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The adiabatic approximation for a solitary wave in a channel of gradually varying 
breadth b and uniform depth is tested by experiment and by numerical solution 
of the generalized Korteweg-de Vries (KdV) equation. The results for a linearly 
diverging channel show good agreement with the prediction a (dimensionless wave 
amplitude) K b-8. The experiments and numerical solutions for the linearly converging 
channel show that the wave growth is well approximated by ax b-*. The discrepancy 
between the diverging and converging channels is shown to be due to nonlinear effects 
associated with the choice of the spatial variable as the slow variable in the generalized 
KdV equation. The measured and computed profiles display the predicted ‘shelves’ 
of elevation and depression in the converging and diverging channels, respectively. 

1. Introduction 
The free-surface displacement 7 ( s , x )  of a weakly nonlinear, weakly dispersive, 

unidirectional wave in a channel of gradually varying breadth b(x )  and uniform depth 
satisfies the generalized Korteweg-de Vries (KdV) equation (Shuto 1974) 

where 

x is a dimensionless, horizontal co-ordinate in a fixed reference frame, and t is a 
dimensionless time. The units of length and time are d and (d/g)3, respectively, where 
d is the quiescent depth. The assumptions of weak nonlinearity, weak dispersion, and 
gradually varying breadth imply a < 1, A 1 and Alb’l/b < 1, respectively, where 
ad and Ad are the amplitude and length scales of 7 (both a and A may depend on x). 
Boussinesq scaling, which corresponds to a balance between nonlinearity and dis- 
persion, implies A = O(a-3) and is henceforth implicit. 

1.1. Adiabatic approximation 

The last term in (1. I), which represents the effect of channel variation on the evolution 
of 7, is small compared with both the first (dispersion) and second (nonlinear) terms if 
I b’l / b  < a*. The corresponding adiabatic approximation for a solitary wave is given by 

7 = asech2{+(3a)~(s-~)} Ibl’/b < at < 1, ( 1 . 3 ~ )  

where a = ao(b/bo)-*, 7 = ?!:ad%, (1.3b, c) 
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and the subscript zero implies evaluation at  the reference station xo. The trajectory 
of the wave peak in an x, t plane is given by s = r ;  the corresponding wave slowness 
(reciprocal speed) is 1 - $a. 

The primary purpose of the present paper is to report experimental and numerical 
tests of the approximation (1 .3), especially (1.3 b ) ,  for a channel that is either expanding 
or contracting linearly: either 

b/bo = x/zo or b/bo = (xl - x)/(x, - xo), (1.4a, b )  

where either x = 0 or x1 is a virtual apex. Note that lb’l/lbl Q a* implies either x or 

1.2. Secondary waves 

xl-x B a*. 

The generalized KdV equation admits the integral invariants 

(l.Sa, b )  

I may be termed apseudo mass invariant, whilst E is a (true) energy invariant. A true 
measure of mass is 

ikf = b j m  yds = Ib4, 
-m 

which is not an invariant of (1.1) (unless the channel is uniform); this deficiency is a 
consequence of the neglect of the reflected wave, which necessarily is induced by the 
channel variation. 

The adiabatic approximation (1.3) conserves E but neither I nor M .  An approxi- 
mate solution of (1.1) that conserves I may be obtained by adding to the primary 
wave ( 1 . 3 ~ )  a trailing secondary wave (its wave speed is 1, compared with 1 +*a for 
the primary wave), r,+, which is often designated as a ‘shelf’ (Kaup & Newel1 1978; 
KO & Kuehl 1978). The end result for a channel of linearly varying breadth is [the 
calculation follows Miles (1979), 9 4 and assumes that the wave originates at x = zo 
and t = 01 

The length scale of y+ is that of the channel variation, b/ lb’ l ,  which is, by assumption, 
large compared with that of the primary wave, and (1.7) does not provide a detailed 
description in the neighbourhoods of the end points s = 0 and s = r.  Note that Iy+l Q a 
if, as assumed in (1.3), Ib’J/b < a*. 

An approximation that conserves M ,  and therefore goes beyond ( l . l ) ,  may be 
obbained by adding a reflected wave, r,-, which recedes in the negative x direction 
with unit speed and also has the length scale of the channel variation (Miles 1979). 
For the primary wave (1.3), however, 17-1 < a 2 ,  which is too small for reliable measure- 
ment in the present context. 

