first study three cases with different 
amplitude a, of the incident wave. The angle of incidence $i is also changed 
correspondingly in such a way that B = 9,/(3a,)1 remains almost constant. In  this 
sense, these three cases would have almost the same likelihood of producing Mach 
reflection. The cases we have chosen are a, = 0.1, @i = 23” ( E  = 0.733), a, = 0.2, $i = 
33” (6  = 0.744) and a, = 0.3, 9, = 40” ( B  = 0.736). 

It should be stressed again here that Miles’ theory is valid only for a, < 1 ,  while 
almost all of the cases treated here are in the regime where Miles’ theory cannot be 
expected to hold. In  the following argument we often use a phrase like ‘the value 
predicted by Miles’ theory’, but this should be understood as a value which we obtain 
if we apply one of the expressions (1.1)-(1.4) naively to those cases for which the 
condition ai Q 1 is not satisfied. Thus the disparity between the numerical result and 
Miles’ theory is just to be expected. 

As the free-surface displacement of the typical Mach reflection pattern shown in 
figure 4 indicates, the incident and the reflected waves obtained numerically have 
some finite width with some inner structures in it, and they cannot be expressed 
simply by two straight lines, as that schematically shown in figure 1.  This brings out 
some ambiguity in determining the position of the apex of the incident and the 
reflected waves, and so the length of Mach stem 1,. In  this paper, we define I ,  by the 
distance measured along a straight line normal to the wall which joins the point of 
maximum run-up a t  the time and the point off the wall where the free-surface 
displacement decreases to a,. Once 1 ,  and the point of maximum run-up are known 
for various timesteps, the stem angle +* can be obtained easily. 

We show the results for a, = 0.1 and ai = 0.3 in figure 5 and figure 6, respectively. 
Figures 5 (a)  and 6 (a)  show the evolution of aM as a function of time t ,  while figures 
5 ( b )  and 6 ( b )  show that of 1,. The dashed line in each of the figures denotes the 
prediction given by Miles’ theory. 
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FIGURE 5. (a) %/a, us. t. a, = 0.1, = 23'. ( b )  1, us. t. a, = 0.1, +i = 23'. 

When ai = 0.1, y+i = 23", the maximum run-up, which is still increasing slightly at  
t = 300 and has not saturated yet, appears to asymptote to some value close to 3.00 
in accordance with Miles' prediction. The length of the Mach stem 1, is also 
increasing almost linearly in t ,  although the rate is noticeably smaller than predicted. 
From these results, we can infer that a Mach reflection as described by Miles is 
actually occurring for this case except for quantitative agreement. 

When a, = 0.3, $i = 40°, on the other hand, the maximum run-up has almost 
saturated by the time t w 100 at a value slightly larger than 2 . 4 ~ ~ )  which is only 80% 
of the value predicted by (1.2a). The length of the Mach stem also seems to have 
stopped growing, and the elongation of the Mach stem linear in t ,  which is an 
important indication of Mach reflection, is hardly observed. Figure 7 shows the wave 



Mach reflection of a large-amplitude solitary wave 649 

0 50 100 
t 

FIGURE 6. (a) aM/ai 'us. t .  a, = 0.3, 

10 

0 50 100 
t 

40". ( b )  1, V 8 .  t .  Ui = 0.3, $, = 40' 

3 

2 

- 11 
ai 

1 

0 50 100 
X 

FIGURE 7. Wave height along the crest line of the reflected wave. 
t = 10, 20, 30, ..., 120. 

ai = 0.3, $, = 40". 

height along the crest line of the reflected wave (and the Mach stem) at  various time 
steps. If the Mach reflection as predicted by Miles' theory occurs, the amplitude a, 
of the reflected wave should be 0.542ai which is shown in the figure by the dashed 
line. The figure shows, however, that a, is more than 95 % of a, at t = 120, and it looks 
like growing towards the asymptotic situation with a, = a,. This indicates that the 
reflection which is occurring for this case is a regular reflection rather than a Mach 
reflection even though E = 0.736 and is less than 1. 

From these results, it  may be inferred that the effect of large amplitude tends to 
prevent the Mach reflection occurring even when $J(3ai); < 1. 

