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The oceanic boundary layer driven by wave
breaking with stochastic variability. Part 1.

Direct numerical simulations

By PETER P. SULLIVAN1, JAMES C. McWILLIAMS2

AND W. KENDALL MELVILLE3

1National Center for Atmospheric Research, Boulder, CO 80307, USA
2Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics,

UCLA, Los Angeles, CA 90095, USA
3Scripps Institution of Oceanography, University of California, San Diego, La Jolla,

CA 92093-0213, USA

(Received 1 August 2003 and in revised form 5 January 2004)

We devise a stochastic model for the effects of breaking waves and fit its distribution
functions to laboratory and field data. This is used to represent the space–time struc-
ture of momentum and energy forcing of the oceanic boundary layer in turbulence-
resolving simulations. The aptness of this breaker model is evaluated in a direct
numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated
breaking wave, and the results are in good agreement with laboratory measurements.
The breaker model faithfully reproduces the bulk features of a breaking event: the
mean kinetic energy decays at a rate approaching t−1, and a long-lived vortex (eddy)
is generated close to the water surface. The long lifetime of this vortex (more than 50
wave periods) makes it effective in energizing the surface region of oceanic boundary
layers. Next, a comparison of several different DNS of idealized oceanic boundary
layers driven by different surface forcing (i.e. constant current (as in Couette flow),
constant stress, or a mixture of constant stress plus stochastic breakers) elucidates
the importance of intermittent stress transmission to the underlying currents. A small
amount of active breaking, about 1.6% of the total water surface area at any instant
in time, significantly alters the instantaneous flow patterns as well as the ensemble
statistics. Near the water surface a vigorous downwelling–upwelling pattern develops
at the head and tail of each three-dimensional breaker. This enhances the vertical
velocity variance and generates both negative- and positive-signed vertical momentum
flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively
increases the surface roughness zo by more than a factor of 30; for our simulations
zo/λ≈ 0.04 to 0.06, where λ is the wavelength of the breaking wave. Compared to a
flow driven by a constant current, the extra mixing from breakers increases the mean
eddy viscosity by more than a factor of 10 near the water surface. Breaking waves
alter the usual balance of production and dissipation in the turbulent kinetic energy
(TKE) budget; turbulent and pressure transports and breaker work are important
sources and sinks in the budget. We also show that turbulent boundary layers driven
by constant current and constant stress (i.e. with no breaking) differ in fundamental
ways. The additional freedom provided by a constant-stress boundary condition
permits finite velocity variances at the water surface, so that flows driven by constant
stress mimic flows with weakly and statistically homogeneous breaking waves.
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1. Introduction
Breaking waves at the sea surface promote vigorous mixing of momentum, energy,

and scalars, and thus are a key process in upper-ocean dynamics and air–sea
interaction. Wave breaking is dynamically important since it is believed to be
the primary path for stress transfer between a wind-generated wave field and the
underlying oceanic currents (Melville 1996). Observational evidence further shows
that wave breaking leads to enhanced dissipation near the water surface and is,
by introducing additional scales, the probable cause for departures from traditional
scaling laws for rough-wall turbulent boundary layers (Cheung & Street 1988; Agrawal
et al. 1992; Anis & Moum 1995; Terray et al. 1996; Gemmrich & Farmer 1999).
Wave breaking frequently co-exists and interacts with Langmuir circulations that
are generated by vortex forces associated with the wave Stokes drift (e.g. Thais &
Magnaudet 1996; McWilliams, Sullivan & Moeng 1997; Zhou 1999; Kawamura 2000;
Veron & Melville 2001). Wave breaking is triggered in the open ocean by wave–wave,
wave–current, and wind–wave interactions (Melville 1996), but even in equilibrium
conditions it is highly intermittent in space and time. For example, Melville &
Matusov (2002) find that the percentage of surface area that is actively entraining
air increases with wind speed cubed, and for wind speeds less than 15 m s−1 is at
most O(1%). The whitecap coverage, which includes both active whitecaps and the
residual foam after breaking has ceased, may be a factor of approximately 2 larger.
Wu’s (1988) compilation of whitecap measurements (see also Monahan & Woolf
1988) shows whitecap coverage less than 8% for wind speeds up to 20 m s−1. Wave
breaking events occur over a spectrum of wavelengths ranging from centimetres or
less (‘micro-scale’ breaking; Banner, Jones & Trinder 1989; Phillips & Banner 1974)
to tens or hundreds of metres (plunging breakers in high seas; see review by Melville
1996) with the associated time scale of active breaking approximately proportional to
the period of the breaking wave (Rapp & Melville 1990; Phillips, Posner & Hansen
2001; Melville & Matusov 2002). Thus, the momentum flux from breaking waves
that drives oceanic currents occurs with a high degree of spatial intermittency over a
broad range of scales and is locally much larger in magnitude than the mean wind
stress at the surface of the ocean.

Scientists who model oceanic currents, however, typically do so using a mean
surface wind stress, 〈τ 〉, that varies smoothly in (x, y, t) on scales much greater than
those of the wind gusts, oceanic turbulent eddies, and, of particular interest here,
surface gravity-wave events that actually accomplish the stress transfer from winds
to currents via waves and turbulent fluxes. High-frequency and small-scale motions
generated by breaking waves are naturally filtered out by the grid resolution of large-
scale oceanic models (e.g. McWilliams 1996; Large, McWilliams & Doney 1995),
but even turbulence-resolving large-eddy simulation (LES) models of the oceanic
boundary layer (OBL) (Skyllingstad & Denbo 1995; McWilliams et al. 1993, 1997;
McWilliams & Sullivan 2001) typically ignore the intermittency of the surface stress.
Direct numerical simulations (DNS) of breaking (Chen et al. 1999) are a notable
exception, but they are at present limited in their space–time span to a single,
two-dimensional event. Large-wave simulations (LWS) that attempt to resolve the
large-scale wave evolution with a subgrid-scale model (e.g. Dimas & Fialkowski
2000) potentially could examine the impact of breaking waves on the OBL but require
significant further development before fully coupled wave/boundary-layer calculations
are possible. Recent advances with second-order turbulence closure models for
oceanic boundary layers (e.g. Craig & Banner 1994; Craig 1996; Stacey 1999; Ly &
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Garwood 2000; Burchard 2001) incorporate some wave breaking influences through
parameterization with a surface source of turbulent kinetic energy and an empirically
based surface roughness; however, these models ignore the momentum flux and energy
intermittency of wave breaking that we view as essential ingredients.

We are interested in investigating what is missed in the resulting boundary layers
by imposing the usual severe filtering on the stress-transmission process. Rather than
assume the considerable burdens of a full microphysical simulation of air and water,
however, we will follow a more modest approach of intermediate complexity. We go
beyond the conventional forcing of a LES for the OBL that uses a 〈τ 〉 which is
uniform in (x, y) and varies in t only on atmospheric synoptic scales. This traditional
stress is applied as a boundary condition at mean sea level, z = 0, and the model’s
resolved and parameterized (i.e. subgrid-scale) turbulent dynamics are relied upon
to transport its effects into the interior. One important step towards including wave
effects was previously taken using the wave-averaged theory that adds vortex forces
and tracer advection terms proportional to the Stokes drift (Craik & Leibovich 1976;
McWilliams & Restrepo 1999; McWilliams, Restrepo & Lane 2003), and its solutions
in a LES model show important effects in the boundary layer turbulence, especially
associated with the emergence of Langmuir circulations (Skyllingstad & Denbo 1995;
McWilliams et al. 1997).

