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Abstract -~A model of the two-phase turbulent jet is presented. Consideration is given to cases in which 
the primary fluid phase contains a secondary phase of rigid particles. The mass fraction of the secondary 
phase is at most of order unity while its volume fraction is much less than unity. A set of model 
differential equations is developed for cases in which the mean velocities of the phases are sensibly equal. 
A first-order closure scheme for the axisymmetric jet is devised and the resulting equations solved 
numerically. This scheme accounts for momentum transfer between the phases and the imperfect response 
of the particles to the fluid turbulence. Satisfactory agreement with published experimental data is 

obtained for computed values of the mean velocity, and the mean mass flux of the particles. 

particle radius : 
constant, see equation (3.25): 
constant, see equation (3.6) ; 
particle diameter; 
nozzle diameter; 
force of interaction between the phases ; 
gravitational acceleration ; 
mean mass flux of secondary fluid ; 
length scale of energetic turbulence; 
pressure ; 
radial coordinate ; 
stress in the secondary fluid ; 
turbulent Schmidt number of secondary 
fluid (~l~/l~$; 
turbulent Schmidt number (v~/K,); 

Stokesian relaxation time; 
time scale of energetic primary fluid 
turbulence ; 
Lagrangian integral time scale; 
velocity scale of energetic turbulence; 
velocity of primary fluid ; 
mean axial velocity of primary fluid ; 
velocity of secondary fluid ; 
axial coordinate; 
Cartesian coordinates. 

Greek symbols 

6, mean velocity half-radius; 
6 9’ mean mass flux half-radius; 

93 Kolmogorov length scale; 

?;, 
eddy diffusivity of secondary fluid ; 
Eulerian integral length scales; 

!4 viscosity of primary fluid ; 
‘1, kinematic viscosity of primary fuid; 

“‘1. eddy viscosity of primary fluid ; 

“P eddy viscosity of secondary fluid ; 
P9 density of primary fuid ; 
Pp7 density of secondary fluid; 

NOMENCLATURE 

t Present address: Institute of Geophysics & Planetary 
Physics, University of California, San Diego, U.S.A. 

PO particle material density; 

rija viscous stress tensor; 

r, Reynolds stress of primary fluid ; 

(lb azimuthal coordinate; 

%l P,!P. 

Subscripts 

0, jet exit condition; 
I?& jet axis condition. 

Superscripts 

0, value of primary fluid variable in 
corresponding clean flow; 
turbulent fluctuation. 

1. INTRODUCTION 

IN A COMPANION study (Melville and Bray [I]) we 
found that some of the more important features of 
the two-phase turbulent jet could be correlated with 
the single phase jet by functions of the particle 
loading p,,/p, where pPo is the density of the particle 
field at the nozzle and p is the density of the 
incompressible suspending fluid. It was apparent 
however that the simple description of the mass and 

momentum transfer processes given there offered 
little understanding of the effects of the particles on 
the fluid turbulence and the response of the particles 
to that turbulence. It became clear that a more 
detailed investigation was required, one which 
modelled these processes, taking into account the 
characteristics of the particles and the turbulence. 
and tested them against the empirical measurements. 
To our knowledge this had not been done before for 
the jet flow although various workers had speculated 
as to how some of these processes might be 
modelled. 

Owen [2] argued that in a shear flow, in which the 
assumption of local equilibrium was applicable, the 
particles’ presence would lead to an increase in the 
energy dissipation in the ratio (1 +p,/p) for t, cc t,, 
where pP is the local mean particle mass density, and 
t, and t, are respectively the response time of a 
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typical particle and the characteristic time of the 
energetic turbulence. This is in substantial agreement 

with the conclusions of Kuchanov and Levich [3] for 
a homogeneous, isotropic turbulence. Owen went on 
to argue that with a given mean velocity profile the 
turbulent velocity scale II and eddy viscosity are 
decreased in the ratio (1 +()JP)-“~. For I, 2 t, this 
ratio was given to be [I +(fip/~~)(t,/tc)) m”2, Owen 
noted that the quantity controlling the interaction 

between the particles and fluid was the relaxation 
time t,. He concluded that in the jet, for t, <c t,, the 
axial force on the fluid from the particles arose from 
the transport of the particles across the mean shear 
by their radial turbulent velocity. We shall see in 
Section 2 that this is only one component of the 
force, and that other important contributions were 
neglected. 

Abramovich [4,5] has attempted to apply a form 
of the mixing length theory to determine the 
turbulence shear stress in the jet. He found that the 
ratio of the stress in the particle-laden flow to that in 
the clean flow is 

r.ir, = (I +,,,/p)- ‘, (I.1 1 

but the argument he used to obtain this result is 

inconsistent (see Melville [6]). 
The mass transfer of particles in turbulent flows is 

not well understood especially in cases of significant 
particle loading, pPjp 2 I. In dilute developed jet 
flows, pP/p CC 1, it is found that the mean density 

profile becomes similar to the mean velocity profile, 
and that to a first approximation the particle 
transport may be described by a turbulent Schmidt 
number, Sb, which depends on the particle and Row 
characteristics. As t*l’t, tends to zero there appears 
to exist a limiting value of SD which is not greatly 
different from the corresponding Schmidt number for 
mass transport in the single phase flow (see 
Goldschmidt et al. [7]). The experimental measure- 
ments show a decrease in Sk with increasing particle 
size, and hence response time t,. Hinze [8] has 
suggested that this is due to particle size effects. He 
argued that the diffusivity increase is due mainly to 
an increase in the Lagrangian integral length scale of 
the particle velocity, but the effect is not very strong 
in the axisymmetric jet flows. 