3.2. $i/(3a,)i-dependence (ai = 0.3) 
Next we investigate how the reflection pattern which actually happens differs from 
that predicted by Miles' theory both qualitatively and quantitatively for various 
values of +i in the range 10' < +i < 60°, with a, being fixed at 0.3. 
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As a typical example of the cases in which Mach reflection occurs, we show in figure 
8 the result of the case $i = 20" (6 = 0.368). I n  each of the figures except for figure 
8 (a ) ,  the theoretical prediction by Miles is shown by a dashed line. Figure 8 (a )  shows 
the patterns of crest lines of the incident and the reflected waves for 0 < t 6 150 with 
a constant interval of time. It can be seen clearly that the apex of t,he incident and 
the reflected waves is moving away from the wall a t  a constant angle. It can also be 
observed that the angle of reflection $r is about 42.8" ((1.4a) gives = 54.4"), and is 
appreciably larger than $i. The right end of the figure corresponds to  the numerical 
offshore boundary x = L,, and the artificial modification of data explained in $2.3 
seems to be working satisfactorily. The evolution of aM and 1, are shown in figures 
8 ( b )  and 8 ( c ) ,  respectively. The Mach stem has a larger amplitude than expected 
from ( 1 . 2 ~ ) .  Figure 8 ( c )  clearly shows the elongation of the Mach stern which is linear 
in t .  However, the stem angle $* calculated from this is 6.92" and is significantly 
smaller than the 11.45" predicted by ( 1 . 1 ~ ~ ) .  The wave height along the crest line of 
the reflected wave (and Mach stem) is plotted in figure 8 (d )  at a constant interval of 
time for 0 < t d 150. It can be observed that the reflected wave remains much 
smaller than the incident wave in accordance with Miles' theory. However, a, 
obtained numerically is about 0 . 2 3 ~ ~  and is significantly larger than the 0 . 1 3 5 ~ ~  
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FIGURE 9. (a) Pattern of crest lines of the incident wave, reflected wave and the Mach stem. a, = 
0.3, @i = 60". t = 0, 10, 20, ..., 90. (b)  u,/u, US. t .  a, = 0.3, y?i = 60". (c) 1, US. t .  U, = 0.3, @, = 60". 
(d) Wave height along the crest line of the reflected wave. a, = 0.3, y?i = 60". t = LO, 20,30, ..., 90. 

which (1.3a) predicts. From these facts, we can infer that the reflection we observe 
for this case is nothing but a Mach reflection as far as its geometry is concerned. But 
when we compare it quantitatively with the theoretical prediction by Miles, we 
realize that the reflection pattern which we observe numerically is consistently 
shifted toward the regular reflection in the sense that $r is smaller (i.e. closer to $J> 
a, is larger (i.e. closer to ui), and $* is smaller than expected from (1.4a), (1.3a) and 
( 1.1 a ) ,  respectively. 

The above results are obtained by a calculation with M = 3. In  order to see if this 
value of M is reasonable for the present case with a, = 0.3, = Z O O ,  we performed 
another calculation with M = 4, and found that the difference between the two 
calculations is satisfactorily small. For example, the calculation with M = 3 gives 
aM = 0.6125 and I, = 26.03 at t = 150, while the one with M = 4 gives aM = 0.6252 
and 1, = 25.89 a t  that time, and the relative errors in these quantities are 2.0% 
and 0.5%, respectively. From this comparison, we can be confident that M = 3 
is reasonable for the present, case and that the results obtained are trustworthy. 

The results for the case $i = 60' ( E  = 1.104) are shown in figure 9 as a typical 
example of the cases with regular reflection. Each of the figures corresponds to its 
counterpart of figure 8. It can be seen in figure 9 ( a )  that the apex of the incident and 
the reflected waves always remains close to the wall, and that $, is equal to $i. 
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FIGURE 10. .,/ai 08. @i. (a, = 0.3). 

Figure 9 ( b )  shows that the maximum run-up has reached its asymptotic value aM - 
2.1 lai by t - 15. The two dashed lines in the figure correspond to  the two expressions 
given by Miles, one for regular grazing reflection (1.2 b)  and the other for regular non- 
grazing reflection (1 .2~ ) .  It can be seen that the expression for regular non-grazing 
reflection gives a very good approximation even for a, = 0.3. In  figure 9 ( d )  we plot 
the wave height along the crest line of the reflected wave, which shows the growth 
of the reflected wave towards the final situation with a, = a,. 

