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An approximate binary collision procedure is devised for the loaded-sphere 
molecular model and is used with Bird’s direct simulation technique for com- 
puter experiments on diatomic gases. The collision procedure is tested by 
simulating the approach to equilibrium of a constant-speed gas of loaded spheres 
and good agreement with Jeans’s (1904) theoretical prediction is obtained. The 
procedure is then used to study the structure of normal shock waves in the 
diatomic gas, giving mean velocity, density and temperature profiles. It 
is found that the present procedure consumes considerably more computer time 
than comparable simulations of monatomic gases. 

1. Introduction 
The direct simulation Monte Carlo method developed by Bird (1969) has 

previously been used to study a number of rarefied gas flows in which the 
molecules could be suitably represented by the inverse-power law models, the 
hard sphere being a particular member of this family. Bird’s technique has pro- 
vided almost perfect agreement with experimental results for shock-wave pro- 
fles (Schmidt 1969) where the inverse-power intermolecular potential was 
selected to fit transport data. While the shock structure is of the simplest gaseous 
phenomena (due to the lack of molecule-surface interactions and the prior 
knowledge of the upstream and downstream equilibrium conditions obtained 
from the conservation equations) Bird’s method has also given good agreement 
with experimental results for the more complex flows around bodies (Vogenitz 
et al. 1968). The inverse-power law models are, however, only capable of ex- 
hibiting relaxation processes between the translational degrees of freedom and 
so are not suitable for studying phenomena in polyatomic gases involving re- 
laxation between the translational and internal degrees of freedom. The success 
of Bird’s technique leaves little doubt as to its validity and justifies its extension: 
to more complex molecular models which are capable of representing the internal 
degrees of freedom of the gas. 

This paper reports a first attempt to simulate a diatomic gas having rotation 
as its only form of internal energy. The process of most importance then is the 
coupling between the translational and rotational degrees of freedom. The model 
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chosen to simulate the molecule is the loaded-sphere model, which is probably 
the simplest classical model capable of representing the five degrees of freedom 
of the gas. A binary collision procedure compatible with Bird’s general technique 
is devised for the model and tested by simulating the approach to equilibrium 
of a sample of gas having initially constant translational and rotational molecular 
speeds. This procedure is then used to generate the shock wave. 

2. Molecular model 
The rigid loaded-sphere model was introduced by Jeans (1904) and has been 

used in a number of studies. In  particular, Dahler & Sather (1963) have in- 
vestigated transport properties of the loaded-sphere gas; Haight & Lundgren 
(1967) have used the model for a theory of strong shocks in diatomic gases. Only 
those details of the model pertinent t o  the present study will be given here. 
Further details are to be found in the above references. 

The model may be described as a rigid sphere of mass m and diameter u with 
its centre of mass offset a distance E from the geometric centre. The mass dis- 
tribution is symmetric about the axis joining the geometric and mass centres, 
and the moment of inertia about any axis normal to this symmetry axis is given 
as I ,  say. The dynamic state of the particle is defined by the position vector L 
of its centre of mass relative to some ‘fixed’ origin, the unit orientation vector 
indicating the direction from the centre of mass to the geometric centre, a 
translational velocity v and angular velocity w. An arbitrary point on the surface 
of the sphere is given by the vector s relative to the centre of mass, where 
s = ei + & ~ f c  and fc is the unit vector along the outward normal to the surface. 

The particles are rigid, so that a t  collision an impulsive force is directed along 
the surface normal at the point of impact, giving rise (owing to the eccentricity 
of the mass distribution) to a moment about the centre of mass of the body and 
thus energy transfer between the translational and rotational modes. The body 
has only two rotational degrees of freedom, the third being dormant as a result 
ofthe component o . i being unchanged a t  collision. The collision dynamics have 
been formulated by a number of authors. Following Haight & Lundgren (1967) 
we consider a collision between two molecules 1 and 2 (figure 1). & is the surface 
normal at the impact point and ifc is the vector impulse experienced by the 
molecule 2. Then, indicating the post-collisional variables with primes, we have 
that I (1) 