Ideas such as these have not previously been 
incorporated into a mathematical model and tested 
against the experimental measurements of two-phase 
jets containing a significant loading of particles. We 
are particularly concerned with cases in which pP/p 

is at most of order unity, and the volume fraction of 
particles is much less than unity. In Section 2 is 
developed a set of Reynolds averaged model equa- 
tions which we believe are capable of representing 
the significant linear momentum exchange processes. 
A first-order closure scheme for the mean velocity 
and density fields is derived in Section 3. It is argued 
that a more sophisticated scheme is unjustified at 
present. The equations are solved numerically and 
tested against published experimental data, and the 

results presented in Section 4. A comprehensive 
discussion is presented in Section 5, with emphasis 
being placed on the development of the model and 
the directions it suggests for future experiments. 

2. THE MODEL DIFFERENTIAL EQUATIONS 

2. I. The time-deperiderrf gouertng equafims 

There are perhaps two main approaches to the 

modelling of two-phase flows. The first considers the 
suspension to be represented as a single inhomo- 
geneous continuum. The forces of interaction be- 
tween the phases then give rise to internal stresses of 

the composite fluid which must be related to the 
bulk variables (e.g. velocity) by constitutive relations. 
An example of this approach is given by Barenblatt 
[9]. The other approach is to maintain the identity 
of the phases and assume that continuous bulk 
variables of each phase may be defined by approp- 
riate spatial and temporal averages. The interaction 
between the phases in this case results in explicit 
body forces in the momentum equations. The 
advantages of each method depend on the problem 
being studied, available methods of solution, and the 
experimental measurements. In modelhng turbulent 
tlows closure hypotheses must be made and tested. 
The experimental measurements are then of crucial 
importance and a theory which relates closely to the 
variables measured has a considerable advantage 
over one which may be tested only indirectly. For 
this reason we chose to model the suspension as two 
interpenetrating continua and employ the equations 

derived by Marble [IO]. 
Marble based his formulation on the collisionless 

Boltzmann equation for the evolution of the distri- 
bution function describing the particle cloud. Mo- 
ments of that equation lead to the mass and 
momentum conservation equations for the secon- 
dary fluid comprised of the particles: 

(2.1) 

and 

p sui+/, &CL _F .+‘Is., 
p i?t p ’ ?.Xj p’ SKj “’ (2.2) 

where P,, is the mass of particles per unit volume of 
the mixture. Thus pp = p,B, where ps is the mass 
density of the particle material and 0 is the volume 

fraction of particles; L:~ is the velocity of the 
secondary hid such that p,ri is the ith component 
of the particle momentum per unit volume of the 
mixture ; F,, is the force on the primary Ruid per unit 
volume due to interaction with the particles; Sij is 
the stress tensor due to particle motion at velocities 
different from the local mean ci. 

For the cases of interest the volume fraction of 
particles is negligible, typically 0(10m3), thus the 
density of the primary fluid is sensibly equal to the 
material density of the suspending fluid. With this 
assumption the mass and momentum conservation 
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equations for the primary fluid become (Marble 

[lo]): 
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order unity. With these restrictions it is shown in the 
Appendix that the mean velocity of the secondary 
fluid is approximately equal to that of the primary 
fluid in the jet. It is then redundant to retain a 
separate momentum equation for the second fluid. 
Using equation (2.2) to eliminate FPi from equation 
(2.4), transforming to cylindrical co-ordinates, as- 
suming p constant and employing the thin shear 
layer approximations, equations (2. I-2.4) become 

ap a 
z + ;l.y. (P"j) = O 

I 

(2.3) 

and 

aui aui ap arij 
Pt+~ujd\- = --+-+FF,i,, (2.4) 

J a.ui asj 
where p, ui and p are the local density, velocity and 
pressure respectively and 7ij is the viscous stress 
tensor. Since p/p, CC 1 virtual added mass effects have 
been neglected. 

The above equations are for isothermal flows. 
Marble considered the more general case and 
proposed energy equations which are not given here. 

The stress tensor Sij in equation (2.2) is analogous 
to the kinetic theory description of tij, arising as a 
result of particles in an elementary volume having 
finite peculiar velocities. If all the particles in the 

element have the same velocity Sij is zero. We shall 
assume this to be the case. This assumption naturally 
leads to a consideration of the validity of the 

continuum hypothesis. If the particle number density 

is small the smallest elementary volume required for 
meaningful statistical averages may be large enough 
to encompass significant inhomogeneities of the 
primary fluid velocity field. If the particles are 
responsive to these scales the assumption that Sij is 
negligible may break down. Under such conditions it 
is likely that the continuous variables of the primary 
fluid would need to be redefined on the same scale as 
those of the secondary fluid. According to Hinze [S] 
heavy restrictions are required for the continuum 
concept to be valid. He suggests that these re- 
strictions require the separation distance between 
particles to be at least an order of magnitude less 
than the Kolmogorov length scale 4. This criterion is 
arbitrary. To our knowledge such criteria have not 
been generally resolved. The usual procedure, in a 
particular case, has been to assume the continuum 
hypothesis valid and then search for contradictory 
evidence in comparing the theoretical predictions 
with the experimental results. This has been our 
approach. 

2.2. Reyolds averaged equations,fbr thiu shearpow 

The specification of the force of interaction FPi is 
quite general and in order to proceed it must be 
further defined. We shall assume that it is of the 
same order of magnitude as the Stokes drag, 

where 

Fpi - Pp(Vi--Ui)lf** (2.5) 

d is the characteristic particle diameter, and p, is the The discrepancy between (2.9) and (2.10) arises from 
mass density of the secondary phase material. Owen’s incomplete specification of the particles’ 
Further, both pp/p and t.Jt, are assumed to be of acceleration. 