The further generalization we propose is the addition of three-dimensional random
acceleration field, A(x, t), for the resolved-scale momentum equation and a random
work density, W (x, t), for the subgrid-scale turbulent kinetic energy equation, both
of which are largest in the neighbourhood of z =0 and decay with depth. These
quantities represent the stress and energy transfer from breaking waves to OBL
currents and turbulence. The spatial and temporal averages of A and W are non-
zero. The distributions of A and W are chosen to match those measured for surface
gravity waves, but their realizations will be as a stochastic simulation rather than an
actual reconstruction from complete wave field measurements or a wave-dynamical
calculation. Furthermore, the partition between A and W is a function of the LES
model’s grid resolution and the associated decomposition of the wave-breaking
population, such that increasing resolution increases 〈A2〉 and decreases 〈W 〉, but
preserves the total energy and momentum inputs from the wave breaking. The
purpose of this paper is to specify this formalism for the stochastic forcing fields and
to determine them consistently with field and laboratory observations of breaking
waves (Rapp & Melville 1990; Melville & Matusov 2002; Melville, Veron & White
2002). To sequentially test the different components of our wave-breaking model, we
only show idealized direct numerical simulation (DNS) solutions with the resolved
acceleration field, A(x, t) (§ 2), deferring to future reports a more complete LES
formulation of surface wave effects that include the random work density W (x, t).

By introducing stochastic forcing terms into the otherwise deterministic PDE system
of a turbulence-resolving model, we are adding a form of what the turbulence
modelling community has called stochastic backscatter. Previously, this has only rarely
been done. Its purpose, as ours here, is to model the effects of variability of smaller
scale motions on the evolution of larger scales without calculating fully the smaller
scale motions with a fluid dynamical model. Examples of this approach represent the
effects of all turbulent motions on a two-dimensional shear layer (Leith 1990) and the
effects of small-scale eddies in a three-dimensional inertial subrange (Chasnov 1987),
with a particular application of the latter to the atmospheric planetary boundary
layer over a flat surface (Mason & Thomson 1992; Schumann 1995). Our physical
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context is different so our particular representation of stochastic backscatter is also.
In particular we consider breaking waves as coherently structured events, and our
forcing functions are based on this structure, although the time and location of
breaking events are randomly distributed. Thus, our wave-breaking events are similar
to coherent structures in flat-wall boundary layers (e.g. hairpin vortices and near-wall
streaks: Robinson 1991; Adrian, Meinhart & Tomkins 2000) since they have finite
lifetimes, interact nonlinearly with the background turbulence, and carry significant
amounts of momentum and energy.

2. Formalism
The DNS model formulation is based on the incompressible Navier–Stokes

equations with a linearized free surface condition approximated as a rigid lid at
z = 0 and a stochastic force, A, that represents the primary effects of breaking on the
boundary-layer currents:

∂u
∂t

= − (u · ∇)u − 1

ρ
∇p + ν∇2u + A. (2.1)

Here u is the velocity vector; p is the pressure; and the fluid has uniform
density ρ and viscosity ν. A is the new force to be modelled that contains the
impulses (or accelerations) caused by a field of randomly distributed breakers. We
intentionally omit other wave influences, in particular the contribution from Stokes
drift (McWilliams et al. 1997), in this system of equations so as to isolate the effects
of breaking waves.

2.1. Representation

Because of incompressibility, u is non-divergent, and so is its time derivative. Should
we therefore choose A to be non-divergent? This is not mathematically necessary
since the pressure force can mediate between a divergent A and a non-divergent
∂u/∂t . Nevertheless, since the net force induced on the currents by a breaking event
must be non-divergent, it would be representationally more efficient to require this
property for A (allowing e.g. a concise representation in terms of two scalar potentials
in a Helmholtz decomposition). However, our present physical understanding is that
a breaking wave provides a locally forward and downward impulse to the fluid, but
the associated pressure field has not yet been measured well. The former effect can
easily be represented in A (§ 3), but our ignorance of the p distribution leads us to
abandon the non-divergence constraint at this stage of the research.

We define a local coordinate system, (ξ, η, z) with ξ̂ in the horizontal direction
of the breaking (i.e. longitudinal), η̂ horizontally normal to it (i.e. transverse), and ẑ
vertically upward. Then the depth-integrated acceleration in the breaking direction is

∂

∂t

∫ 0

−H

u · ξ̂ dz′ = · · · +

∫ 0

−H

Aξ dz′, (2.2)

where we assume that the breaking impulse vanishes at some depth above z = −H .
We can compare this with the analogous relation with an imposed local surface stress,
namely

∂

∂t

∫ 0

−H

u · ξ̂ dz′ = · · · +
1

ρo
ξ̂ · τ s, (2.3)
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and thus see that the horizontal component of A is a body force whose integrated
magnitude replaces the more commonly used surface stress,∫ 0

−H

Ah dz′ =
1

ρo
τ s,

where the subscript h denotes the horizontal vector component. We will assume that
no horizontal acceleration occurs due to breaking in the η̂-direction, but there may
be some in the ẑ-direction (§ 3). In general, there will be some acceleration in the
transverse direction as the breaker grows laterally; however, we believe that its neglect
here is consistent with the other simplifications of the model.

In a field of breaking waves, this representation applies separately for each breaker.
We relate the local coordinates for each breaking event to the global ones (x, y, z)
by a rotation φ and translation (x0, y0) of the horizontal components:

ξ =(x − x0) cos[φ] + (y − y0) sin[φ],

η = −(x − x0) sin[φ] + (y − y0) cos[φ].

}
(2.4)

For convenience we assume that x̂ is aligned with the mean breaking direction, i.e.
〈φ〉 = 0. Thus,

A = (Aξ cos[φ], Aξ sin[φ], Az) (2.5)

in global coordinates.
A is a four-dimensional random field whose distribution is subject to the constraints

above. We think of A as a sequence of wave-breaking events

A =
∑

n

An, (2.6)

where n is a discrete event index. For each event we represent An(x, t) by a
combination of random attributes with specified distribution functions and specified
space–time shape functions. The list of random attributes of a breaking event is the
following: surface location, (xn, yn); horizontal breaking direction, φn; onset time, tn;
duration, T n; amplitude, An

o; longitudinal and transverse horizontal size, Ln
‖ and Ln

⊥;

and vertical size, Hn. However, in applying these formulae for A, we may find that it is
sufficient to collapse the distributions for some of these attributes to their mean values.
Associated non-dimensional shape functions for A represent the appropriate spatial
structure and evolutionary sequence for a breaking wave. An exclusion principle can
be applied to the random locations and onset times such that no two breaking events
overlap in space and time.

From the superposition of breaking events, we can identify a constraint on integral
stress transmission. The ensemble mean of (2.3) yields〈∫ 0

−H

Ah dz′
〉

=
1

ρo
〈τ s〉, (2.7)

where the angle brackets represent both an average over (x, y, t) and over all breaking-
wave events, that are assumed to be equivalent. In oceanic modelling the mean stress
is usually estimated by a bulk formula,

〈τ 〉 = ρaCD|U |U, (2.8)

where U = |U |x̂ is the mean near-surface wind and CD is the drag coefficient,
that depends on U , the mean surface buoyancy flux, and the sea state, i.e. waves
(Large & Pond 1982; Donelan 1998). In anticipation of the DNS in § § 5 and 6, the
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mean stress imposed at the top of the water in our simulations is determined by the
flow Reynolds number, or ultimately by the feasible grid resolution.

3. Breaker model
The breaker model described here is based on the results of laboratory measure-

ments of quasi-two-dimensional breaking by Rapp & Melville (1990), Loewen &
Melville (1990), Melville et al. (2002) and related laboratory experiments reviewed in
Melville (1996). It also draws on Phillips’ (1985) statistical description of breaking and
its implementation by Melville & Matusov (2002) who used airborne video imagery
to measure the kinematics of breaking in the field. In the context of developing
a breaking model, the primary results of the laboratory experiments are that the
duration of active breaking is O(T ), the maximum fluid velocity during breaking is
O(c), and the depth of penetration of the broken fluid is O(2a), where T , c, and a,
are the characteristic period, linear phase speed, and amplitude, respectively, of the
breaking wave. The laboratory experiments also showed that the post-breaking flow
variables scaled with the pre-breaking variables even at large times. This suggests
that Froude scaling of breaking, using the linear dispersion relationship, should be a
good first approximation in a breaking model.