1.3. Green’s-law approximation 

The channel-variation term dominates the dispersion and nonlinear terms in (1.1) if 
]b ’ l /b  9 a*, and the counterpart of (1.3) then is (cf. Green’s law) 

y = asech2{~(3ao)~s} (a* < \b’l/lbl < a*), (l.8a) 

where a = ao(b/bo)-% (1 .8b)  
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FIGURE 1. Plan view of the wave channel (not to scale). A ,  bulkhead wave-maker. B, entrance 
section. C, diagonal wall. D,  wave-damping material. E, glass sidewalls. F ,  diverging channcl. 
G, converging channel. 

This approximation conserves both I and E ,  but not M .  Conservation of M requires 
the addition of a reflected wave, just as with (1.3). It is worth emphasizing that both 
(1.3) and (1.8) satisfy the Korteweg-de Vries equation in the limit of a uniform channel 
(b /b ,  = 1) .  

2. Experiments 
The experiments were carried out in a glass wave channel 33m long, 0-80m deep 

and 0.50 m wide. The converging and diverging channels (of expansion angle 0.019 rad) 
were formed by a vertical wall running diagonally across the length of the channel, 
with a contiguous section of wall, parallel to the sidewalls, providing a uniform 
entrance section (figure 1). Great care was taken to seal and align the wall. Measure- 
ments of the channel width were made at  one metre intervals and showed the departure 
from linear converging/diverging sections to be a t  most ? 2 mm ( 

Solitary waves were generated in the entrance section by a vertical bulkhead 
actuated by a servo-controlled hydraulic system. The horizontal displacement of the 
bulkhead corresponded to the horizontal displacement of a fluid particle in the 
solitary wave. This particle path was computed digitally, converted to an analogue 
signal, and recorded as a frequency-modulated signal on magnetic tape. This recording 
was subsequently used to drive the wave-maker. More complete details are given by 
Chang (1978). 

The surface displacement was measured with resistance wave gauges having a 
resolution of k 0.02 cm. Each gauge consists of two 0.0008 cm-diameter, stainless steel 
wires separated by 0-2 cm and stretched between insulators a t  the ends of a C-shaped 
aluminium frame. This frame is attached to a box-section beam which is supported 
between rollers and can be cranked up and down past a vernier scale. The parallel 
wires form one leg of an a.c. bridge, the output of which is an amplitude-modulated 
signal that  is fed to a phase-locked demodulator. The final output in a d.c. voltage 
approximately proportional to the length of wire immersed. 

The experimental procedure was as follows. The water surface was skimmed con- 
tinuously overnight and the depth checked and adjusted immediately prior to begin- 
ning the experiment. The wave gauges were statically calibrated and the gain of the 
wave generator checked and adjusted to give the required wave amplitude. The 
solitary wave was generated a number of times, with the second gauge being moved 
through 1 to 2m between runs. The time between runs was sufficient to ensure a 

0.002 rad). 
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quiescent surface for the subsequent run. A typical experiment lasted from two to four 
hours, depending on whether one or two wave amplitudes were being generated. At 
the end of the series of experiments the gauges were calibrated a second time. The 
calibration curves were fitted by polynomials of up to 5th order with an r.m.s. error 
of less than 1 mm. There was some drift of the gauges between calibrations, for which 
reason the first (last) calibration was used for the first (last) half of the experiment. 
This procedure yielded a maximum calibration error a t  the crossover point. This error 
typically was in the range 2-5 yo, with a maximum error of S%, corresponding in 
that particular case to only 0.05 cm. 

In each case the mean of the first 100 words from each record was used as the 
datum from which the surface elevation was computed. 

Experiments were conducted for water depths of 20, 30 and 40 cm and initial wave 
amplitudes in the range 0.05 6 a < 0.4. 

3. Numerical solutions 
In  the generalized KdV equation (1 .  l),  it  is expedient to choose x, rather than t ,  

as the slow variable, since the breadth, or more specifically b/b' ,  is prescribed as a 
slowly varying function of x. In  the linearly varying channel, however, bib' is linear 
in x, by virtue of which this procedure is unnecessary; moreover, as we shall see below, 
it is less accurate than retaining t as the slow variable. Thus, the equation that was 

(3.1) 
solved numerically is 

9t + P-l9 + 89% + 6r, = 0. 

Equation (3.1) was solved by a pseudo-spectral method, splitting off the linear 
terms (Tappert 1974) and using a partially corrected, second-order, Adams-Bashforth 
scheme (Gazdag 1976) for the nonlinear term. The code is a simple modification of 
that used by Meiss & Pereira (1978). The stability of the method was tested by solving 
the Korteweg-de Vries equation with a Boussinesq profile as initial data. Over an 
evolution interval comparable with that of the solutions described below, mass and 
energy were conserved to better than one part in 109, and the error in the wave ampli- 
tude was less than 0.05%. 