(2.6) 

(2.8) 

(see Melville [6] for details). Upper case and 
o\;erbarred letters refer to mean quantities; x and r 

denote the axial and radial components respectively, 
and P, is the free stream pressure. Equations 
(2.6-2.8) are three equations for the three mean fields 
pP, U,, I/,. Equations (2.6) and (2.7) are familiar 
forms of the mass conservation equations for the 
primary and secondary fluids respectively. Equation 
(2.8) is the axial momentum conservation equation 
for the primary fluid. The last term on the RHS of 
that equation represents the mean force on the fluid 
due to the particles. This term is clearly zero if 
pP= 0 and the equation is then the usual axial 
momentum equation for the single phase jet. 

Owen [2] considered the force on the fluid due to 
the particles in an axisymmetric jet under the 
condition that t, cc t,. This was taken to imply that 
the particles are fully responsive to the turbulent 
fluctuations. Owen considered that the axial accele- 
ration of the particle was due only to the turbulent 
advection across the mean velocity field leading him 
to conclude that the total average axial force on a 
unit volume of fluid is 

(2.9) 

Under the same approximation, neglecting the axial 
mean pressure gradient, we have from equation (2.8) 
that 

F,, z -P 
p+Pp [ 

arr:dU,ts (2.10) 
dr c’r I 
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3. THE CLOSURE SCHEME 

3.1. Introduction 

The particular flow we wish to consider is the 
axisymmetric two-phase jet issuing into a quiescent 
fluid having the same properties as the primary fluid 
of the jet. We wish to obtain solutions for Li,, U, and 
pP, and shall restrict the model to the set of 
equations (2.6-2.8). That is, we shall not employ any 

higher order equations for the quantities t&u:, t::vi 

and pbvi. This is an important decision and requires 

some justification. 

If higher order equations, for u&i say, were to be 
used, starting profiles of the relevant quantities 
would be required for the numerical solution 
procedure. Such profiles are usually obtained from 
direct measurement. or by relating such quantities to 
the mean fields through eddy viscosity or mixing 
length hypotheses [I I]. The second procedure 
necessarily assumes that such relationships are good 

first-order approximations. To our knowledge such 
tested relationships do not yet exist for the two- 
phase jet: it is our purpose to attempt to devise 
them. Harsha [I I], in an extensive survey and 
testing of a number of models for free turbulent 
flows, concluded that the higher order closure 
schemes, using the kinetic energy equation, only give 
good results if accurate initial profiles are known. 
The corresponding profiles are not known for the 
two-phase jet. The evidence suggested that the best 
course was to attempt to derive a first-order closure 
scheme, directly relating the turbulence quantities to 

the mean fields. 
From the evidence reviewed by Melville and Bray 

[I] there can be little doubt that, in the limit as pP/p 
goes to zero, the mean velocity field tends to that of 
the corresponding clean jet. Hence our closure 

scheme for u’& must tend to that for the clean jet as 
pP/p tends to zero. The usual first-order closure 
hypothesis is that the mean transfer of momentum 
by the Reynolds stress can be described by a scalar 
eddy viscosity. 11~: 

(3.1) 

The practice of relating the Reynolds stress to the 
mean velocity field in this manner has been severely 
criticised by some workers, and it should not be used 
without caution. In the single-phase flow the use of 
an eddy viscosity is usually justified on the basis of 
an approximate local equilibrium. While local 
equilibrium does not strictly apply in the clean 
axisymmetric jet, it has been found, both exper- 
imentally [ 121 and through theoretical modelling 
[l I], that the eddy viscosity hypothesis is for some 
purposes a satisfactory representation of the mean 
momentum transport in such flows. If the addition of 
the second phase caused the primary fluid turbulence 
to adjust more slowly to the mean velocity field, or if 
it introduced additional mechanisms for generation 
of primary fluid turbulence, we would expect (3.1) to 

prove a poor approximation. With our restriction to 
cases in which V, N L’,, pP,‘l) - 0( 1) and f,. t, - 0( 1) 
we expect neither of these effects. Thus we assume 
(3.1) and make the corresponding assumption for the 

form of c:vi, setting 

I~JY, r) is the eddy viscosity of the turbulent flow of 
the secondary fluid. Similarly the turbulence mass 

flux pbo; is assumed to be of the form 

(3.3) 

where KJX, r) is the eddy diffusivity of the secondary 
fluid. 

With the equations (3.1)-(3.3), and some re- 
arrangement, equations (2.7) and (2.8) become 

+[l+&/j)]-‘jf$+[l +(&~‘,)/(Pl’/)] 

$7, t?u, 
x [I +p,,lp]-‘l*/) -p--. 

?r ?r 
(3.5) 

3.2. Detailed modellhg of’turbulerlt trnwsport 

co@icieuts modelliny of~l, 

The modelling of ~1,. is based on the eddy viscosity 
model for the corresponding clean flow. The eddy 
viscosity I$ of the clean axisymmetric jet is, to a 
good first approximation, constant and may be 
written 

I$ = c u,HCi, (3.6) 

where C, is a constant, I;, the centreline mean 
velocity, and 6 the velocity half-radius. Strictly it is 
not \I(: but, VR defined by 

(where 7 is the boundary intermittency factor) which 
is constant, however we shall use (3.6) at the expense 
of introducing errors in U, near the flow boundary. 