Phillips (1985) suggested, and Melville & Matusov (2002) showed, that breaking of
sufficient strength to generate whitecaps in the field could be represented by statistics
of the length of breaking fronts based on the speed of advance of the breaker. In the
context of Froude scaling we expect this speed to be O(c). The use of the linear wave
speed to scale a strongly nonlinear process is partially justified by the fact that the
phase speed of the Stokes limiting wave is only 11% greater than the corresponding
linear phase speed. Thus we expect scaling based on the linear dispersion relationship
to be a good first-order approximation; however, wave slopes are also important
in relating wave amplitudes to wavelengths. In the open ocean Melville & Matusov
(2002) found that over a spectrum of breaking events in the range c = [1, 15] m s−1

their measurements were consistent with Froude scaling of active whitecap coverage.
Given this wide applicability of Froude scaling, the breaker field can then be built
from a superposition of random events that individually obey the same scaling laws.

The modelling task is aimed at devising an appropriate prescription for a particular
event A in § 2.1 (to clarify the presentation we omit the event index n in the following
formulae).

For this first implementation, we collapse all the measured distribution functions
for the breakers – except for time and location – to their mean values, and time
and location are assumed to be uniform distributions except for an exclusion rule.
We further assume that the wind and wave fields are aligned (i.e. φ = 0 in (2.4)) and
assume zero body force in the vertical direction. Hence (2.5) reduces to A =Ao(î, 0, 0).
The time and space location of a particular event is randomly distributed, but once
initiated the breaker life cycle is assumed known, i.e. Ao is a deterministic function of
(x, t). Based on the observed properties of breaking waves in field measurements and
laboratory studies (Rapp & Melville 1990; Melville & Matusov 2002; Melville et al.
2002), the following functional form for Ao is adopted:

Ao = kb

c

T
T(α)X(β)Y(δ)Z(γ ), (3.1)

where (T, X, Y, Z) are space–time shape functions that describe the evolution of the
event. We introduce the constant kb to allow scaling of the breaker forcing relative
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to the imposed stress τo (discussion in § § 5 and 6). In our model, all breakers are
assumed to be self-similar and separable in dimensionless time and space coordinates:

α = (t − to)/T , (3.2a)

β = (x − xo)/c(t − to), (3.2b)

δ = 2(y − yo)/λ, (3.2c)

γ = z/χc(t − to), (3.2d)

with (to, xo, yo, zo = 0) the onset time and position of the chosen breaker; (c, λ, T )
are its phase speed, wavelength, and period. The wave characteristics (c, λ, T ) are
related to each other through the deep-water linear dispersion relation c2 = gλ/2π
with T = λ/c. Notice that in the normalized vertical coordinate (3.2d) the constant
0 < χ < 1, which is just the aspect ratio of the depth to length of the breaker, controls
the depth penetration of the breaker forcing.

The data available from laboratory and field measurements of breaking waves
can guide the specification of (T, X, Y, Z), but are insufficient to pin down exact
functional forms. Given this level of uncertainty we choose algebraic expressions that
conform to the available data, but also satisfy practical computational constraints that
they be smooth compact functions with continuous first derivatives. The algebraic
forms used here are

T(α) = µ1α
2[exp(µ3(1 − α)2) − 1], 0 � α � 1, (3.3a)

X(β) = µ2β
2(1 − β)2(1 + µ4β

3), 0 � β � 1, (3.3b)

Y(δ) = (1 − δ2)2(1 + µ5δ
2), − 1 � δ � 1, (3.3c)

Z(γ ) = (1 − γ 2)2(1 + µ6γ
2), − 1 � γ � 0, (3.3d)

where the six constants µi remain to be specified. Two of the constants (µ1, µ2) are

found from imposing the conditions
∫ 1

0
T(α) dα = 1 and max[X] = 1. The remaining

µi-constants are picked to yield smooth functions; values of the constants used in the
simulations are µi =[2.1, 5.1, 5, 10, 2, 2] along with χ = 0.2. The resulting space–time
shape functions are displayed in figure 1, and are observed to satisfy our design
criteria.

4. Problem design
In order to cleanly evaluate our breaker model and isolate the impact of wave

breaking on a turbulent shear flow we perform several direct numerical simulations
of a generalized plane Couette flow. The model OBL flow is assumed to be
a viscous, neutrally stratified, horizontally homogeneous turbulent flow confined
between horizontal walls as sketched in figure 2. One aspect of breaking not included
in the model is air entrainment. While small-scale (‘microscale’) breaking may not
entrain dynamically significant quantities of air, this is not the case for larger active
breakers for which Lamarre & Melville (1992) found that the work done against
buoyancy forces in entraining air could account for up to 50% of the energy lost by
the wave field during breaking. The inclusion of air entrainment and buoyancy effects
is left to later developments of the model. In our coordinate system x is aligned with
the main flow direction; y is the transverse direction; and z is measured upward from
the lower boundary z = −H to the water surface z = 0. The forcing near the upper
boundary is variable: we specify constant current or a mixture of constant stress
plus breakers. A passive scalar is also included in the problem to examine scalar



150 P. P. Sullivan, J. C. McWilliams and W. K. Melville

2.0

1.5

1.0

0.5

0 0.5
α

1.0

1.0

0.5

0 0.5

β

1.0

�
(α

)

1.0

0.5

0
0 0.5–1.0 –0.5

δ

1.0

�
(δ

)

�
(β

)

0

–0.5

0
–1.0

0.5

�(γ)

1.0

γ

Figure 1. Non-dimensional space–time breaker shape functions T(α), X(β), Y(δ), Z(γ ),
which describe the breaker body force (see equation (3.1)).

transport. Figure 2 also depicts the orientation of a randomly located wave-breaking
event at a particular instant in time. Active breaking occurs as time advances between
to � t � to +T . During this time interval the breaker forcing expands downstream and
deepens vertically while its extent in the transverse (y) direction remains constant.
Outside the time interval of active breaking Ao =0 for any particular event. The
flow configuration in figure 2 is used to investigate the impact of breaking in two
different flows: a quiescent fluid driven solely by a single breaking wave (§ 5) and
fully turbulent wall layers in the presence of multiple random breakers (§ 6).

4.1. Governing equations

The governing equations for the flow depicted in figure 2 are the Navier–Stokes
equations for a incompressible fluid written in non-dimensional form:

∂u
∂t

= −(u · ∇)u − ∇p +
1

Re
∇2u +

∑
n

An
o î, (4.1a)

∂θ

∂t
= −(u · ∇)θ +

1

ScRe
∇2θ, (4.1b)

0 = ∇ · u, (4.1c)

Here the velocity vector u = (uî, v ĵ , wk̂); p is the pressure; Ao is the breaker impulse;
and θ is an arbitrary scalar. In this set of equations, length and velocity scales (H, Uo)
are used to make variables dimensionless. Uo is the fluid velocity at the upper boundary
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Figure 2. Sketch of the flow configuration illustrating a typical breaker and its orientation
relative to the computational domain (Lx,Ly,H ). (c, λ) are the breaker phase speed and
wavelength. In the time window to < t < to + T , the breaker size is (cδt, λ, χcδt) where
δt = t − to, δt � 0. The vertical penetration of the breaker is determined by the parameter
χ . Turbulent flows are simulated using a mix of τo and breakers Ao. To simulate classic
Couette flow τo is replaced by a constant current Uo with Ao =0.

in the Couette simulation (figure 2). The scalar is made dimensionless by the jump
�θ = θl − θu where (θu, θl) are constant values at z = (0, −H ), respectively. Then the
dimensionless parameters governing the flow are the Reynolds number Re =UoH/ν

and Schmidt number Sc = ν/υ , where ν is the fluid viscosity and υ is the scalar
diffusivity. For all calculations Sc = 1. (H, Uo) are also used to non-dimensionalize
the properties of the imposed wave, i.e. when we refer to the phase speed of the wave
c it is understood that it is non-dimensionalized by Uo.

