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ABSTRACT

The evolution of nonlinear Kelvin waves is studied using analytical and numerical methods. In the absence
of dispersive (nonhydrostatic) effects, such waves may evolve to breaking. The authors find that one of the
effects of rotation is to delay the onset of breaking in time by up to 60%, with respect to a comparable wave in
the absence of rotation. This delay is consistent with qualitative conclusions based on transverse averaging of
the evolution equations. Further, the onset of breaking occurs almost simultaneously over a zone of uniform
phase that is normal to the boundary and extends over a distance comparable to the Rossby radius of deformation.
In other words, the process of breaking embraces the most energetic area of the wave. In contrast to the linear
Kelvin wave, the nonlinear wave develops a dipole structure in the cross-shelf velocity, with a zero net offshore
flow. With increasing nonlinearity the flow develops a stronger offshore jet ahead of the wave crest. The Kelvin
wave amplitude at the coast decays slightly with time. This and other major features of the wave are accounted
for by an analytical model based on slowly varying averaged variables. As part of the analysis it is demonstrated
that the evolution of the wave phase may be described by an inhomogeneous Klein—Gordon equation.

1. Introduction

Internal Kelvin waves play a significant role in the
dynamics of the coastal oceans. In recent years a con-
siderable amount of work has been done in both exper-
imental and theoretical research on the nonlinear aspects
of the Kelvin wave evolution. Most of the theoretical
work has been within the framework of KdV-type
(Grimshaw 1985; Melville et al. 1989, 1990; Grimshaw
and Melville 1989) or Boussinesq-type equations (To-
masson and Melville 1992). These equations may in-
clude three-dimensional and rotational effects, together
with dispersive (rionhydrostatic) effects (Tomasson and
Melville 1990; Tomasson 1991; also see appendix A of
this paper). Regardless of the particular approach, an
important assumption of these studies, as well as labo-
ratory experiments (Renouard et al. 1992), was that the
dispersion and nonlinearity were of the same order. This
assumption led to an approximate balance between non-
linearity and dispersion. However, in many physical sit-
uations involving long waves, the dispersion is weak and
waves may behave in a typical nonlinear hyperbolic
manner leading to wave breaking (Whitham 1974; Boyd
1980). For instance, an estimate of the parameters for a
coastal internal Kelvin wave of about 5-km wavelength
and 1.5-h period corresponding to a 10-km Rossby ra-
dius of deformation shows that the dispersion effects
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may be four orders of magnitude weaker than the non-
linear effects (appendix A). In turn, breaking of the in-
ternal waves may be important in mixing and momen-
tum and energy transfer in coastal oceans.

A similar situation may arise during the propagation
of atmospheric internal bores (Marks 1974; Smith et
al. 1982) with three-dimensional wave evolution influ-
enced by nonlinearity and rotation, Dorman (1985) in-
vestigated the possibility of atmospheric Kelvin waves
propagating in the low marine layer adjacent to the
coast of California. Similar phenomena were observed
along the coast of Australia (Baines 1980) and south-
ern Africa (Gill 1977; Bannon 1981). To study these
cases we start with the shallow-water equations for a
single-layer fluid:

u, + uu, + vu, + gh, — fu =0, (1.1a)
v+ uv +w, + gh, + fu=0, (1.1b)
h, + (uh), + (vh), = 0. (1.1¢c)

The notation is conventional (Pedlosky 1987, 61), with
h(x, y, t) denoting the entire local height of the layer,
u(x, y, t) the alongshore velocity, v(x, y, ) the off-
shore velocity, and g the effective gravity. Then fol-
lowing a standard approach we introduce nondimen-
sional variables

u = qcu’, (1.2)
v=ay'%cv’, (1.3)
h=H(l + an), (14)
x=Lx', (1.5)
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FiG. 1. Propagation of a localized Kelvin wave along the coast. The graph shows the elevation
of the interface 7 at the initial time. The wave is traveling to the right.

y = Roy’, (1.6)
t—&t’, (1.7)
where
h
a =4 (1.8)
L.\?
Y= (f{_o) ) (1.9)
c=(gH)"?, (1.10)
and
c
Ro =—. (1.11)
f