v; = v1 - ( i /m)  fc, v; = v, + ( i /m)  fc, 
Of = wl- @/I) (sl x &), O; = w,+ (i/I) (sz x &), 

i = - g . f / ( l / m + ( 1 / 2 1 )  ( s 1 x & ) 2 + ( 1 / 2 1 )  (s,xfc)2) where 

and g = v 2 + w 2 x s , - v 1 - ~ 1 x s ,  

is the relative velocity of the impact points immediately prior to collision. 
The method of generating the shock wave makes it necessary to formulate the 

collision of the loaded sphere with a specularly reflecting boundary moving a t  
eonstant speed. This is readily done as such a collision may be represented by the 
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collision between a loaded sphere, and an unloaded sphere having the same 
translational velocity as the boundary but an infinite mass. The modifications 
to  ( 1 )  to describe such a collision are obvious. 

f2 

FIGURE 1. Loaded-sphere collision geometry. 

Gas Z R  

200-600 
3-20 
3-40 

 TAB^ 1. Approximate ranges of rotational collision number ZR obtained from experiment 
(see Herzfeld & Litovitz 1959) 

Jeans (1904) showed that for a uniform loaded-sphere gas (having 6 4 a) of 
number density n, the relaxation between the translational and rotational 
energies is described by the relation 

d{ln le, - ge,()/dt = - inpet, (2) 

where e, = average rotational energy per molecule, e, = average translational 
energy per molecule and /3 is a function of the model parameters, 

/3 = (16s2g2/31) (@wz)*. 

For small departures from equilibrium 1 e, - get\ is approximately exponential 
in time, reducing to l i e  of its initial value in the relaxation time 7, where 

7, being the mean time between collisions and 2, the rotational collision number. 
Rotational energy is readily transferred for small values of Z,, the rate of 
equilibration of energy becoming slower as Z, increases. Typical values of Z, 
are given in table 1 (see Hertzfeld & Litovitz 1959). 

It is to be noted that the loaded sphere is probably the simplest (classical) 
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model for the diatomic molecule and, as such, suffers from a number of deficiencies. 
It can experience multiple encounters (or ‘ chattering collisions ’) and by doing 
so invalidates the assumption of molecular chaos: that precollisional states of 
collision pairs are uncorrelated. It is also to be noted that the model is more a 
convenient representation than a realistic one, the translation-rotational coupling 
arising probably as a result of molecular field, rather than mass, asymmetry 
(Hirschfelder, Curtiss & Bird 1954). 

3. The method 
3.1. Collision simulation 

The crux of Bird’s method lies in the probabilistic simulation of the binary 
collisions and the loading of the time advance of the whole system by the value 
of the relative translational velocity of each collision pair. It is in the development 
of an approximate binary collision procedure for the loaded-sphere gas that this 
work departs from earlier uses of Bird’s technique. The general method followed 
is that reported by Bird (1969) in his review paper and only the necessary addi- 
tional details are given here. 

The simulated spatial region is divided into a number of cells and only those 
molecules residing in the same cell are considered as possible members of a 
collision pair in any elemental time interval. The determination of the molecules 
residing within any cell is carried out through the use of arrays which store the 
absolute and relative positions of the molecules, along with the number of 
molecules in cells up to the nth, where n may take values from 2-C, C being the 
total number of cells in the one-dimensional simulated region. For purposes of 
choosing the collision pair the relative positions of the molecules within the 
same cell are considered unimportant and the selection of the collision pair is 
then only dependent on the dynamic state of the molecules in that cell. For 
example, in a gas of hard spheres (Bird 1967) a molecular pair is selected at random 
and retained or rejected such that the probability of retention is proportional to 
the relative speed. If a pair is retained, an impact parameter (corresponding to 
the line of centres at impact) is chosen at  random and the collision is computed, 
the new translational velocities being stored in place of the old, and a time counter 
advanced. Collisions of hard spheres (and general inverse-power law bodies) are 
easily and efficiently computed as a result of the symmetry of the model and the 
need to consider only the translational velocity components when selecting a 
collision pair. However, the addition of rotational motion and asymmetry in the 
case of the loaded sphere greatIy adds to the complexity and programming 
detail involved in the collision procedure. 