4.2. Numerical method

The DNS code used to solve the continuity, momentum, and scalar transport equa-
tions (4.1) for flows with breakers is a variant of the wavy-surface simulation code
fully described by Sullivan, McWilliams & Moeng (2000) and Sullivan & McWilliams
(2002). The numerical method uses a co-located grid architecture for all variables
instead of the staggered layout typical of most schemes. We use contravariant ‘flux’
velocities, Zang, Street & Koseff (1994), at the cell faces and employ the momentum-
interpolation method of Rhie & Chow (1983) to maintain strong velocity–pressure
coupling. The spatial differencing and time advancement in this DNS code are similar
to those in the large-eddy simulation code described by Sullivan, McWilliams &
Moeng (1996); pseudo-spectral differencing in (x, y)-planes and second-order finite
differences in the z-direction are used and the time stepping is accomplished with
a third-order explicit Runge–Kutta method using a fixed Courant–Friedrichs–Lewy
(CFL) criterion. A non-uniform vertical z-mesh is used to resolve the top and
bottom boundary layers; constant spacing is used in (x, y)-directions. For the present
simulations a stationary rectangular computational mesh is used since the upper and
lower boundaries are flat in physical space. Compared to simulations with time-
dependent wavy lower boundaries, this simplifies the grid generation and increases
the code efficiency. In particular, the pressure solver becomes exact, i.e. no iterations
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are required at each time step to solve for the pressure since the variable coefficients
in the pressure Poisson equation reduce to constants (Sullivan et al. 2000).

Mechanically, the inclusion of the breaker model requires special attention in
the simulation code. As a simulation progresses, breaking events are introduced at
random positions (xo, yo, z = 0) drawn from a uniform distribution, and tracking
routines monitor their birth, growth, and death. Introduction of an explicit time-
dependent forcing Ao(x, t) to the governing equations makes the system of equations
non-autonomous. With our third-order Runge–Kutta time-stepping procedure, active
breakers evolve at each sub-step, but new breakers are only allowed to be introduced
at the end of a full time step. Meanwhile, an exclusion principle is applied so that as
new events are added they are prevented from overlapping current existing breakers.
We found an effective and simple means of controlling the white cap coverage, i.e. the
total amount of surface water that is covered by all breaking waves, is to introduce
breakers at a uniform rate throughout the course of the simulations. Potentially,
the introduction of Ao can lead to a non-divergent velocity field. However, with the
fractional step method used, the source term of the pressure Poisson equation includes
all right-hand-side terms of the governing equations (including the breaker forcing),
and a numerically divergence-free velocity field is obtained at each time step.

5. Isolated breaking event
Melville et al. (2002) describes a novel set of laboratory experiments that focus

on the flow fields generated by an isolated nearly two-dimensional breaking wave.
Digital particle image velocimetry is used to obtain two-dimensional (x, z) maps of
the mean and turbulence velocity over the time history of a breaking event. This
dataset provides an opportunity to test and evaluate elements of our breaking model.

5.1. Computational details

In order to mimic the Melville et al. (2002) laboratory experiments, the DNS code
is configured to perform a rundown problem with a single breaker as the external
forcing. The breaker space–time functions given in § 3 are used with the modification
that the breaker is made two-dimensional in the simulations by setting Y(δ) = 1.
The DNS are performed in a computational domain of size (Lx, Ly, H )/λ= (4, 2, 4)
(figure 2). (100, 100) uniformly distributed gridpoints are employed in the horizontal
directions with grid spacing (�x, �y) = (0.04, 0.02)λ. A non-uniform vertical mesh (96
total points) with grid clustering near the boundaries is employed. The spacing varies
from �z =0.015λ near the water surface to �z = 0.087λ at the domain centreline.
Approximately 14 gridpoints are distributed in z ∈ [−0.3, 0]λ and 31 gridpoints in
z ∈ [−1, 0]λ. The computational domain and grid resolution are selected so that the
mean fields produced by the breaker are well-resolved with a reasonable number of
gridpoints and at the same time the domain is large enough such that the breaker can
evolve freely without boundary interference. The time step is held fixed at �t = 0.094T ;
this time step is much smaller than the time step determined from our usual CFL
criterion. All simulations are advanced for more than 600 time steps or about 50
wave periods. The breaker phase speed (made dimensionless by Uo) is c = 2.343, and
Reynolds number Re = 8000. They are selected to match the simulations in § 6. The
Reynolds number based on (c, λ) equals 4700.

5.2. Results

The breaker forcing is primarily controlled by two constants: kb, the breaker strength,
and χ , the vertical depth penetration. In our simulations we varied these constants
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Figure 3. Mean two-dimensional velocity vectors (uî, wk̂)/c overlaying a shaded image of
the vorticity field Ωy at t =[2.9, 10.4, 26.5, 34.4, 44.5, 50] from simulations of an idealized
breaking wave.

over the range 0 <kb < 0.36, 0.1 <χ < 0.2. Over this parameter space, the breaker
forcing varies smoothly (§ 3), and we find that the generated flow fields vary in a
consistent manner. Typical flow patterns are displayed in figure 3 for a simulation
with (χ, kb) = (0.2, 0.18). The spatial and temporal variation of mean horizontal
and vertical velocity vectors (u, w) are shown along with shaded contours of the
transverse vorticity field Ωy = ∂u/∂z − ∂w/∂x. These are mean flow patterns obtained
by averaging in the transverse (y) direction at fixed (x, z) locations. We emphasize
that the time duration of the breaker forcing is short (one wave period), and thus the
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results in figure 3 represent the long-time evolution of the breaker-induced flow fields.
For comparison, comparable flow vectors from data described in Melville et al. (2002)
are depicted in figure 4. The simulation results exhibit the formation of a vortex that
propagates downstream and descends vertically after a breaking event. Based on the
displacement of the vortex centre, we estimate that this vortex propagates with speed
8.7 × 10−3c that is in reasonable agreement with the measurement of 7.7 × 10−3c

reported by Melville et al. (2002). The vortex in the simulations appears to descend
slightly deeper compared to the measurements, but overall the mean flow vectors
are comparable with the measurements. As expected, smaller values of χ reduce the
descent of the vortex while larger values of kb cause the vortex to propagate faster
in x. We note that in laboratory measurements the strength of breaking (our kb) is
varied by controlling the slope of the wave packet. In the open ocean a wide spectrum
of breaking waves are observed with varying strength (Melville & Matusov 2002).

In figure 5, values of the integrated mean flow kinetic energy are compared to
measurements, where the integral is taken over the spatial domain shown in figure 3.
Since the laboratory experiments are largely confined to the time after active breaking
(t > T ), a direct estimate of the strength of breaking parameter used here, kb, cannot
be made. The input to the experiments is a gain parameter that is proportional to
the slope of the wave packet that focuses the breaking, but its direct relationship
to the initial acceleration in the breaker, and hence kb, is not well-established. Thus,
for our comparison we use the mean kinetic energy at the non-dimensional time
t = 10 to normalize both laboratory and simulation results. At long time, where we
expect the simulations to be valid, the decay of the mean kinetic energy in the DNS
and measurements are in good agreement; both decay at a rate approaching t−1 as
predicted by Rapp & Melville (1990). At early time, the elevated values of kinetic
energy in the laboratory data are a consequence of the orbital motion of surface
waves that were still in the measuring region. Our model is not expected to reproduce
this behaviour. Finally, we mention that the breaker strength, i.e. kb, is expected to
vary for two-dimensional and three-dimensional breakers. However, this variation has
not been directly reported in measurements.