In Section 1 we introduce the estimate 

I’//$ - (I +p, /ZJ- “2? (3.8) 

which was obtained by Owen [Z] for cases in which 
the mean velocity profile was given (i.e. the same for 
both the two-phase flow and the corresponding clean 
flow), and tJt, was either much less than, or of 
order, unity. Owen also proposed that for t,;t, 3 I 

v,/v; - [l + (&..p). (t,/t*)]- ‘iZ. (3.9) 
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Treating the estimate (3.8) as an equality and where TL is the (longitudinal) Lagrangian integral 
using (3.6) gives time scale of the primary fluid. 

“/. = l$(l +p,&p2 = C,(l f@p2U,6, 

(3.10) 

The particle response function on which (3.19) is 

based is essentially due to the Stokesian drag [lS]. 
Corrsin [16] estimated TL by 

which is one of the models tested, and will be 
referred to as model A. While (t,/t,) ranged up to 
values of O(10) in the flows modelled the results 
obtained with equation (3.10) demonstrated that the 
use of (3.9) was not justified. 

Abramovich’s model (see Section l), 

l-0-O = (1 +p,//?-1, (3.11) 

under the assumption that the mean velocity profile 
is given and the eddy viscosity hypothesis is valid 
becomes 

TI. = A/(u’2)1!2 (3.20) 

where A is the Eulerian spatial integral scale. This 

estimate is strongly supported by the empirical data 
of Snyder and Lumley [ 171. 

“Jl’~ = (1 -t&/p)-1. (3.12) 

Despite Abramovich’s erroneous derivation of (3.11) 
the model (3.12) was tested, and is referred to as 
model B. We also tested the model 

Y//V? = (1 +p,“,,!p)- l, $,, = P,(x, O), (3.13) 

which is a simplification of B, and is referred to as 
model C. 

We assume that equation (3.19) holds for the jet 
flow. This is a crude assumption but appears to be 
the best possible at present. It should be used 
cautiously remembering that it is a result which 
applies strictly to an equilibrium condition in which 
the statistics of the velocity field sampled by the 
particle are stationary. In a developing shear flow 

the velocity field sampled by the particle is not 
stationary and the particle is in general not in 
equilibrium with the surrounding packet of fluid. As 
l* increases we expect the departure from equilib- 
rium to increase. However, if t, is significantly less 
than the time scale for appreciable development of 
the flow then an approximate equilibrium should 
exist. 

ModeUiny ?~IJ~. In the limit as t,/t, -+ 0 we expect 
11~ to tend to v/; but for finite t*/t, we assume that vP 
may be given by an equation of the form 

VP = v, ,/G(t*/t,), 

fi~(t,.t,)--, 1 as tJt,-*O. 

(3.14) 

Substituting (3.19) into (3.17) we have 

VP = V/(1 +I*/T.J1. (3.21) 

There is some ambiguity in using (3.20) for an 
anisotropic flow. We have used the following 
estimates 

Harsha [I 11 has found that in the clean axisym- 
metric jet an empirical correlation of the following 
form holds: __ 

I.&U: = ark,, (3.15) 

where 

but 

TL - Ag/(u’2)“2, (3.22) 

hence 

vs - (u’2)1/2A9, 

k =&?. I 2 I 

This relationship was first suggested by Townsend 
[13]. a/ is approximately constant over a significant 
region of the jet and tends to zero at the axis and the 
boundary. We assume that a similar relationship 
holds for the secondary fluid: 

L+& = upkp, 
where 

k =$,!2. (3.16) 

Of course (3.15) and (l.l6faie only of use if a/ and 
up are well behaved. We assume them to be equal. 
Thus 

___ 

TL - $1~~ (3.23) 

where A, is the integral scale associated with the 

correlation &(x, T)u:(.x, r +Ar). Now we take TL to 
be given by 

r, = A;lvf,, (3.24) 

v~J\~~ = vl,a;Ju:u; = k,Jk,, (3.17) 

so from (3.14), 

J++tJteJ = k,lk,. (3.18) 

To our knowledge there are no theoretical results 
relating to the relative turbulent intensity in two 
phase shear flows. However, there is an expression 
for k,jk, for homogeneous isotropic turbulence [ 141: 

k,lk, = l/(1 +tJC.), (3.19) 

where lflrn is the eddy viscosity at the axis. TL is of 
course comparable to t,, the time scale of the 
energetic eddies. A, is assumed constant across the 
flow and equal to the corresponding value in the 
clean jet for the same mean velocity profile. We took 
this to be the mixing length given by Launder and 
Spalding [18] as 0.075 times the half-width (= 2.66) 
of the jet. Thus 

A, = 0.075(2.66) = C&2.66) say. (3.25) 

This value of As differs by only 6”/;; from the value of 
the integral scale measured on the axis by Wyg- 
nanski and Fielder [12]. Because of our assumption 
that As is constant across any section of the jet 
(while in general it varies), and approximately equal 
to its value at the axis, it would not have been 
consistent to allow a radial variation of 7;. with v,. 
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The latter was therefore fixed at its axis value, vf,,,, 
when calculating 7;. 

Morlelliny of K,,. The turbulent Schmidt number 
defined by 

s, = \‘& (3.26) 

is assumed constant. In the far field of the jet r,/T, 
tends to zero, so from (3.21) we have that vp tends to 
I#~, and 

s, + Sb = \‘//l$. (3.27) 

The experimental evidence for lightly loaded axi- 

symmetric jets [19,7] shows that Sk is not strongly 
dependent on t,. For example, Singamsetti’s 

measurements showed that Sk ranged from 0.85 to 
0.69 while t, increased by two orders of magnitude. 
We expect that as t,/t,, and pJp tend to zero the 
particles will be transported as a passive con- 
taminant. The turbulent Schmidt number for passive 
contaminant transport in the clean jet is 0.7 [18]. 
Thus to satisfy the anticipated limiting behaviour we 
set 

s, = 0.7. (3.28) 

Equations (3.21), (3.26) and (3.28), will lead to an 
increase of Sk with increasing t,, whereas in Section 
1 we reported that empirical data in lightly loaded 
flows show a decrease in Sk. Hinze [8] has argued 
that this behaviour arises when the typical linear 
particle dimension, d say, is comparable to the 
dissipation length scale (Taylor microscale, ,I). We 
shall only be considering cases in which d/i <c 1. 