Here A is a typical wave amplitude, L, is a typical
wavelength, H is the layer depth (equivalent height
in two-layer models), and Ro is the Rossby radius of
deformation. We consider the case when « and vy are
much smaller than unity and y = O(a). Substituting
(1.2) through (1.11) into (1.1) and dropping the
primes gives

u, + n, + auu, — yv = O(ay), (1.12a)
y(v, + n, + u) = O(ay), (1.12b)
7, + u, + yv, + a(un), = O(ay). (1.12¢)

For the wave moving to the right, Eqs. (1.12a) and
(1.12c) yield

n=u+ 0(a) (1.13)
and

n + 1. = O(a). (1.14)

Further, following Whitham (1974) and matching the
asymptotic expansions from (1.12a), (1.12c), and
(1.13) we obtain

2

Equations (1.12b) and (1.15), together with (1.13), de-
scribe nonlinear wave propagation with weak transverse
and rotational effects, which is the subject of this paper:

M+ T+ armx+%(vy—v)=0(a'y). (1.15)

2
v,+n,+n=0.

T+ T + = anm, + %(vy —v)=0 (L16)

(1.17)

Full derivations of such coupled evolution equations
for one- and two-layer models, including dispersion ef-
fects, are given in several papers (Macomb 1986;
Grimshaw and Melville 1989; Tomasson 1991). The
nonlinear term proportional « in (1.16) is due to both
momentum and mass conservation equations [cf. Hua
and Thomasset (1983), who considered only nonlin-
earity from the momentum equation]. The term pro-
portional to vy describes weak rotation and the effect of
weak offshore flow.

We study the evolution of an initial localized distur-
bance (Fig. 1) in a semi-infinite ocean subject to a no-
flux condition at the boundary:

77'r=0 = e_yQ(x)’

v|y=0 = O’

U)o =0 (1.18)

(1.19)

with the initial condition corresponding to a linear Kel-
vin wave. Despite the seemingly simple character of
the system, it has a number of interesting physical prop-
erties.

A similar initial value problem was studied by Mel-
ville et al. (1989) with two main differences:

1) dispersion was comparable to nonlinearity and
was explicitly included in (1.16) —see appendix A;
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2) the waves propagated in a relatively narrow
channel.

The instability and damping of solitary-type Kelvin
waves due to the radiation of Poincare waves was ob-
served. In the present study we do not observe any
significant Poincare wave radiation up to breaking. The
main difference is that now the equations belong to the
hyperbolic, rather than dispersive, class of equations.
This implies that multivalue profiles may arise, result-
ing in a typical hyperbolic wave breaking.

One of the first attempts to study nonlinear nondis-
persive Kelvin waves was undertaken by Bennet
(1973). He dealt with freely propagating nonlinear
Kelvin waves with a wavelength larger than the Rossby
radius of deformation. In our work we consider waves
with a wavelength smaller than the Rossby radius (see
appendix A). Also, Bennet assumed that the transverse
balance of the velocity was geostrophic, which is
equivalent to dropping the term v, in (1.2). Our con-
clusion is that the cumulative effect of even small off-
shore velocities significantly affects the wave steep-
ening and, ultimately, breaking.

We show that the onset of breaking is delayed by up
to 60% in time with respect to a comparable long wave
in the absence of rotation. Breaking occurs almost si-
multaneously in a region adjacent to the coast having
a width comparable to the Rossby radius of deforma-
tion. If max|®,| = 1, the time of breaking can still be
calculated as c/a, ¢ being a constant between 1 and 2
with a parametric dependence on . The transverse ve-
locity itself forms a dipole structure attached to the
wave.

Also we show that the original nonlinear problem
can be reduced to a forced linear Klein—Gordon equa-
tion. The Klein—Gordon equation describes the evo-
lution of the wave phase, which gives the location of
the wave crest and time of breaking.

2. Preliminary considerations

We first undertake a qualitative examination of Eqgs.
(1.16)-(1.17) to demonstrate some features of the
wave evolution. Transforming to a frame of reference
moving with the linear phase speed to the right and
renormalizing & and y gives

(2.1)
(2.2)

n + ann, + y(v, —v) =0,
v~—v.+n,+n=0.