It may be seen from figure 1 and equations (1) that in order to calculate a 
collision it is necessary to specify vl, v2, wl, 02, I,, I, and &. Of these variables 
the translational and rotational velocities, v and o respectively, are stored for 
each molecule and the orientation vector is restricted by the condition that a. i 
is zero. This latter restriction is imposed in order to facilitate the selection of the 
orientation vector f at collision and does not in any way detract from the model 
since w . f  is invariant for binary collisions and collisions with the specularly 



Loaded-sphere model for diatomic gases 575 

reflecting boundaries. In  describing the binary collision of loaded spheres Haight 
& Lundgren (1967) defined an interaction surface S (for fixed orientations f ,  
and i,) as the surface traced by the centre of mass of particle 2 as it moves in 
contact with particle 1. It was then shown that only 2-particles with mass centres 
in the volume - g . k dtdS would collide with l-particle on the element of surface 
dS during the period dt. For the loaded sphere dS = a2d&, so the volume becomes 
- g . b 2 d t  dk. Hence the probability of a pair of molecules with a particular 
set of orientations colliding is proportional to -g.&. One could construct a 
collision procedure to faithfully satisfy this result. A pair of molecules could be 
selected at  random to give v,, v2, w,, wz, a set of orientation vectors El, j,, fc 
could then be suitably selected and - g . k calculated. The collision pair, along 
with the orientations, would then be retained or rejected such that the probability 
of retention is proportional to the value of - g . &. However, such a method would 
be excessively time consuming as a result of the selection and rejection of a 
relatively large amount of information. The usefulness of this Monte Carlo 
technique is critically dependent on the efficiency of selection of the precollisional 
variables. An approximate collision procedure is devised. 

1 so that to a reasonable approximation the molecular 
pair may be selected as for the unloaded hard sphere. That is, a pair is selected at  
random and retained or rejected such that the probability of retention is pro- 
portional to the relative velocity of the centres of mass. It is also assumed that 
k may be selected as for the unloaded spheres. The vectors vl, v2, ol, w2 and k 
obtained by this procedure are then retained while f, and i, are selected. The value 
of - g . k is calculated. If - g . fc is negative f, and f, are rejected since it is a 
condition of the precollisional state that - g . f is positive. If - g . k is positive 
1, and 1, are retained or rejected such that their probability of retention is 
proportional to -g.k If they are rejected then a new set of orientations is 
selected, keeping the current values of vl, v,, o,, w, and f, and if retained, the 
collision is computed and the new values for v,, v,, o,, o, stored in place of 
the old. The time advance associated with each collision was assumed to be 
that for the unloaded hard sphere of the same diameter and relative translational 
velocity (Bird 1967). 

As mentioned in 8 2, it is also necessary to compute molecule-surface collisions 
when using the present method of shock generation. This is relatively simple for 
the specularly reflecting boundary since the surface normal (corresponding to k 
for the binary collision) for such collisions is fixed for each boundary. This leaves 
only the molecular orientation f to be selected at  each collision. This orientation 
is selected at random from the range of possible directions and retained or re- 
jected such that its probability of retention is proportional to the component 
of the relative velocity of the impact points (prior to collision) in the direction 
normal to the surface. 

The collision procedure described above is essentially heuristic and it was 
considered necessary to test its validity before using it to simulate the shock. 
The test situation chosen was that of a sample of molecules, initially of constant 
translational and rotational speeds, relaxing towards equilibrium. A description 
of the relaxation simulation and the results obtained follows. 

It is assumed that c/v 



576 W .  K.  Melville 

3.2. Reluxut ion simulation 

A sample of molecules was set up such that each molecule had the same transla- 
tional speed, the directions of the velocity vectors being isotropically distributed 
in three-dimensional space. Similarly, the angular speed was the same for each 
molecule and again the vector directions were isotropically distributed. No 
account was taken of the relative positions of the molecules, and the sample may 
thus be considered analagous to a single cell in the general procedure. At zero 
time the molecules were allowed to begin colliding and the evolution of the 
sample was monitored. 

