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The linear, inviscid equations of motion of shallow-water waves in a rotating frame of 
~eference are 

Bu 
-=-+ fk^u = - 9~_~, (i) 
~t --- 

where u is the horizontal velocity vector (averaged over the depth), ~ is the surface elevation, 
k is a %%nit vector vertically upwards, and ½f is the angular velocity about a vertical axis. 
The averaged equation of continuity is 

~_ 
?.(hu) + ~-~- 0, (2) 

where h is the water depth. 

Ass~ing dimensionless plane polar coordinates r = rl/b, 8, let the variation with depth be 
of the form 

h(r) = h r e (3) 
i 

where h , ~ are constants. Also assune t_hat ~ is of the form 
i 

= Z(r)exp[i(n%-~t)], (4) 

where n is an integer. The resulting ordinary differential equation for Z is 

r 2dzZ + (i + ~)r dZ n 2 
dr 2 ~ - (~n + + ~2r~-~)Z = 0, (5) 

and the radial ce~ponent of the velocity is given by 

dZ 
~(i - pa)ru r = - gi(r~- pnZ), (6) 

where ~ = f/u, and 62 = e(l - U -2). The number 

e = fb/(gh ) ½ (7) 
1 

is the divergence parameter, q]%is parameter is very shall for oceanic scales, so that a theory 
in which £ = 0, and R + ~ is satisfactory for island oscillations, (Longuet-Higgins, [i] ). 
However, in the laboratory e is not small, and a non-divergent theory is not applicable. 

In the case of uniform depth, e = 0, when (5) reduces to the modified Bessel equation 

r 2 --d2Z + r dZ 
dr 2 ~- (n 2 + ~)Z = 0 , 

with solutions of the form 

Z = AiKn(~r) + A2In(~r), 

where AI,A 2 are arbitrary constants, and Kn, I n are the modified Bessel functions. 
admits solutions of the form 

Z = A+rP+ + A_ 

where 

(s) 

if (~ = 2, (5) 
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p+_ = -i-+/(I + 2~n + n ~). 

If ~ ~ 2, the transforr~tion 

p~ = r 2-~ (9) 

reduces (5) to 

(l-½e) 2p2 d2Z + (l_¼e2)p ~ _ {p2+pen+dZp2)Z = 0, (i0) 

dp 2 

the solution of which is easily seen to be a linear cnmbination of p-lj+c_ [2i~p/2- ~)] , where 

I = ~/(2 - e) and o2(2 - ~)2 = 4n 2 + 4~ctn + ~2 Since o takes imaginary values, it is more 

Convenient, ~ r ,  to express the solution of (i0) in the form 

Z(p) = A X+ (~p) + A X (~p), (ii) 
s 

where X+ (x) is defined by the series 
29 

xlX+ (x) = x-+°" =o [ e9 [x/(2 - ~)] , (12) 
j 

and c O = i, cj_i/c j = j(j ± o). 

In the laboratory exper~ts of Caldwell and Eide [2] a rotating cylindrical tank of radius 
R contains an island, so that the water is in the annulus a < r < R, with the boundary conditions 

u = o at r = a, R. (13) 
r 

Around the island there is a shelf region with depth variation as in (3) for a < r ~ i. 
For 1 ~ r < R the depth is the constant hl. The conditions at r = 1 are that ~ and u r 
are continuous. 

The solutions in the respective annuli are given by ~ii) and (8). Using the boundary condi- 
tions at r = a, i, R, we obtain the equations 

4 

q=l 

where all = el2 = ~43 = e44 = 0, and 

= - = R~I' (~R) - ~ In(6r ); ~13 R 6 KnC~R ) ~n Kn(~R); ~14 n 

e21 = - X+(6); ~22 = - X (~); ~23 = Kn(6); ~24 = In(~); 

~31 = -(I-½~)X~(~) ; ~32 = - (I-½~)X' (6) ; ~33 = K~(6) ; ~34 = In(6) ; 

~41 = al-½~6 (l-½e)X~(6a) - ~n X+(6a) ; 

= a I-½~ (I-½~)X' (~a) - ~n X (6a). 
~42 - - 

The condition that (14) is consistent is that the dete/Tninant of the matrix e vanishes, and 
Pq 

given n, the zeros of the determinant give the resonant frequencies of the system. Note that 

all the resonances are present, not only of shelf waves, but also of the Kelvin/edge wave spec- 

trt~, using the terminology of Munk, Snodgrass and Wimbush [3] . 
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The actual computations were carried out using a linear interpolation root finding method. 
The n~me_rical values of the par~neters were those used in the laboratory experiments, with 
R = 1.68, b = 36.6 cm., ~ = 1.21, f = 6.283 rad./sec., and a -I in the range 1.5 to 15. Using 
the notation (m, n) for the mode with m radial nodes and n azimuthal nodes, figures i, 2 and 3 
ccrapare the calculated and e~ ~r~tal results. 
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FIG. 1 Theoretical curves and experimental points relating resonance 
frequency -e/f and a -I for n = I. The solid lines give the theoretical 
curves for the (i,I), (2,1) and (3,1) modes, for u = 1.21, h = 20.3 cm 
and ¢ = 1.63, and • denote the experimental points for the (i,l) mode. 
The broken lines .... are the equivalent theoretical curves for E = 0, 
and is the Kelvin-edge waves for ¢ = 1.63. Note that o is imaginary 
for -~/f < 0.88 , and real otherwise. 

'Fnere is generally very good agreement in the range 1.5 < a -I < 9, but the results diverge for 
larger values of this parameter. There are several possible explanations. An obvious one is 
that the value e=l.21 does not correspond to the experimental situation for large values of a -I . 
In addition, the depth becomes very sm~ll for ~mall values of r, so that friction and non-linear 
effects not oonsidered here are likely to be significant. Nevertheless, the good agreer~ent in 
the main range does explain the bulk of the experimental results. 

Figure 4 illustrates the variation of the resonant frequency in the (I,i) mode with values of 
R. It is seen that in the actual laboratory experiments, the effect of the outer container wall 
is not very important, but that it is important for slightly s~aller container radii. 

Finally, as well as shelf waves, there are present Kelvin wave and edge wave modes. It was 
found that for R=1.68, n=l, there is a resonance corresponding to a Kelvin wave travelling along 
the outer boundary in the opposite sense to the shelf waves, with a frequency ~/f=0.214. The 
frequency was quite insensitive to variation in a. An edge wave mode was also found, travelling 
in the same direction as the shelf waves, and this is indicated appropriately in Figure I. 
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FIG. 2 Theoretical curves for the (1,2), (2,2) and (3,2) 
modes for ~ = 1,21, e = 1.63 and experimental points for 
the (1,2) mode. The broken line .... is the theoretical 
curve for the (1,2) mode with ~ = 1.0. 
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FIG. 4 Variation of resonant fre- 
quency - ~/f against R'/b for dif- 
ferent values of a -I". 
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Theoretical curves for the (1,3), (2,3) and (3,3) modes. 
The only experimental point for the (1,3) mode is given by 0, 
a n~ t/~e experlmental points are stated by Caldwell and Eide 
to be for the (2,3) mode, but it appears from the theory that 
they are actually for the (3,3) mode. 
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