For comparison with the measurements, the initial data corresponded to a Bous- 
sinesq profile having a maximum amplitude equal to that of the measured profile at  
the entrance to the converging/diverging section of the channel. As will become 
evident below, the measured departure from the Boussinesq profile at  the entrance 
of the converging channel was generally small, with a difference of 2-3% of the wave 
amplitude a t  the leading and trailing edges of the wave; however, at the entrance to 
the diverging channel there was evidence of dispersion, perhaps due to viscous effects 
in the narrow entrance section (widening of the entrance section would have resulted 
in a corresponding reduction of the length of the diverging section, which was not 
considered desirable). The use of the measured profile as initial data for the numerical 
solution would have required an arbitrary truncation of the dispersive tail, making 
comparison of the finer features of the measurements and numerical solutions some- 
what arbitrary. 

In  addition to specifying the initial profile, an initial time must be given. This is 
just the time taken for a linear wave to travel from the vertex of the channel to the 
initial position of the wave. In  each case the wave had a positive velocity, whence the 
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FIGURE 2. Measured ( + ) and computed (-) amplitudes, a, of solitary waves in a diverging 
channel of expansion angle 0,019 rad and 20cm depth. The initial amplitudes are a, = 0.088, 
0.185,0.259. Note that a and x are normalized with respect to the quiescent depth. 

initial times for the diverging and converging channels were positive and negative, 
respectively, with the magnitude of the former being less than that of the latter. 

4. Results 
A total of thirty-six experiments were conducted, ranging over both converging 

and diverging channels, the three water depths, and initial amplitudes in the range 
0.05 < a < 0.4. VC'e present only a selection of the measurements here. It should be 
noted that the level surface of static equilibrium subsequent to the paddle motion is 
elevated relative to the quiescent level used here; however, the relative increment in 
the water depth is a t  most 0.016 and leads to a negligible error in the linear wave speed. 
The horizontal position x is measured from the vertex of the channel and the waves 
in both the converging and diverging channels are considered to have a positive 
velocity. Thus the converging channel is defined in x < 0 and the diverging channel in 
x 2 0. This convection is denoted in the figures by a bold arrow indicating the direction 
of wave propagation. 
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FIGURE 3. Measured ( -k ) and computed (-) halfwidth, A+ 
corresponding t'o the amplitudes shown in figure 1. 

4.1. Amplitude and characteristic lengths 

Figure 2 shows the wave amplitude versus position (a vs. x) for experiments in the 
diverging channel of 20 cni depth, along with the corresponding numerical results. 
Thisis the only depth of the diverging channel for which comparison with the numerical 
results is possible: for the larger depths, the position of the initial station, xo was such 
that the initial profile would have extended to negative values of x. The differences 
between the measured and computed amplitudes are generally smdl and within the 
error estimates over most of the range of x. However, for large x the measured ampli- 
tudes decrease more rapidly than the numerical results, presumably in consequence 
of viscous dissipation (see appendix). This effect is more pronounced for the waves 
of larger amplitude. The numerical results show that the amplitude initially varies 
according to Green's law (au b-*), before tending towards the adiabatic approxi- 
mation (au b-*). The transition from the - 3 to - law shifts to lower values of x 
with increasing wave amplitude. 

Figure 3 shows the measured and computed values of the dimensionless half-width 
hi, the distance between the points on the wave profile a t  which the amplitude is half 
of the maximum. This choice of a characteristic length of the wave is arbitrary. An 
alternative length might be defined by an integral of a moment of the wave profile; 
however, the non-conservation of mass of the model equation and the dissipation of 
energy in the experiments thwart such a choice. The difference between the measured 
initial half-width and that of the corresponding Boussinesq profile, based on the wave 
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FIGURE 4. Measured ( +) and computed (-) amplitudes of solitary waves in a converging 
channel of convergence angle 0.019 rad and 30 cm depth. The initial amplitudes are a, = 0.043, 
0.093, 0.140, 0.174. 

amplitude, was a t  most 5%. The subsequent difference between the measured and 
computed lengths remained comparable with this initial error. The numerical solutions 
show that the half-length is initially constant and tends to a +-power law ( A ~ w  b j )  
with increasing x. These results, along with those of figure 2, are consistent with (1.3) 
and imply that any departures from the Boussinesq profile over the range of the 
experimenh were confined to those parts of the profile where the displacement was 
less than 3%. 