6. Multiple breakers with currents and turbulence
6.1. Computational details

A series of DNS with multiple breakers of varying strength imposed on a mixed layer
with mean currents and turbulence is performed. The forcings near the top boundary
are either constant current 〈Uo〉 at z = 0 (canonical Couette flow), constant horizontal
stress 〈τo〉 at z = 0, or any of three cases with a mixture of 〈τo〉 and wave breaking∑

n An
o . In the latter simulations, the integrated momentum forcing from the breaker

field (to be compared with 〈τo〉) is given by the volume-integrated breaker force(§ 2.1)

〈Bf 〉 =

〈∫ 0

−H

∑
n

Ao dz

〉
. (6.1)

For discussion purposes, the simulations with a mixture of stress and breaker forcing
are labelled with run names (table 1) that indicate the fractional amount of breaking.
In table 1, run B-000 is the simulation driven by constant stress and no breaking,
while run B-100 is at the opposite extreme, 100% breaking and no stress. The breaker
forcing in the mixed runs B-028 and B-080 is 28% and 80% of the total forcing,
respectively.
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Figure 5. The integrated kinetic energy in the mean (u,w)-fields for an isolated breaker
normalized by its value at time t = 10. Here

∫
dAE =

∫
dA(u2 + w2)/2 and the area of

integration A is the domain x/λ= [0, 1.2] and z/λ= [−0.25, 0], i.e. the two-dimensional area
shown in the panels of figure 3. Simulation results are indicated by a heavy solid line and the
laboratory measurements from Melville et al. (2002) are denoted by dots and lines. At long
time, results from the measurements and simulations decay with a slope approaching t−1 in
agreement with the predictions by Rapp & Melville (1990).

Run name kb 〈Bf 〉/u2
∗ z+

o u∗ Symbol

Couette 0 0 0.13 0.030 �

B-000 0 0 0.45 0.032 ⊗
B-028 0.23 0.28 0.65 0.033
B-080 0.70 0.80 2.60 0.034 �

B-100 0.93 1.05 4.24 0.034 �

Table 1. Simulation properties.

The design goal of the DNS with breakers is to vary the relative amounts of imposed
stress at the top boundary 〈τo〉 and average breaking force 〈Bf 〉 while maintaining
the same total stress at the bottom boundary 〈τb〉 for all cases. This goal is only
approximately achieved because of the long integration times required to gather
statistics and the inherent unsteadiness caused by breaking; the latter effect leads to
〈Bf 〉/u2

∗ ≈ 1.05 for the case labelled B-100 (§ 6.2). The friction velocity u∗, computed
from the time and horizontal averages of the bottom stress (u2

∗ = 〈τb〉), varies by 10%
or less for the different runs (table 1). The strength of breaking (kb) varies across
the simulations, but the breaker phase speed, wavelength, and depth penetration are
held constant; their dimensionless values are (c, λ, χ) = (2.343, 0.25, 0.2). Values of
kb in the simulations of table 1 are generally larger than the values used in the
two-dimensional isolated-breaker run. Larger values are needed for simulations with
three-dimensional breakers and a whitecap coverage constraint in order to match the
stress of case B-000.

Simulations with breaking also require a prescription for adding breakers as time
advances. In the open ocean the rate of breaking ultimately depends in a complicated
way on the history of the wind and wave fields. For the present simulations, we avoid



Ocean boundary layers and wave breaking. Part 1 157

this complication and instead impose a rule that adds new breakers at a rate that
maintains a realistic white cap coverage. By trial, we found that adding breakers at
a rate of Rb = 70 events per unit of dimensionless simulation time is sufficient to
generate a white cap coverage of about 1.6%, a value characteristic of the open ocean
for winds less than 15 m s−1 (Wu 1988; Monahan & Woolf 1988). Rb =70 is used in
all simulations.

Simulations are performed in a computational domain of size (Lx, Ly, H )/λ=
(20, 12, 4) using 200 × 200 × 96 gridpoints at a bulk Reynolds number Re = UoH/ν =
8000. At this Re and grid resolution, the turbulence is fully developed and well-
resolved based on results from our prior DNS of flow over neutral and stratified
water waves (Sullivan et al. 2000; Sullivan & McWilliams 2002; also see Komminaho,
Lundbladh & Johansson 1996). Given the variation in u∗ across the suite of runs, the
wall Reynolds number Re∗ = u∗ Re ranges from 240 to 272. The chosen domain size,
number of gridpoints, and breaker properties represent a compromise between the
competing requirements of computational cost, adequate resolution of the turbulence
and breakers, and the desire to maintain a white cap coverage of O(1%). The
horizontal spacing is (�x, �y) = (0.1, 0.06)λ or in terms of wall units with a nominal
Re∗ = 260, (�x+, �y+) = (�x, �y)Re∗ =(6.5, 3.9). The variable vertical spacing is the
same as that used for the isolated breaker simulations discussed in § 5.1. �z+ ranges
from less than 0.5 at the boundaries to 5.46 at the channel centreline. These spacings
satisfy the requirements for acceptable DNS resolution outlined by Moin & Mahesh
(1998). At the end of active breaking, i.e. at (t = to + T ), the breaker impulse Ao for
each event is represented by (10, 16, 11) gridpoints in (x, y, z).

All simulations are homogeneous in the lateral (x, y) directions (i.e. periodic
boundary conditions) with no-slip (sticky) boundary conditions for all three velocity
components at the lower wall. At z = 0, we set the vertical velocity w = 0 for all
cases; in the Couette simulation the boundary conditions on the horizontal current
components are (u, v) = (Uo, 0); in the τ-driven flows the boundary conditions on the
horizontal stress are τ = (τo, 0), and then (Uo, Vo) at the water surface are found as
part of the solution. For the passive scalar, constant values are used at the upper and
lower boundaries, θ = θu and θ = θl with positive jump �θ = θl − θu.

Initial conditions for the simulations are laminar profiles with low-amplitude
random noise added near each boundary. The total number of computational steps
varies from 75 000 to 115 000 time steps depending on the type of forcing. For all
simulations the integration period is about 700 large-scale turnover times or 7000 wave
periods. The flow is judged quasi-steady at about turnover time 180, and statistics are
gathered starting from this point. Ensemble statistics, indicated by 〈 〉, are obtained by
a combination of temporal and spatial x, y averaging; the latter is indicated by 〈 〉xy .
Velocity statistics, the current mean, variances, and momentum fluxes are normalized
by u∗ unless indicated otherwise. Scalar variables are normalized by the jump �θ .
The deviation from a horizontal average (the turbulent part) is indicated by ( )′, e.g.
the x-component of the fluctuating horizontal current u′ = u − 〈u〉xy .

6.2. Temporal development

The temporal evolution of the flow fields illustrates important global impacts of
breaking. We present results from simulation B-100 since it represents the limiting
situation of completely wave-generated currents. Figure 6 depicts the time history
of several flow variables: the horizontally averaged current at the top of the water
〈Uo〉xy , the volume-integrated breaker force 〈Bf 〉xy , the horizontally averaged bottom
stress 〈τb〉xy , the number of active breaking events Nb, and the white cap coverage
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Figure 6. Temporal variation of selected parameters from case with 100% breakers (B-100).
(a) The horizontally averaged current at the top of the water 〈Uo〉xy/u∗ (B-100 thick line, case
with zero breakers B-000 thin line). The straight line is a linear regression to the results from
B-100. (b) The vertically integrated breaker force 〈Bf 〉xy/u

2
∗. (c) The bottom stress 〈τ 〉xy/u

2
∗.

(d) The number of active breaking events. (e) The fraction of horizontal surface area covered
by active breaking events. Time is made dimensionless by Uo/h.

Aw . Notice that a field of intermittent breaking waves is capable of sustaining a mean
current in the limit of zero wind stress (i.e. when 〈τo〉 =0). The magnitude of the
normalized current is, however, lower than its counterpart for flow driven by constant
〈τo〉 alone. As we show later, the reduction in average current is a consequence of
enhanced turbulence levels and resulting reduced mean gradients near the surface
when breaking is present. Also the results with breaking show a small but clear
trend for the mean current to increase with time. The breakers continuously supply
momentum to the fluid irrespective of the current magnitude, and this momentum is
not transported down to the bottom boundary at the same rate as in the no-breaker
simulations (§ 6.5). Hence the mean current steadily increases and, in the presence
of breaking, the generated flow fields are only statistically quasi-steady. This is a
noticeable difference from flows driven by constant current or stress.