In  such a system it is to be expected that, while the total average energy per 
molecule remains constant in time, the gas would relax towards equilibrium 
with the translational and rotational energies e, and e, respectively, finally ex- 
hibiting equipartition. That is, if e(t)/e(O), e,(t)/e(O) and e,(t)/e(O) denote the ratios 
of the instantaneous average total, translational and rotational energies, re- 
spectively, to the initial average total energy, then 

e(t)/e(O) = 1 ( t  2 0) 
and 

or le,(t) - 3et(t)l/e(O) -+ 0 ( t  --f a). 
Further, as t --f 00 the distribution of translational and rotational speeds should 
tend toward the Maxwellian and Rayleigh distributions respectively. 
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FIGURE 2. Relaxation of uniform gas of loaded spheres from constant-speed initial state. 
ZR = 5, e (0 )  = 0.5, e t (0)  = 0-35, eJ0) = 0.15; ----- , Jeans’s theory. 

The results of such a simulation are shown in figures 2-4. Values of m, I and E 

were assigned to the molecules to give 2, = &(I/me2) = 5. The sample size is 
4500 molecules, obtained by ensemble averaging the results of 3 separate runs 
of 1500 molecules, each run having a different random number sequence. 
Figure 2 shows the ratios e,(t)/e(O) and le,(t)-#e,(t)l/e(O), where t,, is the theo- 
retical mean collision time a t  equilibrium. Also plotted are the curves predicted 
by Jeans’s theory for 2, = 5 and this set of initial conditions. It may be seen 
that the agreement between Jeans’s theory and the present results is very good 
up to titcm cr: 10, after which the Monte Carlo results tend to give larger average 
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FIGURE 3. Translational speed distribution function at  Z R  = 5 plotted as function of 
v/vm, where v m  is the most probable translational speed. 0, t i t , ,  = 10.6; A, t i t , ,  = 24.6; 
0, t i t c ,  = 29.6; - - -, Maxwellian distribution. 
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FIGURE 4. Rotational speed distribution function at  Z R  = 5 plotted as function of w/wm, 
where w, is the most probable rotational speed. 0, t i t , ,  = 19.6; A, t i t c ,  = 24.6; 0, 
t i tr ,  = 29.6; - - -, Rayleigh distribution. 

37 F L N  51 
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rotational energies. The Monte Carlo results reach equilibrium values at  approxi- 
mately t/tem = 20, after which a slight excess of rotational energy is apparent 
through the scatter of the results. The translational and rotational speed dis- 
tributions were sampled throughout the relaxation process. Distributions sampled 
at  titcm = 19.6,24-6 and 29.6 are given here. The translational speed distributions 
obtained for these times are shown in figure 3, along with the Maxwellian dis- 
tribution. Figure 4 displays the corrresponding rotational distributions with the 
Rayleigh distribution. It was considered that these results did represent the 
simple relaxation process to an acceptable accuracy and justified the use of 
the collision procedure to simulate the shock in a diatomic gas. A description of 
the shock simulation follows. 

3.3. Shock-wave simulation 

The method of generating the shock is an analogue of the simple piston-driven 
shock tube. A sample of gas, initially at  rest and contained between two plane 
parallel boundaries, is set in motion as one of the walls begins to move with 
constant velocity towards the opposite wall. The disturbance caused by the 
collision of the molecules with the moving boundary propagates into the sample, 
via binary collisions, giving rise to the shock front. The wall (or piston) velocity 
is determined from the usual equation relating the velocity change across the 
plane shock to the shock Mach number, M,. The value of the specific heat ratio 
in this equation is set at  5 to account for the five degrees of freedom of the gas. 

The sample is initially set up with the molecules uniformly distributed between 
the boundaries. Translational and rotational speeds are assigned to the molecules 
to give the Maxwellian and Rayleigh distributions respectively and the vector 
directions corresponding to these speeds are distributed isotropically in both 
cases. The region between the boundaries is divided into a number of cells. This 
number remains constant in time and the cell boundaries are moved accordingly 
to account for the decreasing extent of the simulated region. These cells are used, 
as indicated in $3.1,  to define possible collision pairs. The cells are also used to 
define regions over which macroscopic flow variables (density, temperature, etc.) 
may be obtained from averaging of molecular variables. 