3.2.1. aM iis. $i 
We show in figure 10 the maximum run-up aM a t  the wall as a function of $, for 

ai = 0.3. In this figure, as well as in figures 11-14, the dashed line corresponds to the 
result obtained by Miles for a, < 1. 

It is generally true that the regular reflection reaches its asymptotic state much 
faster than the Mach reflection does. (Compare, for example, figures 8 ( b )  and 9 (b )  and 
see the big difference in the timescale of the evolution.) Expression (1 .1  a)  for $* also 
shows that the rate of elongation of the Mach stem is proportional to  (1 - 6 )  as well 
as (a,):, As the Mach stem should become infinitely long for the asymptotic state to  
be achieved, this dependence of +* on e suggests that, when a, is constant, the speed 
of convergence towards the asymptotic state would become slower and slower as $i 

approaches from below the critical value corresponding to the changeover from Mach 
reflection to regular reflection, which we will show later to occur a t  $i - 37.8' when 
a, = 0.3. I n  all the cases except the one with I), = 35", the temporal variation of aM 
becomes sufficiently small towards the end of the calculation, and we believe that the 
value of uM at the end of the calculation is reasonably close to the value which aM 
would take when t +  03. For the case with yki = 35", on trhe other hand, the 
convergence to the asymphotic state is very slow as the above argument suggests, 
and aM is still increasing gradually a t  the end of the calculation t = 150. The bracket 
in figure 10 is to express this insufficiency of convergence. The true asymptotic value 
of aM for this case may be somewhat larger than that shown in the figure. 
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It can be seen in figure 10 that the agreement between the numerical result and 
Miles' prediction is quite satisfactory while $i is small. As y+, becomes larger, the 
deviation between the two increases gradually up to +i - 30". Then at somewhere 
between $, = 35" and 40", the numerical result suddenly starts to decrease and 
remains almost constant a t  around 2. lai afterwards. The sudden change strongly 
indicates that the changeover from Mach reflection to regular reflection has occurred 
there, where $i is much smaller than (3a$ = 54.4". 

There is no region of $, where the expression for regular grazing reflection (1.2b) 
is useful for this value of a,. On the other hand, the coincidence between the 
numerical result and the theoretical prediction for regular non-grazing reflection 
( 1 . 2 ~ )  is impressive when +i 2 40". Funakoshi (1980) also reports that the numerical 
result agrees very well with the prediction for non-grazing reflection rather than that 
for grazing reflection when +,/(3ai)+ > 1.3 ,  i.e. @, > 29" for the value of a, ( =  0.05) 
he studied. It seems that ( 1 . 2 ~ )  is quite robust, and remains a good approximation 
even when a, becomes large, provided $, is also large enough. We know from 
experience that the K-dV equation, which is just the lowest-order approximation 
with respect to the non-linearity and dispersion, is quite robust and gives satisfactory 
approximation of actual wave motion even when the amplitude of the wave is by no 
means small. We suppose that the robustness of ( 1 . 2 ~ )  which we observe in figure 10 
has stemmed from the same origin as that of the K 4 V  equation. 

This remarkable usefulness of ( 1 . 2 ~ )  for larger values of $i also restricts severely 
the amplification of the Mach stem. When a, = 0.3, the theoretical curve for Mach 
reflection (1 .2a)  enters the region of $i where ( 1 . 2 ~ )  appears to be valid well before 
it attains its maximum value of 4 a t  $, = (3a,)t = 54.40. Let us suppose tentatively 
that the expression (1.2 c) for non-grazing reflection holds when y+, 2 35" irrespective 
of a,. Then it may be conjectured that the 'four-fold amplification' would occur only 
for those values of a, which satisfy (3ai)i < 35O, i.e. a, < 0.12. In  any event, the 'four- 
fold amplification', which would be quite dangerous for coastal structures if it ever 
happens, does not seem to occur for any value of @i unless a, is sufficiently small. 