The variation of the volume-averaged breaker force illustrates that the forcing
from breakers is larger than u2

∗ and concentrated at higher frequency than the slow
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Figure 7. Snapshot of the instantaneous normalized vorticity field Ωyλ/c in an (x, z)-plane
for the case driven by 100% breaking. Note the contrast in the scale of vorticity near the water
surface compared to the lower boundary.

oscillations in the bottom stress. The time scale of the imposed wave field c/u∗
is of higher frequency than the dominant time scale of the turbulent field (with
no breaking). As a result the breaker-induced velocities are also of high frequency.
Computationally, this translates into longer simulation times since the allowable
integration time step, which is inversely proportional to the maximum velocity, is
reduced. The time step with 100% breaking is smaller by almost a factor of 2
compared to simulations with no breaking. We also notice that the average number
of active events oscillates between 7 and 8 over the entire integration period. As a
result, the white cap coverage is fairly constant with time. Aw ≈ 1.6% results from the
number of active events, the breaker spatial scale, and the lateral dimensions of the
computational domain.

6.3. Instantaneous flow structure

The signature of breaking manifests itself in instantaneous snapshots of flow-field
variables. In figures 7, 8, and 9 we present several two-dimensional cuts through
the transverse vorticity (Ωy), total current (u), vertical velocity (w), and vertical
momentum flux (u′w) fields. The x, z vertical slice of Ωy provides a vivid contrast in
flow structures near the two boundaries. The presence of highly intermittent breaking
induces small-scale, high-frequency vorticity near the water surface. As was noted
previously in our simulation of an isolated breaker, a coherent pattern of Ωy persists
for multiple wave periods after active breaking ceases. Adrian et al. (2000) propose
that the basic building blocks of turbulent wall flows are a synergistic interaction
between low-speed streaks and hairpin vortices. The vorticity image shown in figure 7
provides some evidence that the usual process of turbulence generation in flat-wall
boundary layers is disrupted by breaking. Near the lower boundary, large-scale patches
of Ωy contrast sharply with the small scales near the upper boundary. Animations
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further show that the patterns in figure 7 near the upper and lower boundaries are
a persistent feature of the flow and that breaking imposes its own time scale on the
transverse vorticity generation process.

The images of the horizontal current, vertical velocity, and vertical momentum
flux (figures 8 and 9) highlight the importance of breaking to the turbulence
dynamics in the OBL surface layer. Very near the water surface, z/λ= −0.0076,
the streamwise elongated streaky pattern characteristic of flat-wall boundary layers
is modified by breaking; intermittent small-scale impulses are seen to dominate the
horizontal currents. In figure 8 (upper right panel), we count numerous breakers,
more than the 7 to 8 active breaking events noted in the time series of figure 6.
This is evidence that the leftover debris from a breaker lives for an extended period,
i.e. the temporal impact of a breaking wave is much longer than the active-breaker
lifetime T = λ/c. The vertical velocity takes on a rich structure with an organized
downwelling–upwelling pattern connected with each breaking event; downwelling
occurs at the forward face and a return upwelling at the rear of each breaking event.
Further, the intensity of the downwelling–upwelling events are significantly enhanced
compared to the case with no breaking (compare figures 8 and 9). Vigorous impulses
from the breaking waves at z = −0.2λ impart strong vertical momentum flux, both
negatively and positively signed, to the water column (see lower panels of figure 9);
the momentum-flux-carrying structures are modified at depths below the penetration
depth z = −0.2λ. From these images, we conclude that even though the observed
white cap coverage of the breakers at the surface is very intermittent (less than 2%
see figure 6) the presence of breaking eventually stirs the entire surface layer of the
OBL.
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6.4. Mean profiles

The upper surface boundary condition and the amount of wave breaking have an
impact on the mean horizontal current and scalar distribution. This is illustrated in
figure 10 where vertical profiles are displayed in the normalized global coordinates
(〈u〉/〈Uo〉, 〈θ〉/�θ) versus z/λ for the five different simulations. The simulation of
turbulent Couette flow provides a baseline to judge the influence of breakers. With
sufficient averaging, the mean current and scalar profiles in this case are symmetric
about the channel centreline, as required. Turbulent mixing weakens the mean profile
vertical gradients in the mid-section of the channel while the no-slip boundaries
generate sharp transitions near the upper and lower walls. The τ-driven flows
display the same broad features as the Couette case, but the mean profiles are
clearly asymmetrical about the mid-plane z/λ= −2 with the asymmetry increasing



162 P. P. Sullivan, J. C. McWilliams and W. K. Melville

0

–1

–2

–3

0 0.2 0.4

0 0.2 0.4

–0.2–0.4

0.6 0.8 1.0
–4

0

–1

–2

–3

–4

z
—
λ

z
—
λ

�θ�/∆θ

�U �/�Uo�

Figure 10. Vertical profiles of the mean velocity and scalar fields in global coordinates. The
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�, B-080; �, B-100; and is used in all following figures.

as the external forcing shifts from constant stress to intermittent breaking. It is also
important to notice that the profiles for the stress-driven flow with no breaking,
case B-000, are not equal to those of the Couette simulation, but fall closer to
the results for the case with mild breaking B-028. This difference between the
Couette and B-000 cases was initially unexpected but is a direct consequence of
the form of the upper boundary condition, constant stress versus constant current.
The extra freedom permitted by a constant-stress boundary condition allows the
current to oscillate in time and space at the water surface. Thus the horizontal current
fluctuations are finite at z = 0; a strict no-slip condition on the horizontal velocity
components requires (u′, v′) = 0 (§ 6.5). Even in the absence of stress intermittency
and other wave effects, the surface layer of an oceanic boundary layer differs
from its atmospheric counterpart (over a rigid surface) in a fundamental way.
The difference between constant-current and constant-stress driving for oceanic
mixed layers is also briefly noted by (Zhou 1999, p. 166). Further examination
of the profiles near the upper surface shows that the normalized vertical profile
gradients decrease as the breaking increases, suggestive of an enhanced turbulence
level.
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To illustrate the changes induced by the breakers we display the current and scalar
profiles in terms of traditional wall variables written in the defect form

u+ =
〈Uo〉 − 〈u〉

u∗
, θ+ =

θu − 〈θ〉
θ∗

, z+ =
zu∗

ν
, (6.2)

where θ∗ = −〈τθ〉/u∗ and τθ = (ScRe)−1∂θ/∂z is the scalar flux at the bottom boundary.
The most striking impression in figure 11 is the systematic downward shift in the
horizontal current and scalar profiles with increasing kb compared to the Couette
simulation. From the perspective of classic wall-bounded shear flow, this downward
shift in the current profile is equivalent to an increase in surface roughness zo (e.g.
Schlichting 1968, pp. 568–586; Cebeci & Bradshaw 1988, p. 167; Raupach, Antonia &
Rajagopalan 1991; Leonardi et al. 2003). To quantify the increase in zo, we fit the log-
linear portion of the different profiles in figure 11 with the relation u+ = ln(−z+)/κ+b,
where κ = 0.41. The effective roughness z+

o = zou∗/ν = e−κb varies from 0.13 to 4.24
for the different simulations (table 1). Thus, with strong wave breaking the effective
roughness can be a factor of 30 times larger than for the case with a constant-current
boundary condition. In figure 11, the velocity profile for a full rough wall layer
(e.g. Schlichting 1968, pp. 584) is displayed; notice that the velocity profile from our
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low-Re DNS with 100% breaking is thus effectively in the fully rough regime. The
transition to a log-linear variation occurs at smaller z+ values in the situation with
strong wave breaking, a further indicator of an increase in z+

o . Since we hold u∗
approximately constant across the series of simulations, the enhanced vertical mixing
from intermittent breaking is the source of the effective increase in surface roughness.