If one neglects the nonlinear term, setting a = 0, then
the solution of (2.1) and (2.2) is
n = e ®(x), (2.3)
where ®(x) is an arbitrary function. This describes a
linear Kelvin wave. When a # 0, integrating with re-
spect to y and using the boundary conditions gives
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g o\ _ . __ —
(5 - a)(nf +anm) = ¥(ly—o = 1), (24)

where

ﬁ=_[) ndy. (2.5)

If one assumes that to the leading order the wave is still
a Kelvin wave, that is,

n=eF(x,t,y) + O(a) (2.6)
and
%S = 0(a), 2.7)
then (2.4) reduces to
7.+ S 77, = 0(a?). (2.8)

2

It follows from (2.8) that the onset of breaking may
begin at t < 2/a (see section 3 below). That is, the
Kelvin wave may propagate without breaking for up to
twice the time of a nonlinear wave in the absence of
rotation. '

In addition, there exist several conservation integrals
for the system. Introducing x-integrated variables,

7= J- ndx and U= J. vdx, 29
(2.1) and (2.2) give
Tl + v() — 7)) =0 (2.10)
and
Uy + y(U — 9,) = 0. (2.11)

Further, for the initial profile (1.3) there are mass con-
servation integrals:

f= fwm ndx = ¢e™, (2.12)
where
&= J: Ddx, (2.13)
and
b= f:o vdx = 0. (2.14)

The second integral shows that there is no net cross-
shelf flow for the nonlinear Kelvin wave. Zero net off-
shore flow appears to be a typical feature of freely prop-
agating Kelvin waves (see section 5).

Finally, there are two more integrals:
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f f (n* + yv?)dxdy = const  (2.15)
—w V()

and
f f (%n‘“ + (e + ¢, ~ v/z))d"dy = const,
—wx V¥
(2.16)
with

The last integral expresses the conservation of the
Hamiltonian for the system. With the addition of dis-
persion effects, all the integral constraints persist, ex-
cept for expression (2.14) that gains an extra term.

3. Numerical results

The numerical scheme used for solving the system
(1.1)-(1.2) is simple and rather stable. It is an implicit
staggered-mesh scheme, similar to that described by
Melville et al. (1989) and Tomasson (1991), with cen-
tered differences for spatial derivatives. Similar stag-
gered-mesh grids for linear Kelvin waves were pre-
sented by Hsieh et al. (1983) and for nonlinear forced
disturbances by Hua and Thomasset (1983), to name
a few. The scheme, which we used, had second-order
accuracy in space and time. The consistency and reli-
ability of the scheme was tested by switching off one
of the parameters a or . In both cases a comparison
with available analytical solutions confirmed the ac-
curacy of the numerical approach. An example of this
verification will be demonstrated below. Four main
combinations of parameters & and y were studied: (a,
v) = (0.5, 0.5), (0.5, 0.125), (0.125, 0.125), (0.125,
0.5). For the sake of clarity of the discussion, we will
present detailed results for (0.5, 0.5) and then outline
the effect of changing « and .

The initial profile chosen was

1
cosh(2x)’

with |®,] =< 1, which will be important for the con-
struction of the analytical model.

The main question, which arose in the numerical
treatment, was how to define the moment of breaking
for the wave. As long as we do not introduce any ad-
ditional terms in the system, the only possible breaking
would be numerical, as profiles develop gradients be-
yond the stability limits of the numerical scheme. Fur-
ther, we anticipate that in reality the wave will evolve
to breaking if its steepness exceeds a certain threshold.
We expect that numerical breaking will be a good in-
dicator of physical breaking if the spatial resolution of
the numerical scheme is sufficiently high.

The second question to resolve was how to recognize
the onset of breaking itself; that is, how to distinguish

P(x) = (3.1)
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between the breaking and small short-wavelength os-
cillations, which appeared sometimes on the forward
face of the wave. Considering breaking as a global phe-
nomenon rather than a local event, we attributed the
onset of breaking to the moment that all the pertinent
parameters of the wave experienced a substantial
change. As an example, Fig. 2 demonstrates such a
change of the behavior of the wave amplitude at the
coast at time ¢ ~ 3.0. For comparison we also present
the graph for the evolution of the amplitude in the ab-
sence of rotation (dashed line ), which is obtained from
the same numerical scheme but without rotational
terms. In the absence of rotation, the time of breaking
may be calculated from a well-known analytical result
that fiuine = 1/a [see Whitham (1974) and section 4
of this paper], which is in complete agreement with the
numerical result. Thus, from the figure we can see that
the rotational effect is to delay the onset of breaking
by 50% (from ¢t = 2 to ¢t = 3) and to slightly decrease
the wave amplitude as well. To demonstrate the global
character of the breaking, in Fig. 2 we show the graphs
for the evolution of other wave parameters, including
the wave amplitude at y = 0.5 and the maximum trans-
verse velocity in the wave.