It should be noted, however, that, according to  the result shown in figure 10, the 
maximum run-up aM is 0.869 a t  t = 150 when aI = 0.3,  @, = 35. This implies that 
the amplitude of the highest two-dimensional steady solitary wave (= 0.827) does 
not give the upper bound for the maximum run-up at the wall. Like most of the other 
calculations reported here, the above result is obtained withM = 3, but there is some 
doubt whether M = 3 would be sufficient for a large wave which is even higher than 
the highest steady solitary wave. Then, as we did in the case of a, = 0.3, $, = 20°, we 
carried out another calculation with M = 4, keeping Ax, Ay and At the same, and 
obtained aM = 0.905 a t  t = 150, which confirms that the Mach stem can become 
higher than the highest two-dimensional steady solitary wave. It should be noted, 
however, that we are not talking about the asymptotic value of aM as t --f 00. We are 
just claiming here that the Mach stem can become higher than the highest steady 
solitary wave in the evolution process of Mach reflection. We will return to this point 
again a t  the end of this section. 

The maximum run-up which the calculation with M = 4 gives is about 4 YO larger 
than that given by the calculation with M = 3, and this difference can be regarded 
as a rough measure of the magnitude of truncation error involved in the calculation. 
As it  is quite likely that the truncation error is largest for the case in which the largest 
wave appears, the magnitude of the error that we have just seen for the case with 
a, = 0.3, $, = 35" would probably give the overall upper bound of truncation error 
for all the calculations studied here. 
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FIQURE 11. $r 'us. +,. (a, = 0.3). 

3.2.2. $,, a, and $* us. $i 

The angle of reflection $, is plotted in figure 11 as a function of $i. It shows that 
$r does not remain constant at 54.4" in the region of Mach reflection as Miles' model 
predicts, but it decreases gradually as +i increases. Consequently, it  meets the line 
4, which corresponds to the regular reflection, at  a smaller value of $i than 
(3ai)r, making the changeover from Mach reflection to regular reflection happen 
earlier than expected from Miles' theory for ai 4 1. It will be shown below that this 
behaviour of can be explained to some extent by Johnson's analysis (1982) on 
oblique interaction between one large and one small solitary waves. 

Figure 12 shows a, as a function of +i. By a,, we mean the largest displacement of 
the free surface along the crest line of the reflected wave (see, for example, figure 8d) .  
It can be seen that the reflected wave consistently has a larger amplitude (i.e. closer 
to  ai) than that predicted by (1.3a) except for the one case with +i = 60' ( E  = 1.104), 
for which Miles theory also predicts the appearance of regular reflection and hence 
gives ur/ai = 1. 

The stem angle +* is plotted in figure 13 as a function of $i. The figure shows 
clearly that the elongation of the Mach stem is consistently slower than predicted by 
(1.la). It also shows that $* decreases almost linearly in $i and vanishes at  $, x 
37.8", implying that the changeover from Mach reflection to regular reflection 
happens there. Although, unfortunately, the original reference is not available to us, 
Wiegel(l964) quoted that Chen (1961) performed wave-tank experiments for various 
values of a, and observed the critical angle to be between 35" and 40". This seems to 
be consistent with the critical angle which we have obtained (= 37.8") for ai = 0.3. 
The critical angle is also the most dangerous angle of incidence from the view point 
of coastal protection because it brings about the highest run-up at  the wall for an 
incident solitary wave with prescribed wave height, and it seems to be of great 
importance to know the critical angle of incidence as a function of a,. We will pursue 
this problem in the near future. 
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3.2.3. Cornparison with Johnson (1982) 
Johnson (1982) extended Miles’ analysis of oblique interaction between two small 

solitary waves to the one between a large solitary wave and a small one. 
Unfortunately, he did not apply the result of his analysis to the reflection problem 
which we are now concerned with, and did not give any explicit expressions for a M ,  
$r or a, as functions of a, and $i which would correspond to the expressions 
(1.1)-(1.4). However, he obtained the condition for resonant interaction (i.e. l,ul = v 
by his notation) which gives one relation between the amplitudes of large and small 
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waves and the angle between them, and we can examine to what extent this 
condition is satisfied by the reflection pattern which we have obtained numerically. 
In the reflection problem, the large and the small solitary waves in Johnson’s 
analysis correspond, respectively, to the incident and the reflected waves, and the 
angle 8, - 8, between the two solitary waves in Johnson’s analysis corresponds to 
$i + $, in the reflection problem. The Froude number F of the steady solitary wave 
with a, = 0.3 is 1.1375, and (520) (i.e. equation (20) of Johnson’s paper) determines 
a as 0.8071 for this value of F .  (It should be noted that FI on the left-hand side of 
(520) should read F:.)  Then (525) gives A, = 0.6722, with A, = COS($~+$,),. This 
implies that the weak interaction approximation breaks down when $i + $, = 47.76” 
if a, = 0.3. This corresponds to the breakdown of the weak interaction that Miles 
encountered for two small-amplitude waves propagating nearly in the same direction. 
The resonance condition I,ul = v, together with (J48a)’ determines A as 1.0166, and 
finally we obtain the following relation between a,, $i and $,, 