We note that our predictions of surface-roughness enhancement due to breaking
waves is supported by the laboratory measurements of Cheung & Street (1988). In
their wind-wave tank experiments, current profiles near the air–water interface are
measured beneath growing and breaking waves generated by varying wind speed
(1.5 m s−1 to 13.1 m s−1). The authors do not quantify the amount of wave breaking
but mention that the visual appearance of the water surface varied from smooth to
rough for the range of wind speeds considered. Figure 1 of Cheung & Street (1988)
shows a pronounced downward shift in the current profiles with increasing wind speed,
with a full rough regime reached at higher wind speeds. Our DNS predictions are
at least in qualitative agreement with these results. However, the authors also report
a change in the slope of the current profile, i.e. a larger value of the von-Kármán
constant (κ) at high wind speed. We do not find this even with 100% breaking, but
speculate as they do that other wave influences are present in their experiments.

Finally, zo is an unknown but critical parameter in second-order closure models
of the oceanic mixed layer (e.g. Craig & Banner 1994; Craig 1996). In this type
of model, the oceanic surface is assumed rougher with breaking waves, and a zo-
parameterization is used to tune the model predictions; values as large as one sixth
(16%) of the breaker wavelength are used. In our DNS zo is a computed output.
Hence, the present results confirm an increase in zo with breaking, but also highlight
that changes in the oceanic surface layer are induced by the intermittency of breaking
and additionally by the type of surface boundary condition. For our particular
breaking waves, we find zo/λ between 0.04 to 0.06 when breaking constitutes 80%
to 100% of the total stress. This is lower than the values used in the second-order
closure modelling of Craig & Banner (1994).

6.5. Variance and momentum-flux profiles

Because our breakers are spatially evolving three-dimensional structures, they are
capable of generating three-dimensional turbulence fields. This is reflected in the
(u, v, w)-variance and turbulent kinetic energy (TKE = 〈uiui〉/2) profiles shown in
figure 12. Comparison of the profiles reveals that turbulence is mainly enhanced in
the region z/λ= −0.2 to 0, with the vertical current (w2) variance exhibiting the
largest change; in case B-100 at z/λ= −0.2, w2 is about 8 times larger than its
counterpart in the Couette simulation. The depth over which the breakers influence
the w-variances also extends deeper, down to about 60% of λ. Enhanced levels of
w-variance are a result of the vigorous downwelling–upwelling pattern associated
with breaking events (figures 8 and 9). The measurements of vertical variance by
Cheung & Street (1988) (see their figure 3) are in agreement with these predictions.
Notice that significant increases are also observed in the transverse v-variances. Flow
visualization of instantaneous v-currents shows that strong plus and minus signed
v′ is generated (by transverse pressure gradients) along the central x-axis of each
breaker. As alluded to previously, the impact of the surface boundary condition
on the magnitude and vertical distribution of variance is visible in figure 12. With
a constant-stress boundary condition (case B-000), the (u, v)-variances are finite at
z = 0, and the extra mixing caused by this surface layer turbulence mimics, at least
qualitatively, that of weak breaking waves. The increase in TKE, which is dominated
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by the large u-variance, is confined to the near-surface breaking region. The impact
of breaking on scalar variance, shown in figure 13, is less dramatic, and at z/λ= −0.2,
θ ′2 with 100% breaking is actually smaller than the B-000 case. This result can be
interpreted in terms of the scalar variance budget: the high levels of breaker-induced
turbulence weaken the mean scalar gradient d〈θ〉/dz (figure 11) which in turn lowers
the production of θ ′2.

The distribution of variance across scales for the (u, v, w, θ) variables at z/λ= −0.2
is illustrated by the power (energy) spectra shown in figure 14. Consistent with
the total variances (figure 12), the spectral distribution of energy for v and w is
most influenced by breaking. At a depth of z/λ= −0.2, we observe that the power
increases significantly in the (v, w)-fields at all wavenumbers beyond kx > 10 with
strong breaking. The impact of the breaker forcing appears to be smeared out over
a broad range of scales even though the dominant wavenumber of breaking in our
simulations kx,b = 2π/λ≈ 25. Because our simulations are not wave resolving, the
computed spectra do not display a peak at the wave orbital frequency as observed
in field measurements (e.g. Terray et al. 1996). There is also a hint that the power at
low wavenumbers (large scales) in the (u, θ)-fields is reduced in the presence of strong
breaking, more so for θ . This is also found in the total variances shown previously.
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Figure 13. Vertical profiles of the scalar variance normalized by (�θ )2 near the water surface.
The dotted line is the breaker penetration depth. The different simulations are: �, Couette; ⊗,
B-000; , B-028; �, B-080; �, B-100.

The spectra do not scale with u∗ and z in the same way as separated flow over
stationary roughness (e.g. Raupach et al. 1991). This is probably a consequence of the
dynamic and intermittent nature of the breakers and the proximity of the location to
the water surface. We show spectra near z+ = 15, that is in the transition zone to the
logarithmic region.

Previous flow visualization (§ 6.3) shows that breaking modifies the magnitude and
distribution of instantaneous momentum flux. Breaking’s contribution to the mean
balance of horizontal momentum is contained in the conservation rule

〈τb〉 = 〈τ(z)〉 − 〈u′w(z)〉 +

〈∫ z

−H

Ao dz

〉
− ∂

∂t

∫ z

−H

〈u〉 dz , (6.3)

where the vertical integration of (4.1a) extends from the bottom of the computational
domain (z = −H ) to an arbitrary level z. The viscous stress τ(z) = Re−1∂u/∂z. In
developing (6.3), we assume horizontal homogeneity and retain the time tendency of
the bulk flow. For statistically steady flow with no breakers, (6.3) simply reduces to
the statement that the total stress, i.e. the sum of the viscous and Reynolds stress,
is constant with depth. In simulations with breaking however, we found that the
time tendency (acceleration) of the bulk flow is small, but nevertheless contributes
to the mean balance of momentum. Our estimate of this term is obtained by first
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Figure 14. One-dimensional longitudinal spectra φ(kx) of (u, v,w, θ ) near the water surface,
z = − 0.2λ. Thick line, case B-100; dotted line, B-080; dash-dotted line, B-028; dashed line,
B-000; and thin line, Couette. Velocity spectra are normalized by u2

∗ and the scalar spectra
are normalized by θ2

∗ . The thin vertical line is the wavenumber kx,b = 2π/λ of the imposed
breakers.

computing
∫ z

−H
〈u〉xy dz at every time step and z of interest and then fitting a linear

curve to the resulting time series. The slope serves as an estimate of the time-tendency
contribution. Figure 15 shows the horizontal momentum budget for the different
simulations. We observe that the contribution of all intermittent breaking events
to the momentum budget decreases rapidly in the breaking region as z/λ → −0.2.
This is expected given our specified vertical shape function and χ = 0.2. Meanwhile,
the average Reynolds stress 〈−u′w〉 increases with the amount of breaking. This is
consistent with the finding of Melville et al. (2002) that an isolated breaker generates
a net 〈u′w〉xy < 0. Since u2

∗ is nearly constant, the larger values of 〈−u′w〉 in the
DNS are compensated by a reduction in the viscous stress. Compared to the Couette
case, near-surface breaking influences the balance of turbulent and viscous stress to
a depth of about z/λ= − 0.7. The maximum contribution of the time dependence of
the bulk flow is about 5% in the case with 100% breaking, and hence breakers lead
to a weakly unsteady mean flow.
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Figure 15. Terms in the horizontal mean momentum budget: (a) the time tendency of the bulk
flow (see (6.3)); (b) the momentum flux from breakers, 〈Bf 〉 = 〈

∫ z

−H
Ao dz〉; (c) the Reynolds

stress 〈−u′w〉; and (d) the viscous stress Re−1d〈u〉/dz. All terms are normalized by the bottom
stress 〈τb〉. Note the different vertical scales used. The different simulations are: �, Couette;
⊗, B-000; , B-028; �, B-080; �, B-100.