4. MODEL RESULTS 

The only suitable experiments with which to 
compare the models in the range of interest [p,/p 

- O(l), t*/t, - O(l)] are those of Laats and Frish- 
man [20,21]. We have reviewed these experiments in 
some detail elsewhere [l] and shall give only a brief 
description here. The measurements were carried out 

using various mixtures of air and corundum powders 
having characteristic diameters of 17, 32, 49, 72 and 
80lLm. The characteristic particle diameter was not 
defined, but the size distributions which were 
presented support our assumption that it was the 
median size. The initial loadings were in the range 0 
< p,,,/p < 1.4, with axial velocities at the nozzle 
varying from 29 to 60m/s. The nozzle diameter was 
0.035 m. Laats and Frishman’s measurements display 
maxima in some of the centre-line mass flux curves 
immediately downstream of the nozzle. They attri- 
buted this to Magnus forces producing a radial 
transport of the particles. We do not find this 
explanation entirely satisfactory [l] and the pro- 
cesses which may account for these phenomena are 
not included in the equations developed above. 
Nevertheless, we believe that the equations may 
represent the processes occurring downstream of 
these maxima. Thus in testing the closure schemes 
we have started the calculations in this region. 

Solutions of the equations (2.6), (3.4) and (3.5) 
were obtained from given initial profiles using the 
numerical procedure of Patankar and Spalding [22]. 
The details of this procedure are given in [6] along 
with the method of setting up the initial profiles. The 

experimental measurements of CJ,,/U,, GJG,,,, 6/D 
and 8,/D vs X/D, the dimensionless streamwise 
coordinate, were compared with the computed 
curves. U, = U,(x,O), and G, is the mean particle 
mass flux on the axis, which for the thin shear layer 
approximations is given by 

G, = G(.x, 0) = p&, O), I’,@, 0). 

U,, and G,, are the corresponding quantities at the 
nozzle. 6 and 6, are the half radius of the axial mean 
velocity and particle mass flux fields respectively. In 
referring to the flow conditions we shall use the 
notation (d, x,,, U,,) where tl is the characteristic 
particle size in llrn, x0 = p,,/p, and U,,, is in m/s. 
The empirical constants are S, = 0.7, C, = 0.028 and 
C, = 0.075, except where stated to the contrary. 
Laats and Frishman did not give Uu, for each 
experiment, saying only that it ranged between 29 
and 60m/s. We have calculated L’, and G for U,,, 
equal to 29 and 60 m/s, spanning the range cited. 

initial tests of the models showed that none of the 
closure schemes gave satisfactory agreement with the 

experiments if t, was set to zero. These results 

demonstrated the importance of the particle response 
time even for the smallest particles ((i = 17 llrn). The 
errors arose from too rapid radial transport of the 
particles, a trend which was to be corrected by 
incorporating the dependence of \tp on t, given by 
equation (3.21). This equation was subsequently used 

in obtaining all the results presented below. In each 
case the response time t, was based on the 
characteristic diameter cited by Laats and Frishman. 
This approximation is discussed below. Model C, 
equation (3.13), was tested and found to compare 
poorly with the measurements. Model B, equation 
(3.12), was also tested and for the lighter loadings, 

x0 = 0.3, 0.56, was found to compare favourably with 
A, equation (3.10). For the heavier loadings the 
differences were significant, with A giving superior 
agreement with the data. All subsequent com- 
putations incorporated model A. 

Figures l-3 show the predicted axial develop- 
ment of the jet for a representative sample of the 

cases measured by Laats and Frishman. The agree- 
ment between the model and the data is generally 
satisfactory and the discrepancies are comparable to 
our estimates of the likely errors of 5-lo”/{, in the 
measurements. Nevertheless, there are some points 
inviting comment. Figure 1 shows an initial over 
prediction of 6,. This may be due to the ratio v~/I,~ 
being too large in this region, but this effect did not 
occur for any other. set of conditions. It is also 
possible that an estimate used in setting up the initial 
profiles was in error [6]. The predictions of L’,,/V,, 
and S/D are generally good and show little de- 
pendence on U,,. This is not the case for GJC,,, 
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LbdUn B/D Gm/G,m Sp /D 
29m/s+ - --o-e 

60rn,S -_.__ __*.. __.--__o_ 

FIG. I. Comparison of the computed curves using model A 
with the measured curves of Laats and Frishman [20,21] 
for tl = 17~lrn. lo = 0.3. U,,,, = 29,60m/s. i.e. (I 7/0.3/79). 

(I 74W60). 
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Flc;. 2. Model A. (32’0.77/%). (3?!0.77!60). 

and 6,/D, in contrast to Laats and Frishman’s report 
that they found G,/G,, independent of L/,,. Unfor- 

tunately their papers do not provide sufficient detail 
for us to explore this discrepancy. It is possible that 
the discrepancy is apparent rather than real. Our 
estimate of the likely errors in the measurements are 
comparable to the predicted differences in G,/G,, 
and 6,/D as U,, is varied from 29m/s to 60 m/s. 