Comparison between the measurements and numerical solutions was possible for all 
three depths of the converging channel; however, we shall present only the results 
for a depth of 30 cm. Figure 4 displays a us. x for h = 30 cm. The agreement between 
the measured and computed amplitudes is good, the discrepancies being comparable 
with the estimated experimental error. The agreement for the other two depths was 
good a t  the smallest initial amplitude, a, 2: 0.05, but deteriorated as a, increased. This 
behaviour is not evident in figure 4. The measured amplitudes in each case correspond 
to acc b-4 to within the expected error. In  contrast, the numerical solutims tend 
to a lower slope as x decreases. These results contrast markedly with the predicted 
- #-power law, which discrepancy is accounted for below. The corresponding half- 
widths for the 30 cm depth are shown in figure 5.  The agreement between the measure- 
ments and numerical results for a, = 0.043 is good, but considerable discrepancy 
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FIGURE 5 .  Measured ( + ) and computed (-) Iialfwidtlis 
corresponding to the amplitudes shown in figure 4. 

FIGURE 6. Measured temporal profiles (-) and 13oussincsg profilcs (---) for a, = 0.4 i n  n 
diverging channel of 30cm depth. Tlie profiles wore measured a t  s = 4.2, 17.6, 30.5, 37.6, 50.5, 
64.3. 
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FIGURE 7. Measured normalized profiles of a solitary wave of initial amplitude a. = 0.2 in a 
converging channel of 40 cm depth a t  stations (a )  x,, = - 58.5, ( b )  x = - 43.5, (c) x = - 23.5. The 
broken lines in (a)  and ( c )  show the corresponding initial data and subsequent numerical solution 
of equation (3.1). 

occurs at larger amplitudes. The measurements show that A+ is approximately con- 
stant, whereas the numerical solutions show A+ decreasing as the amplitude increases. 

4.2. Wave proJiles 

The departure from the Boussinesq profile that is indicated by the above results is 
illustrated in figures 6 and 7, where the normalized temporal profiles of the evolving 
wave are shown. Figure 6 shows a wave of a, = 0.39 evolving in a diverging channel of 
depth 30 cm. The corresponding Boussinesq profile is shown a t  selected stations. 
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FIGURE 8. Amplitude ws. position (a  us. 2) of computed profiles of solitary waves of amplitude 
O L ~  = 0.05, 0.1, 0.4 in a diverging channel: to = 36. Also shown are the lines of slope - 9  (-.-), 
-9  (---). 

Initially the two profiles agree very well except a t  the tail of the main wave, where a 
depression of up to 10% of the wave amplitude exists in the measured profile. Further 
development of this depression takes place over the central portion of the channel, 
whereas the leading face of the wave agrees very well with the Boussinesq profile. 
Towards the end of the channel there also is evidence of an evolving depression leading 
the wave. This feature was evident in other experiments in the diverging channel 
but did not appear in the converging channel. 

Figure 7 shows a wave of a, = 0.2 evolving in a converging channel of depth 40 cm. 
Here we see that the initial profile is longer than the corresponding Boussinesq form; 
however, it is almost coincident with the normalized sech2 profile? and has only a 
small trailing wake. As the wave evolves, it trails a positive shelf that grows in time. A 

t The normalized sech2 profile has two independent parameters: the amplitude and half- 
width. This contrasts with the Boussinesq profile for which there exists a functional relationship 
between the amplitude and half-width. 
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FIGURE 9. Computed, normalized profiles shown as a function of s at times t = 26, 51, 101, 151 
(from left to right) for a wave of amplitude a,, = 0.1 in a diverging channel (cf. figure 8). 
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FIGURE 10. Amplitude a tw.  positionz (-) and time t (-) of computed profiles of solitary waves 
of amplitude a0 = 0.05, 0.1, 0.2 in a converging channel: zo = to = 200. Also shown are lines of 
slope - 3 (- . -) , and - 8 (- - -) . Note the increasing divergence of the temporal and spatial curves 
with increaaing wave amplitude. 
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FIGURE 11. Computed, normalized profiles shown as a function of s at times t = - 200, - 150, 
- 100, - 75 ,  -50, - 35 (from left to right) for waves of ainplitudc ( a )  do = 0.1, ( b )  z0 = 0.2. The 
broken line in ( b )  is the amplitude of tho slielf predicted by equation ( 1.7) (cf. figure 10). [It should 
be noted that the amplitude of the shelf predicted by (1.7) varies as b-' and that the amplitude 
used to normalize these profiles (cf. figure 10) differs negligibly from the -+-power law over 
most of the range shown here. The maximum difference (of approximately 676 a t  t = - 35) is 
not discernible on the scale of this figure.] 

profile obtained from the numerical solution using the initial measured amplitude and 
a Roussinesq profile also is shown in figure 7 and indicates that  the evolution of the 
tail is more rapid in the experimental results. It should be remarked that this is 
consistent with the neglect of the reflected wave. 