6.6. Eddy viscosity and TKE budget

A cornerstone of most ensemble-closure modelling is the assumption of an eddy
viscosity relationship between the vertical momentum flux and the mean profile
gradient. In figure 16, we show estimates of the eddy viscosity Km obtained from
〈u′w〉 = −Kmd〈u〉/dz for the different simulations. Compared to the Couette case, Km

is enhanced by breaking down to a depth of about z/λ≈ −0.5; Km is a factor of
(4, 12.7) times larger at z/λ= −(0.2, 0.1). This increase in eddy viscosity is a reflection
of the reduction in the mean profile gradient and larger (more negative values
of) Reynolds stress. Hence, in the OBL the surface-layer ensemble eddy viscosity
depends on the magnitude and intermittency of breaking and is not equivalent to
its atmospheric counterpart developed for flow over a passive rough wall. A similar
variation in the mean eddy diffusion for a scalar is also found.
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Figure 16. Vertical profiles of the momentum eddy diffusivity computed from 〈u′w〉 =
−Kmd〈u〉/dz near the water surface. The dotted line is the maximum breaker penetration
depth. The different simulations are: �, Couette; ⊗, B-000; , B-028; �, B-080; �, B-100.

The turbulent kinetic energy (TKE) budget provides additional insight into how
breaking couples to the turbulence fields. Under the assumption of a statistically
steady flow, the budget for the TKE q2/2 = u′

iu
′
i/2 is

0 ≈ − d

dz

〈wq2〉
2︸ ︷︷ ︸

Tt

− d

dz
〈wp′〉︸ ︷︷ ︸
Pt

+
1

Re

d2

dz2

〈q2〉
2︸ ︷︷ ︸

Vd

− 〈u′w〉d〈u〉
dz︸ ︷︷ ︸

Prod

− 1

Re

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

ε

+ 〈Aou
′〉︸ ︷︷ ︸

Bw

(6.4)

where terms on the right-hand side are the usual ones: turbulent transport of kinetic
energy, pressure transport, viscous diffusion, production, and viscous dissipation.
〈Aou

′〉 is the new breaker work term. In the above budget, the time tendency of
TKE is zero for simulations with constant-stress or -current boundary conditions
and no breaking. However, similar to the budget of horizontal mean momentum, the
time tendency of q2 is small but finite near the water surface in the case with 100%
breaking; ∂〈q2/2〉/∂t contributes about 6% to the budget. For clarity, we do not
present the vertical profile of this term.

In figure 17, we show the different terms in the budget for the Couette, B-000,
and B-100 simulations over the depth from z/λ= −1 to 0. The vertical profiles
of the various terms in the Couette case agree quite well with other DNS (e.g.
Papavassiliou & Hanratty 1997); near the upper surface the budget is primarily a
balance between viscous dissipation and production with small contributions from the
viscous diffusion and turbulent transport terms. In the τ-driven flow (no breakers) the
balance of terms is similar with even smaller contributions from turbulent transport
and viscous diffusion.



170 P. P. Sullivan, J. C. McWilliams and W. K. Melville

0

–0.25

–0.50

–0.75

–1.00

z—
λ

–50 0 50 –50 0 50 –200 0 200

(a) (b) (c)

Figure 17. Vertical profiles of the terms in the turbulent kinetic energy (TKE) budget (see
(6.4)) for three different cases: (a) Couette flow, (b), τ -driven flow with no breakers (B-000),
and (c) τ -driven flow with 100% breaking (B-100). Lines with symbols denote terms in the
TKE budget: �, shear production; ⊗, viscous dissipation; , pressure transport; �, viscous
diffusion; �, turbulent transport; and �, breaker work. For case B-100 the breaker depth is
denoted by a dotted line and the scale of the x-axis is wider. All terms are normalized by
u3

∗/H .

In case B-100, breaking waves are observed to alter the magnitude and sign
of several terms in the TKE budget and as a result the usual balance of
production ≈ dissipation for a shear flow is disrupted in the near-surface region.
As expected, the primary source of TKE near the water surface is breaker work
(figure 17c), and the turbulence dynamics respond by increasing the dissipation and
enhancing the turbulent transport. Note that individually the magnitudes of Tt and Bw

can exceed ε. In the breaking region, turbulent transport is a significant contributor
to the TKE budget, in contrast to the no breaker cases where Tt is small for all z.
Notice that at the maximum depth of penetration of the breakers (z/λ= −0.2), Tt

is a source of TKE and is of comparable magnitude to the shear production; these
two terms approximately balance the dissipation at this depth. Yet, the variation
of Tt is complex as it switches sign as z → 0 and becomes a significant TKE sink
helping to balance the breaker work as shown in figure 18. Close to the water surface
(figure 18) the sum Prod + Tt + Pt + ε + Vd serves as a sink to balance Bw . It is
interesting to compare the present results with the assumptions made in the second-
order closure models of Craig & Banner (1994) and Craig (1996). In these models,
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Figure 18. Vertical profiles of selected terms in the TKE budget for the simulations with
100% breaking. Lines with symbols denote the following terms: ⊗, viscous dissipation; �,
turbulent transport; and �, breaker work. The sum Tt +Pt +Vd +Prod+ε, indicated by a heavy
dashed line, balances the breaker work very near the water surface. All terms are normalized
by u3

∗/H .

the vertically distributed effects of breaking are compressed into a surface boundary
condition. TKE is injected into the water column at z = 0 and diffuses vertically by
the assumption of a downgradient model for the turbulent transport, i.e. Tt ≈ ε. Our
computed budgets confirm that Tt is an important component in the TKE balance in
the presence of breaking and that it can be a source of TKE for z/λ< −0.2. Yet, our
TKE budget is a complex balance of terms in the breaking region, and these results do
not support the assumption Tt ≈ ε as in the second-order closure models (figures 17c

and 18).

7. Conclusions
In this study, we used laboratory and field data to guide the development of a

stochastic model of the effects of breaking surface gravity waves on the oceanic
boundary layer. The parameterized breakers are 3D, time-dependent, and randomly
distributed at the surface of the water. Critical constants in the breaker parameteri-
zation are the breaker strength and depth penetration length. This model is
implemented in direct numerical simulations and evaluated in two classes of canonical
flows: still fluid driven by an isolated breaker and idealized oceanic boundary layers
with variable surface forcing.

We find that the single-breaker model is reasonably robust to changes in its
parameterizations and is able to reproduce bulk features of an isolated breaking
event. The decay of the mean-flow kinetic energy, the spatial and temporal flow
patterns, and the formation of a coherent vortex beneath the water surface all agree
reasonably well with laboratory data. Remnants of this vortex persist for at least 50
wave periods.
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Highly intermittent active breaking (less than 2% of the water surface) has a
significant impact on the near-surface currents in simulations of oceanic boundary
layers. A vigorous, coherent, downwelling–upwelling pattern develops with each
breaking event, and the lifetime of this flow structure is tens of wave periods. Breaking
is found to induce high levels of turbulence, increase mixing, and promote vertical
momentum transport near the water surface. Increased vertical velocity variances are
observed down to a depth of z/λ= −0.6, where λ is the wavelength of the breaking
wave. The effects of wave breaking are also readily visible in vertical profiles of
the mean horizontal current. Compared to simulations driven by uniform stress,
the current profiles with breaking show a large increase in surface roughness zo;
with 100% breaking zo is 30 times larger and scaled by the breaker wavelength
zo/λ≈ 0.05. The budget of turbulent kinetic energy in the region of breaking waves
is dominated by turbulent transport, dissipation, and breaker work, but the shear
production, pressure transport and viscous diffusion remain non-negligible. At the
maximum depth of penetration of breaking waves, turbulent transport is a source
of turbulent kinetic energy and of comparable magnitude to the shear production.
As z → 0, turbulent transport switches sign, and breaker work is balanced by the
sum of shear production, pressure and turbulent transports, viscous diffusion, and
dissipation.
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