$, = c0s-l(Ac - at A )  - $i. (3.1) 

In figure 14, we show $, given by (3.1) by solid symbols as a function of $i when 
the values for a, are obtained numerically and shown in figure 12. For the sake of 
comparison, we also plotted the values of $, obtained numerically by open symbols 
and those given by (1.4) by the dashed line. It can be seen that Johnson’s theory 
agrees much better with the numerical result than Miles’ theory does for all the 
values of ki that correspond to Mach reflection, i.e. $i < 37.8’. The agreement 
between the two is quite satisfactory especially for smaller values of for which a, 
is also small (see figure 12) and hence the assumption underlying Johnson’s analysis 
that one of the two interacting waves is very small is valid there. Unlike Miles’ theory 
which predicts that $, will remain constant when $i < (3a,)4, Johnson’s theory can 
explain satisfactorily the numerical observation that $r decreases gradually as $i 

increases and so does a,. It can also be observed in figure 14 that $r obtained 
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numerically (open symbol) seems to asymptote correctly to $,. = 47.76' as $1+0, i.e. 
to the value of $, which Johnson's theory (3.1) gives when ai + O .  This fact certainly 
indicates that our numerical result is reasonably accurate at  least for smaller values 

Among all the oblique incidences of a solitary wave with prescribed wave height, 
those with $i equal to or slightly less than the critical angle of incidence are certainly 
of greatest practical importance because they bring about the highest run-up a t  the 
wall. The reflected wave for these cases has nearly the same wave height as that of 
the incident wave as shown in figure 12, and Johnson's analysis cannot be expected 
to hold for them. However, the result shown in figure 14 indicates that Johnson's 
prediction, although it deteriorates as expected as ll.i approaches the critical angle of 
incidence $i = 37.8" and hence ar becomes larger, shows satisfactory agreement with 
our numerical result throughout the range of $i which corresponds to the Mach 
reflection. From this fact, we think it would be worth pursuing the reflection problem 
further along the line of Johnson's analysis and deriving explicit expressions for a,, 
aM, 9, as functions of a, and $-i as those derived by Miles and shown in (1.1)-(1.4). 

3.2.4. Much stem as t +  co 
We show in figure 15 the surface displacement along the wall when a, = 0.3, ki = 

20" a t  a constant interval of time from t = 0 to  t = 170. The abscissa covers the whole 
range of y of the numerical calculation. Figures 16(a) and 16(b) also show the same 
thing for 120 < t 6 170, but in these figures the profile is shown only around the point 
of maximum run-up a t  that time and it  is also displaced in such a way that the point 
of maximum run-up is always at the origin of the abscissa. Figure 16(6) is just a 
vertical exaggeration of figure 16 (a )  which shows the behaviour of the trailing waves 
more clearly. Figure 16(b)  shows that the distance between the centre of the Mach 
stem and the first hump of the trailing wave is increasing steadily as time elapses, 
suggesting that the main part of the Mach stem will become completely separated 
from the trailing wavetrain and become solitary as t +- co . It should also be noted in 
figure 16 that the main part of the Mach stem has already attained an almost steady 
profile by those timesteps shown in the figure. We compare in figure 17 the surface 

of $i. 
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profile along the wall at t = 170 with the exact two-dimensional steady solitary wave 
of the same height ( =  0.621) obtained by the method described in Tanaka (1986). 
These two profiles are almost indistinguishable as far as the main part of the wave 
is concerned. These facts certainly indicate that, at least for the case with ai = 0.3, 

= 3 5 O ,  the Mach stem eventually becomes a two-dimensional steady solitary wave 
as t 3 CO, and this also seems to be the case for all the other cases in which the Mach 
stem does not grow too high. 