4.3. Additional numerical results 

Some features of the evolution of the solitary wave that are found in the experiments 
may be further investigated by numerical solutions, which permit devclopment of 
the wave over longer periods. 

Figure 8 shows the evolution of the wave amplitude in a diverging channel 
with a. = 0.05, 0.1, 0.4 a t  x,, = 36. The predominant feature of these curves is that 
they evolve initially according to Green's law, before tending towards the predicted 
-$-power law. The evolution of the normalized wave profile for a,, = 0.1 in a 
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reference frame moving from left to  right with the linear wave velocity is shown in 
figure 9; it displays the dispersive wave train trailing the primary wave of elev- 
ation. The maximum amplitude of the depression, predicted by (1.7) (setting s = 0 ) ,  
was found to be an order of magnitude larger than that of the numerical solution. 
The reason for this discrepancy is not clear a t  this time. 

Figure 10 shows the evolution of the wave amplitude in a converging channel with 
a, = 0.05, 0.1,0*2 a t  x, = - 200. In  this case the amplitude is plotted against both the 
position and time. As in the diverging channel for small time, the amplitude initially 
varies according to Green’s law; however, the transition to the - $-power law does 
not occur in the space domain, and Green’s law remains a good approximation over 
most of the range of the simulation. I n  the time domain the expected transition does 
occur and is more rapid for the larger waves. The evolution of the normalized profiles 
for a, = 0.1,0.2 is shown in figure 11. Comparison of the profiles shows that the shelf 
evolves more rapidly with increasing amplitude of the primary wave. The maximum 
amplitude of the shelf computed from (1.7) (s = 0) also is shown in figure 11 ( b )  and 
agrees well with the amplitude of the plateau. 

5.  Discussion 
The experiments and the numerical solutions imply that the adiabatic approxi- 

mation (1.3) is good for the diverging channel, but poor for the converging channel. In  
each case the Green’s-law approximation (1.8) has been found to be valid for initial 
wave amplitudes considerably in excess of the expected range of validity. 

The reason for the departure from the $-power law in the converging channel is 
made apparent by the numerical results in figure 10. Whereas the temporal dependence 
of the amplitude is according to (1.3b), the increasing wave amplitude leads to an 
increasing wave speed, such that the linear transformation between the spatial and 
temporal variables is no longer a good approximation. Thus the spatial and temporal 
curves diverge, as is clear from the figure. In  contrast, in the diverging channel the 
wave speed approaches the linear value with the decreasing wave amplitude. 

The extended validity of Green’s law for describing the initial evolution of the wave 
amplitude is associated with the initial profiles (data) in the experiments (numerical 
solutions). In both cases they were, to a good approximation, Boussinesq profiles. 
By expanding y t  about the initial position (x,, to) and using the initial data, it can be 
shown that for small (x - x,, t - to) the wave amplitude, a, is proportional to t-4. 
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Science Foundation. 
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Appendix. Boundary-layer damping 

calculated from the result (cf. Miles 1976) 

Boundary-layer damping of a solitary wave in a gradually varying channel may be 

(d/dx) (b(gd)4/om IN(w,x)12dw (A 1) 

where (A 2) 

6 = ( ~ / 8 ) 4  d-'{ 1 + 2(d/b) + %}, (A 3) 

v is the kinematic viscosity, V is a surface-contamination parameter (the value of which 
is typically close to l), and all quantities now are dimensional. Substituting the 
dimensional counterpart of (1.3) into (A 2) and then simplifying (A 1) yields 

( d / d x )  ( d b )  = - 1.42328-4 d-l 6aib, (A 4) 

wherein a = ad. Integrating (A 4) from x = x,, and invoking b' = constant yields 

where E = ( g d 9 - b .  (A 6) 

It follows from (A 5) that the amplitude in the diverging channel is ultimately 
limited by viscosity and has the limiting value 

- 10-4~-2(1 +%)-4(db'/b)4 (b1.m).  (A 7) 
The limit b 4 0 for the converging channel is nugatory in consequence of the implicit 
assumption that the boundary-layer thickness is small compared with b [indeed, 
(A 5) is singular for a small, positive value of b]. 
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