--lo 

Lb&f? 8/D GwGm 8,/D 
29m/s+ -o- -a- _ 

60”,S --x-- -*- _*- __+_ 

FIG. 3. Model A, (72/0.2/29), (72/0.3/60). 

Thus it is possible that Laats and Frishman were 
unable to measure this effect. If the discrepancy is 
real it is likely that it arises as a result of the 
dependence of T_ (and hence tJTL) on U,,. 

One of the notable features of the model is that it 

gives satisfactory agreement in cases where t,/t, is 
O(10) whereas we expected it to be restricted to cases 

in which t,/t, - O(l). In fact the conditions which 

best agree with the experimental measurements are 
(7210.3129) and (72/0.3/60) in Fig. 3 where t,/t,. is as 

much as 40. 
Figure 4 shows representative computed mean 

velocity and mass flux profiles. Laats and Frishman 
reported that the velocity profile of U/U, ap- 
proached that of the clean jet as u/D increased. This 
trend is shown in our results, Fig. 4, with the profiles 

tending to that for the constant eddy viscosity model 
of the clean jet. The experimental profiles reported 
all fell within the hatched region shown. The 
agreement is good and the slight discrepancy for r/6 
> 2 is most likely accounted for by our neglect of the 
intermittency. Laats and Frishman found that over 
the range of their experiments the mean particle 
mass flux profiles were invariant and given by 

G/G, = exp [ - 0.69(r/6,)“‘3]. (4.1) 

Figure 4(b) compares our computed profiles against 
this empirical curve. The differences are clearly 
significant and it is likely that they arise from two 
main sources. Firstly, we have modelled the particle 
size distribution as a monodisperse sample, and 
secondly, we have not included any radial de- 
pendence in our modelling of TL. In the real flow we 
would expect the mass flux profiles to be influenced 
by the particle size distribution and the radial 
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t 
1, 
4, ----- 

Comtant eddy 
vlscoslty profIle 

FIG 4. (a) Mean velocity profiles obtained using model A. 
(?7:0.77/?). Also shown is the theoretical profile for the 

constant eddy viscosity model of the clean jet. All the 
measured profiles of Laats and Frishman [20, ?I] lay 

within the hatched region. (b) Mean particle mass llux 
profiles using model A. (22/0.77/29). Also shown is the 
curve with which Laats and Frishman [X0, 211 correlated 

their measured profiles. The hatched region shows the 
scatter of their results. 

dependence of the tlow structure. The first of these 

points is briefly considered in the next section. 
In model building of this sort one of the aims is to 

reduce to a minimum the number of empirical 

constants and wherever possible to avoid introduc- 
ing new ones. By this means one tries to maintain 
some degree of generality. It is one of the favourable 
features of this model that no new constants have 
been employed. We have only used three S,. C, and 
C,, all of which may be used in a first-order closure 
scheme for modelling the single phase axisymmetric 
jet containing a passive contaminant, The value of 

C, was calculated from the clean jet measurements to 
be 0.028. We found the results to be very insensitive to 
changes in C,. The differences in the predicted mean 
fields which resulted from increasing S, from 0.7 to 
1.0 were found to be within the estimated errors of 
the experimental measurements. 

The predicted effect of a change in particle 
diameter tl, for fixed conditions, is shown in Fig. 5. 
The initial conditions are those for (?2/0.56/29) but 
they have been used also with particles of I7 lmi and 
72 llrn dia. The less rapid decay of G,,,;‘G,,,,, with 
increasing particle size is apparent and is due to the 
less rapid radial transport of the larger particles. This 
leads to the larger particles transferring momentum 
to the fluid at a lower rate. This is evident from the 
decrease in 6/D with increasing particle size; lead- 
ing to a positioning of the virtual origin of the 
far field (i.e. complete momentum transfer) further 
downstream. 

d(pml G#J, B/D W’L %,/D 
17 + 7-b 

32 z+-- *__. &___ *___ 

72 *_- -_- &__ o_-- 

FIG 5. The effect of changng particle diameter tl, for fixed 

initial conditions The initial conditions are those for 
(3X).56;3) but they have also beeu used to compute the 

curves for (17/0.56:29) and (7%~ 56119). 

The computed results showed the anticipated 

behaviour for large .Y,D, with C; ,,,,, .ili ,,,. (G,,,,,‘G,,,)l’Z, ci 
and 6, becoming linear in u/D as all the momentum 
is transferred to the primary fluid [I]. 

The differential equations and closure scheme 
presented here habe been shown to give satisfactory 
agreement with experiments in regions of the two- 
phase jet downstream of the first few orifice 
diameters. With the reduction of Row time scales 
near this orifice significant mean velocity lag may be 
present and the model equations used here would no 
longer be satisfactory. In addition. the importance of 
the various possible modes of particle/fluid in- 
teraction in the vicinity of the orifice is not clear and 
no attempt was made to incorporate them in this 
model. It is likely that shear induced lift and Magnus 
forces are of some importance. 