On the other hand, the problem concerning the asymptotic ( t  3 00) state of Mach 
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stem should be much more subtle for those cases in which aM exceeds the height of 
the highest two-dimensional steady solitary wave (= 0.827) in the process of 
temporal evolution. Of all the cases treated here, the case with a, = 0.3, $i = 35" is 
the only one that falls into this category. In  this case, as we mentioned earlier, the 
Mach stem elongates very slowly ($* x 1.2') and hence the convergence to the 
asymptotic state is also very slow because of $, being too close to the critical angle 
of incidence ( x 37.8"), and our calculation, which is carried out up to t = 150, is not 
long enough to draw any definite conclusion about the situation as t - t  co. (We have 
made a slight improvement in our numerical scheme, and studied the case again with 
M = 4 and with higher spatial resolution up to t = 200. The result, which is not shown 
here, indicates that uM is still increasing at t = 200, the rate of increase being 
appreciably smaller than that at t = 150, though.) 

If the Mach stem ever attains a steady state near the wall as t - t  03 and hence 
lM+ 00 then, and we suppose this to be the case, it seems reasonable to expect that 
its cross-section would be a two-dimensional steady solitary wave even though its 
height exceeds that of the highest two-dimensional steady solitary wave temporarily 
during the evolution process. On the other hand, Tanaka (1986) and Zufiria & 
Saffman (1986) show that the two-dimensional steady solitary wave becomes 
unstable to some type of infinitesimal perturbation at  a = 0.781 which corresponds 
to the local maximum of total energy of the wave. It is also shown by Tanaka et al. 
(1987) that this instability actually leads to breaking or transition to another two- 
dimensional steady solitary wave with a smaller wave height. Bearing these results 
of the stability analysis in mind, it seems likely that the two-dimensional steady 
solitary wave which would appear as t +  co has a wave height less than 0.781. In any 
event, we cannot derive anything conclusive from our calculations with limited time 
interval, and we should await further study. 
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4. Conclusion 
We have studied the reflection of an obliquely incident solitary wave by a vertical 

wall numerically without assuming either weak dispersion (i.e. long wavelength) or 
small amplitude. The main conclusions are summarized as follows : 

1.  Large amplitude tends to prevent the Mach reflection happening. 
2. The changeover from Mach reflection to regular reflection occurs at smaller 

angle of incidence $i than predicted by Miles' model, i.e. @i = (3aJf. When a, = 0.3. 
we have found that the changeover occurs a t  $, = 37.8" (8 = 0.695). 

3. Even when Mach reflection happens, i t  is 'contaminated ' by regular reflection 
in the sense that all the important quantities which characterize the reflection 
pattern deviate from the theoretical values toward those values corresponding to the 
regular reflection. The angle of reflection is smaller, the amplitude of reflected wave 
is larger, and the Mach stem is shorter than predicted by Miles' model. 
4. The 'four-fold amplification' does not happen for any value of considered 

here when ai = 0.3. From the remarkable usefulness of the expression ( 1 . 2 ~ )  for aM 
for regular non-grazing reflection in the region @i > 35", it is conjectured that the 
'four-fold amplification' would occur only when a, < 0.12. 

5 .  When a, = 0.3 and @i = 35", we observed that the maximum run-up at the wall 
exceeds 90% of the water depth. This implies that  the height of the highest two- 
dimensional steady solitary wave ( =  0.827) does not give the upper bound for the 
run-up a t  the wall. 

6. The reflected wave which we have obtained numerically for each prescribed 
incident wave almost satisfies the resonance condition derived by Johnson ( 1  982) 
for the oblique interaction between one large and one small solitary wave when ~i is 
sufficiently small and the Mach reflection happens. 

7 .  When a, = 0.3 and $i = 20°, we have observed that the Mach stem has reached 
a steady state by t = 170, and its cross-section a t  that time is almost indistinguishable 
from the two-dimensional steady solitary wave with the same height. From this, it  
seems almost certain that the Mach stem eventually becomes a two-dimensional 
steady solitary wave provided that it does not grow too high in the process of 
evolution and so it can find a (stable) two-dimensional steady solitary wave with the 
same height to which it can asymptote. On the other hand, the asymptotic (t+ co) 
situation seems much more subtle and has been left unsolved for those cases in which 
uM attains a large value comparable to the height of the highest two-dimensional 
steady-solitary wave ( = 0.827). From the stability consideration, it is conjectured 
for these cases that the cross-section of the Mach stem would approach a two- 
dimensional steady solitary wave with wave height less than 0.781 as t+ co even 
though it temporarily becomes higher than the highest steady solitary wave in the 
process of evolution. 
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