At zero time the specularly reflecting boundary is set in motion, the binary 
and molecule-wall collisions computed and the molecules moved accordingly. 
(See Bird (1969, figure 1) for the general flow diagram of the technique.) For much 
of the time a large, but decreasing, proportion of the molecules ahead of the 
advancing shock is unaffected by the shock and remains in equilibrium. A 
significant saving in computer time is afforded by considering this region as a 
collisionless gas. Collisions are computed in the region between the moving wall 
and a ‘line ’ ahead of, but fixed relative to, the advancing shock. After a time the 
shock formation processes are completed and a stationary shock exists relative 
to the shock path. The stationary shock profiles are obtained by averaging the 
molecular variables in a family of cells with boundaries fixed relative to the shock 
path. A number of samples may be taken at  different times and averaged to 
reduce the statistical scatter. 

The preceding description corresponds to one typical run of the program. 
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Owing to the limited size of the computer used, one such run was not sufficient 
to obtain statistically reliable results. To reduce the scatter the program was 
run a number of times, with different random number sequences, and the results 
from all the runs were then ensemble averaged to give the final shock profiles 
obtained. The computations were carried out on an IBM 7040 machine having 
32K storage. A typical run lasted 2 h. 

3 
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4. Results 
The shock profiles presented here are for M, = 4-6 and ZR = 10, allowing 

comparison with the kinetic theory results of Venkataraman & Morse (1969) 
and the continuum theory results of Talbot & Scala (1961). While comparison 
with the experimental profiles of density and rotational temperature for nitrogen 
(2, 2: 5, M, = 1.61, 1.71, 7.0, 12.9) obtained by Robben & Talbot (1966) would 
have been more desirable, it was considered that the approximations involved 
in the collision procedure would be more appropriate to the higher collision 
numbers. 
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The initial piston-wall spacing was 50 mean free paths (50h,) of the upstream 
equilibrium gas. The demarcation between the collisionless gas and the region 
in which collisions were computed was set a t  10h, downstream of the shock path. 
I n  each complete run of the program the gas was simulated by 2400 molecules. 
Each run produced 6 steady shock samples, the proximity of the fixed boundary 
preventing further sampling. The program was run a total of five times to give 
the results presented here. In  all the profiles presented the origin of the stream- 
wise position co-ordinate xlh:is the position of the shock path given by the 
discontinuous shock equations. At no time was there any indication, within 
the scatter of the results, of translation of the profiles relative to this datum. 

37-2 
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Profiles of the shock are shown in figures 5-8. Figure 5 shows the velocity 
profile plotted as vla,, where a, is the upstream speed of sound; the continuum 
profile of Talbot & Scala ( 1  961) is given for comparison. The Monte Carlo results 
give a slightly larger maximum gradient in the central region of the shock. The 
mass flux ratio pv/plvl is also given. The mass conservation condition requires 

I I L + 

/ i  / +  
/' ' 

/' / 
,I / i- 

' + +  

-8 -6 -4  -3 0 2 4 6 8 

"I& 
FIGUF~E 6. Density profile through the shock for M ,  = 4.6, Z R  = 10. + , present results; 
-.-.- , continuum results of Talbot & Scala (1961) ; - - -, kinetic theory results of 
Venkatararnan & Morse (1969). 
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FIGURE 7. Temperature profiles through the shock for M ,  = 4.6, ZR = 10. Present 
results : 0, overall temperature ratio ; + , translational temperature ratio ; x , rotational 
temperature ratio. -. -. - , continuum results of Talbot & Scala (1961). --- 
kinetic theory results of Venkataraman & Morse (1969). 
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that this ratio be unity but while this condition appears to be satisfied, within 
the scatter of the results in the upstream region, a mass flux deficit becomes 
apparent on moving downstream. From figure 6, where the normalized density 
ratio is given, it may be seen that this error in the mass flux is primarily due to  
the failure of the gas to maintain the downstream equilibrium density. Com- 
parison of the present results with the continuum and the kinetic theory profiles 
shows that they give a smaller maximum density-gradient thickness than both 
the other results. The translational temperature T,, rotational temperature 
and overall temperature T, where T = $(3T,+ 253, are plotted as their nor- 
malized ratios in figure 7. They show qualitative agreement with the theoretical 
predictions but again the smaller thickness given by the present results is 
apparent. Good agreement with Venkataraman & Morse is obtained in deter- 
mining the streamwise position and magnitude of the maximum translational 
temperature attained in the shock. As for the density profiles, the temperature 
profiles fail to  maintain the downstream equilibrium temperature. The transla- 
tional temperature may be further divided into a component associated with the 
longitudinal thermal components of velocity and another associated with the 
lateral components. These temperature profiles are shown in figure 8. It is 
interesting to note the presence of a slight maximum in the lateral temperature 
within the shock region as compared with monatomic shock profiles where the 
corresponding temperature is monotonically increasing. 
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FIGURE 8. Translational temperature non-equilibrium through the shock for M ,  = 4.6, 