The closure assumptions employed here are re- 
latively simple. The most important transport coef- 
ficient is 13 /: the values of \‘P and h’P being dependent 
on it. Of the models for Y,. tested, that based on 
Owen’s result, equation (3X), gave the best agree- 
ment with experiment. Surprisingly it seems to work 
well outside its expected range of validity i.e. pPi/~ 

- O(l), t* tr - O( I ). The results for (72!0.3:60) show 
satisfactory agreement ecen for t*,‘r, - 0( IO). NO 
experimental data is available for testing the model 
at density ratios ,I,, /I greater than order unity. In 
view of the performance of model A for t*,‘t, > O( I ) 
we did not test the estimate (3.9) suggested by Owen 
for this case. The modelling of )N,, and tip appears to 

represent satisfactorily the response of the secondary 
tluid to the turbulent primary fluid. Our model of the 
particle mass transport does not agree with a recent 
one proposed by Abramovich and Girshovich [23]. 
From a mixing-length argument they arrived at the 
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Schmidt number relationship 

s; = (2 +&jp)Sq 

for particles which faithfully follow the turbulence. S, 

is the Schmidt number for a gaseous contaminant in 

the corresponding single phase flow. According to 

out model in this case 

s; = s, 

Abramovich and Girshovich’s model is not sup- 

ported by the experimental evidence for lightly 

loaded jets where it is found that Sb is approximately 

equal to S, [7]. Further, the comparison of their 

model with the experiments (Fig. I, [Z]) shows only 

very limited qualitative agreement. 

An improvement in our model may be achieved by 

a more realistic representation of the particle size 

distribution. Instead of using a single time constant 

t, and density /)p the distribution could be broken up 

into a number of size ranges, attributing a time 

constant and density to each. In principle this 

extension is no more complex than the present 

approach and the numerical solution procedure of 

Patankar and Spalding is capable of solving the 

additional conservation equations without excessive 

computation. 

Despite the improvements that may be made to 

this closure scheme it is likely that they will only 

prove to be marginal and substantial improvement 

may only come from a higher order closure 

employing Reynolds stress equations. The develop- 

ment and testing of such models will require further 

experimental measurements. We believe that these 

experiments should be mainly concerned with iden- 

tifying the processes occurring in the vicinity of the 

nozzle and decoupling particle size effects from those 

of particle concentration. 
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APPENDIX 

the support of a Hawker Siddeley Fellowship. I ransforming equation (2.2) to cylindrical polar coor- 

dinates, averaging and using the estimate (2.5) we see that 
if the difference between the mean axial velocities is to be 

REFERENCES dynamically significant then p,,( V, - l,‘,)it* can at most be 

I. W. K Melville and K. N. C. Bray, The two-phase of the same order as the term pLl,(?C’,lir): 

turbulent jet, lnr. J. Heat MLI.U Trunsj& 22, 279-285 
(1979). 

‘. P. R. Owen, Pneumatic transport, J. Fluid Med. 39. 
407 ( 1969). 

3. S. 1. Kuchanov and V. G. Levich, Energy dissipation in 
In the corresponding clean jet the turbulence time scale t, 

a turbulent gas containing suspended particles, Sorirt 
is estimated by 

P/y D&l. 12, 549 (1967). 
4. G. N. Abramovich. The erect of admixture of solid 

(A.?) 

particles or droplets on the structure of a turbulent gas 
jet, .SOI?C,~ Plir,s. D&l. 15. IO1 (1970). and we expect that for the particle loadings we are 

5. G. N. Abramovich, Effect of solid particle or droplet considering this estimate is still appropriate. Now we have 

admixture on the structure of a turbulent gas jet, In;. J. assumed that 

Heut Mass TrmslGr 14. 1039 (1971 ). 

6. W. K. Melville.‘The two-phase turbulent jet, Ph.D. and 
t, = Ok.) 1 
/‘,, = Of,,)./ 

(A 3) 
Thesis. Southampton University (1974). 

7. V. W. Goldschmidt, M. K. Householder. G. Ahmadi so it follows immediately from (A.I-A.3) that 
and S C. Chuang. Turbulent diffuston of small particles 
suspended in turbulent jets, in Progress iu Heat crud v,- L’, = O(U,). (A.4) 

Mass Trum/rr. Vol. 6. edited by G. Hetsroni. Pergamon From a consideration of the magnitude of the radial and 
Press, Oxford ( I972 ). axial mean velocities in the clean jet. (A.4) indicates that 

H.&T 2215s I3 

x. 

9. 

IO. 

I I. 

I?. 

I3 

14. 

IS. 

16. 

17. 

18. 

19. 

20. 

21. 

2’. 

23. 

I. 0. Hinze. Turbulent lluid and particle interaction. in 

Progrrss i/l Hrut ad Muss Trms/u. Vol. 6. edited by 

G. Hetsroni. Pergamon Press, Oxford (1972). 

0. F. Vasiliev. Problems of two-phase ilow theory, I3111 

Cmgrrss Iur. Assm Hyrlrtrulic Res.. K yoto. Japan 

(1969). 
F. E. Marble, Dynamics of a gas containing small solid 
particles, in Prnceediqs o/ the 5th d CARD Cmhusrio~~ 
ad Propd~imr Symposium, New York. Pergamon 

Press. New York (I 963) 
P. T. Harsha, Free turbulent mixing: a critical 

evaluation of theory and experiment, Arnold Engineer- 
ing Development Centre. AEDC-TR-71-36 (1971 ). 

I.Wygnanski and H. Fiedler. Some measurements in 
the self-preserving iet. J. Fluid Mech 38. S77 (I 969). 

A. A. Townsend, -T>w Structure o/ Turhulrut Shetrr Flmc. 
Cambridge University Press. Cambridge (1956). 

C. C. Meek and B. G. Jones, Studies of the behaviour of 
heavy particles in a turbulent lluid Row, J. Amm. Sci. 
-10 339 (1973). 

B.‘T. Chao, Turbulent transport behaviour of small 

particles in dilute suspension, O.strrrric/tis[,lff,,s 
I,lge/lirur-Arc/tit’. 18, I,‘?, 7 (I 964). 

