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FIGURE 10. Correlation between surface displacement at the crest, Tck,, and horizontal velocity at 
the crest, u,./c( for ak = 0.23 at (a) xk, = 209.3 ; (b) 241.5. Also plotted is Cokelet's (1977) numerical 
prediction of 7,k versus uJc. 

surface displacement which are observed on the forward face of the displacement 
envelope are due to breaking. The randomly distributed points outside the densely 
populated region are due to breaking waves. In  both figures 9(b) and 9(c) the 
maximum value of ak, is approximately 0.34. Since k x k,  for the largest waves in the 
group (M2) this is an approximation to ak, and is some 23 % less than the maximum 
amplitude of uniform deep-water waves. 

Figure 10 shows the maximum elevation versus the maximum velocity at 
xk, = 209.3 and 241.5 (cf. figure 9b, c ) .  We also show the curve 7,k versus u,,c 
deduced from Cokelet's (1977) exact numerical solution for uniform deep-water 
waves. In  consequence of the modulations and our use of k,  and c( to normalize the 
data there is not a direct correspondence between our measurements of unbroken 
waves and Cokelet's results. However, his curve does show reasonable agreement 
with the measurements. One feature of the measurements that facilitates this 
agreement is the fact that  k x k, and c x c, for the largest waves in the group (M2). 
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It should be stressed that a t  the larger breaking-wave amplitudes there was some 
drop-out in the velocity signal, due to entrainment of the glass microsphere. Those 
data were edited out. 

4. Discussion 
In  this paper we have shown that the simultaneous measurement of the horizontal 

velocity a t ,  and the displacement of, the surface in a wave field provides a great deal 
of information that is not available from one set of measurements alone. The wave 
field examined here is essentially two-dimensional with only small three-dimensional 
effects (M 1) .  Extension of the technique to two horizontal velocity components for 
three-dimensional wave fields is trivial. 

Comparison of the velocity and displacement time series shows that there are large 
random velocity excursions in breaking waves, and that the surface-displacement 
signal is not necessarily a good indicator of breaking even in a relatively narrow- 
banded wave field. We anticipate that simple ' breaking criteria ' based on local wave 
properties may prove to be incorrect or a t  least ambiguous. The data presented here 
show numerous examples of relatively low-amplitude breaking waves. One particular 
difficulty with local breaking criteria is that  they address the question of wave 
characteristics at breaking (Ochi & Tsai 1983). However, breaking is not an 
instantaneous process and a wave may break for a significant fraction of a wave 
period. If the breaking wave is in a region of the envelope in which the amplitude is 
rapidly changing (as they are here) its amplitude may decrease to  a very small value 
during breaking. It then becomes important to distinguish whether one is interested 
in, say, the statistics of breaking waves or the statistics of incipient breaking waves. 
There also appears to be some ambiguity in the use of wave-breaking criteria in 
conjunction with joint statistics of amplitude and frequency. It is common to 
postulate a breaking criterion which is an effective wave slope and then imply that 
all waves with a slope greater than this criterion are breaking. Implicit in this 
argument is the assumption that the wave slope increases during breaking. In  
contrast the measurements here, along with the results of M2, suggest that the wave 
slope reaches a maximum in the displacement envelope and declines on the forward 
face of the amplitude group (see also Melville & Rapp 1983) ; that is, the wave slope 
is reduced as the wave breaks. Whether the results of these experiments can be 
directly applied to the field is not clear but they certainly cast serious doubt on the 
usefulness of current forms of breaking criteria and support the recent field 
observations of Holthuijsen & Herbers (1985). 

The averaged velocity measurements, which in an unbroken wave field correspond 
to the Lagrangian mean velocity, show a significant maximum in the breaking 
region. In  the absence of breaking us - O(a2k2)c,, and from figure 5 we see that the 
increase due to breaking is comparable to the absolute value prior to breaking. From 
figure 2 it is clear that the increase must be due to the large velocity excursions in 
the breaking waves. This can be checked as follows : There is typically one breaking 
wave per group, i.e. there are O(ak) breaking waves/wave. The velocity excursion in 
a breaking wave is O ( c )  and lasts for approximately 10-25 % of a wave period, which 
is comparable to ak, say. Thus the increase in Us due to  one breaking wave per group 
is O(a2k2) c,. On the basis of these data i t  is not worth trying to make a more accurate 
assessment ; however, this approximation makes i t  clear that even gentle breaking of 
this kind can significantly increase the mean surface-drift velocity above the value 
for an unbroken surface. 
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The spectra of both velocity and surface displacement also emphasize the dangers 
of using one field to infer the other, in situations in which a mixture of free and bound 
waves are present. The growth of the continuous spectrum is evidenced by the 
coherence and phase a t  the last downstream station (figure 7 c )  and it would be of 
considerable interest to have measurements of the kind presented here for much 
longer evolution times. 

The phase-averaged measurements clearly bring out the structure of the average 
group and show the strong asymmetry especially in the velocity field. The also show 
that breaking is more prevalent on the forward face of the amplitude envelope but 
in phase with the maximum of the velocity envelope. This supports our earlier 
comments about breaking criteria. 
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