ZR = 10. x , longitudinal temperature ratio ; + , lateral temperature ratio. 

5. Discussion 
The results of these numerical experiments with the loaded-sphere model 

indicate that the present method is capable of giving qualitative agreement (and 
in some aspects quantitative agreement) with the results of theoretical studies. 
The most outstanding feature of the shock profiles presented here is the failure 
of the gas to maintain the downstream equilibrium condition. The reasons for 
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this behaviour are not at all clear and it would be particularly difficult to de- 
termine them with any degree of certainty. However it is thought that the error 
may arise from (i) the approximations involved in the collision procedure which 
in the simple relaxation experiment gave rise to a slight excess of rotational 
energy on approaching equilibrium and/or (ii) the assumption of a specularly 
reflecting piston which may cause erroneous energy-transfer processes in the 
downstream region. 

The present results have been obtained a t  the expense of relatively long com- 
puter runs and since the plane shock simulation is one of the simplest one- 
dimensional problems it is to be expected that the time involved in using the 
present collision procedure may prove prohibitive for more complex flows. As 
Bird’s direct simulation technique has advantages over the analytical methods 
when studying multi-dimensional flows having complex boundary conditions, 
this problem of computer run time is quite critical. As for all Monte Carlo methods 
Bird’s technique involves ‘playing for’ variables which are defined in a prob- 
abilistic manner. I n  the present study one ‘plays for’ the collision pair and then 
for the molecular orientations a t  collisions. This process may be divided into 
three stages: (a)  selecting variables within the bounds of the physical constraints 
(involving molecular positions and geometry), ( b )  processing the variables to 
obtain numerical values for parameters upon which acceptance/rejection decision 
is based and (c) accepting/rejecting the values selected in (a). If one rejects the 
current values selected then one returns to (a)  and selects a new set. The computer 
run time increases as the number of cycles through the loop (a) -+ ( b )  --f ( c )  --f (a ) ,  
before acceptance of the variables selected in (a), increases. Run time also in- 
creases as the amount of detailed programming involved in (a) ,  (b )  and ( c )  
increases. For the symmetric-power law bodies (and rough-sphere model, Bird 
(1970)) these operations can be quickly and efficiently carried out. With the 
loaded-sphere model the asymmetry gives rise to more constraints on the values 
that the variables may take and so (a) is more time consuming. The larger number 
of variables that have to be selected increases the detailed programming in 
both (a)  and (b).  

The study of relaxation processes involving the internal degrees of freedom of 
the gas is of importance in a number of problem areas of current interest. The use 
of Bird’s technique, with models which faithfully represent the molecular inter- 
actions and are efficiently simulated, may prove to be a powerful tool in the 
examination of these problems. However, the present study using the loaded- 
sphere model, which is one of the simplest classical models capable of representing 
the internal modes, would tend to indicate that the detailed programming in- 
volved in simulating the classical models may prove prohibitive. Bird (private 
communication) has recently obtained diatomic shock profiles which show good 
agreement with the experimental results of Robben & Talbot (1966), using a 
molecular model (the ‘energy sink ’ model) which was specifically designed for 
computer simulation. This model demands much less computer time than the 
loaded-sphere model. One may conclude that the development of models 
specifically designed for use with the direct simulation technique may prove more 
fruitful than attempts to adapt the classical models. 
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