S. Corrsin. Estimates of the relations between Eulerian 
and Lagrangian scales in large Reynolds number 

turbulence, J. Amo.~. Sci. 20. I I5 (1963). 
W. H. Snyder and J L. Lumley, Some measurements of 
particle velocity autocorrelation functions in a turbu- 

lent flow, J. Fluid Mech. 48, 41 (1971). 

B. E. Launder and D. B. Spalding, Mathemrticd 
Models o/‘Turhu/r~m Academic Press, London (I 972). 

S. R. Singamsetti, Diffusion of sediment in a submerged 
jet, Proc. Am. Sot. Chem. Engr.\ HY2, I53 (I 966). 

M. K. Laats and F. A. Frishman, Scattering of an inert 

admixture of different grain size in a two-phase 

axisymmetric jet, Hut Trtrn\/er~Soriet Res. 2. 7 
(1970). 

M. K. Laats and F. A. Frishman, Assumptions used in 

calculating the two phase jet, F&t/ Dymiu 5, 333 
(1970). 

S. V. Patankar and D. B. Spalding, Hrut cm/ Mtrss 
Tramf& i/r Bourdary Ltr!vr,s. Intertext, London (I 970). 

G. N. Abramovich and T. A. Girshovich. Diffusion of 
heavy particles in turbulent gas streams, Sorier Phys. 

D&l. 18. 587 (I 974). 



656 W. K MELVILLE and K. N. c‘. BRAY 

over most of the jet be of order unity. However, the time scale for changes in 

V,2L, (AS) 
the mean velocity field is large compared with 1,. the 
response time of the particles. so we can assume that along 

with a typical error of order I”,,. 
with the axial components the radial components of mean 

The corresponding magnitude analysis of terms in the 
velocity will be approximately equal, 

radial momentum equation shows that I( V,- U,):t:,l may I; 1 L’, (A.6) 

UN MODELE DU JET TURBULENT DIPHASIQUE 

Resume-On prtsente un modtle du jet turbulent diphasique. On considtre le cas ou le fuide primaire 
contient une phase secondaire de particules rigides. La fraction massique de la phase secondaire est, la 
plupart du temps, de I’ordre de I’unite tandis que la fraction volumique est plutbt inferieure a I’unite. Un 
systtme d’tquations aux d&ivies partielles est developpe pour les cas dans lesquels les vitesses moyennes 
des phases sont sensiblement tgales. Une hypothese de fermeture au premier ordre est utilisee et les 
equations sont rtsolues numeriquement. On suppose pour la quantitt de mouvement un transfert entre 
les phases et la reponse imparfaite des particules a la turbulence du fluide. Un accord satisfaisant est 
obtenu avec les donnees experimentales publiees pour les valeurs calculees de la vitesse moyenne et du 

flux massique moyen des particules. 

EIN MODELL FUR DEN TURBULENTEN ZWEIPHASENSTRAHL 

Zusammenfassung -Es wird ein Model1 des turbulenten Zweiphasenstrahls vorgeschlagen. Es werden die 
Falle betrachtet, bei denen die primare fliissige Phase eine sekundare Phase fester Partikel enthalt. Der 
Massenanteil der sekundaren Phase ist im Hochstfall von der GrBBenordnung I, wahrend ihr 
Volumenanteil vie1 kleiner als I ist. Es wird ein Satz von Modell-Differentialgleichungen fir Falle 
entwickelt. bei denen die mittleren Geschwindigkeiten der Phasen in etwa gleich sind. Ein 
Losungsschema erster Ordnung wird fur den achsensymmetrischen Strahl entwickelt und die sich 
ergebenden Gleichungen numerisch gelost. Dieses Schema beriicksichtigt den Impulsaustausch zwischen 
den Phasen und die unvollkommene Anpassung der Partikel an die turbulenten Fliissigkeitsbewegungen. 
Es wird eine befriedigende Ubereinstimmung der berechneten Werte der mittleren Geschwindigkeit und 

des mittleren Massenstromes der Partikel mit verB!Tentlichten Mefiwerten erzielt. 

MOAEJIb ABYX@A3HOR TYP6YnEHTHOR CTPYM 

hHoTaun!- npe.nCTiWleHa MOneJIb JlByX@a3HOii Typ6yJIeHTIiOii CTpyH. PaCCMaTpHBSOTC$l CJIy%Ui, 

xorna B ocxoeHoii ;KwKOfi +ase conepmaTcx -rsepnue SacTHubt. Maccoeoe conepmame Tsepnoii 

+a3bI COCTaBJIlleT BeJIWIHHy nopanKa enmbiubl, B TO B~MX KBK 06tiMHoe conepxame 3Ha48Te,IbHO 

tvienbmym eenusmiy. Paspa6oTaHa cncTeMa hionenbriblx nH@@epertu5ianbnbrx ypaesesriti ana cnysaea, 
xorna cpennHe CKO~CTB +a3 B OCHOBHOM 0nnHaKonbl. jQa pawETa ocecmhfeTp5irHoii CTP~H 

npennoxeHa Monenb 3aMblKaHm nepsoro nopnnra. nonyqeHHble ypaeHeHm peuIem q~cneniio. 
Monenb y9Hrbraaer neperioc uMnynbca Mexny +asaMH B YacTwiHo BnmrtrWe TyP6ynenTnocTr4 ~H~KOCTH 

Ha nHHaMHKy YaCTHII. nOJIylieH0 ynOBneTBOpHTeJIbHOe COOTBeTCTBHe C Olly6JlHKOBaHHblMH 3KCI,epH- 

MeHTaJIbHbIMH LlaHHblMW JIJIR piS.WiHTaHHbIX 3HaWHli% CpenHeti CKOpOCTB H CpenHerO MaCCO4Ol-0 

IIOTOKa YBCTHII. 