Note that a decay in the amplitude of the nonlinear
Kelvin waves has been reported by various authors.
They attributed the decay to the secondary wave radi-
ation excited by the Kelvin wave (Maxworthy 1983;
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FiG. 2. (a) The amplitude of a Kelvin wave vs time (solid line) at
the coastline and away from the coast (y = 0, y = 0.5) from numerical
calculations. The onset of breaking is shown by arrows. The ampli-
tude of the wave in the absence of rotation is given by the dashed
line; @ = 0.5, y = 0.5. (b) The evolution of the maximum value of
the transverse velocity in the wave.
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Melville et al. 1989) or viscosity (Renouard et al.
1987). In our system the combined transverse—rota-
tional term plays a similar role to dispersion, causing
an increase in the characteristic length of the wave and
a consequent decrease in the wave amplitude. How-
ever, this dispersion is not sufficient to balance the non-
linearity and to lead to solitary-like waves (cf. Katsis
et al. 1987; Melville et al. 1989; Renouard et al. 1992),
Here the Kelvin wave steepens and then breaks.

Now to give a general overview of the wave evolu-
tion, we present contour maps for the elevation of the
interface 1 and the transverse velocity v for different
times (see Fig. 3). There are several important points
worth mentioning here, including the formation of a
dipole structure in the transverse velocity associated
with the wave and the general curvature of the wave
front due to nonlinearity. Also, notice the compression
of the isolines ahead of the wave corresponding to the
increasing steepness of the wave. This conforms to the
typical hyperbolic character of the breaking.

The next interesting feature of the wave is the for-
mation of a boundary zone adjacent to the coast, which
we call a uniform phase zone. This zone is clearly
shown by the plots of

1) the wave height along the wave crest and
2) the wave height versus distance offshore

for different times (Fig. 4). We find that for some dis-
tance from the coast the two plots coincide exactly (see
the figure), which means that the crest of the wave
remains normal to the wall over the entire zone or,
equivalently, the phase of the wave is constant. The
width of the boundary zone increases with time and
eventually extends to distances comparable to the
Rossby radius of deformation, which is of the order of
one in our nondimensional variables. Breaking takes
place almost simultaneously over the whole region and
therefore covers the most energetic part of the wave.
Also in contrast to previous studies (Katsis and Akylas
1987; Melville et al. 1989) and despite the general dis-
tortion of the wave front due to nonlinearity, the cur-
vature remains zero in the boundary zone.

In Fig. 5 we show a profile of the transverse velocity
at a time just before breaking for y = 0.1 and y = 0.5.
A relatively sharp and strong jet has formed ahead the
wave. Although the values of the transverse velocity
are still very low (not more than 0.2), over long times
it leads to a significant change in the wave evolution.

To summarize the results for different @ and y we
present some pertinent wave parameters in Table 1.

4. Analytical model

We now consider a simple model that embraces all
the significant features of the evolution found in the
numerical solutions. As the basis for the model we as-
sume that to the leading order the solution is a Kelvin
wave with almost exponentially decaying amplitude.
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FiG. 3a. Contour map for the elevation of the
interface 7 at the initial time (¢ = 0).

We also expect that any breaking will be similar to
regular breaking of long gravity waves (hyperbolic
breaking). The elevation of the interface 7 is assumed
to take the form

n =ae™f, (4.1)

where
7 = ®(ax — OF), (4.1a)

with both @ and © depending upon ¢ and y. Notice that
1 given by expression (4.1) obeys the mass conserva-
tion equation [see (2.11)] and is a generalization of a
well-known implicit solution n = ®(x — atn) for the
equation

N+ ann, =0, (4.2)

(see Whitham 1974; Boyd 1980).
From (4.1)

m=§%%n (43)

where
D = (&) (4.4)

and

£ = ax — Of. (4.4a)

Breaking occurs when the steepness of the wave be-
comes infinite; that is,

0=-—

o, (4.5)

1+0% =0 or

Thus, breaking occurs when ® = O, ..in, = 1 (since
max|®,| = 1), after which the model is no longer
valid.
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FiG. 3 (Continued) Direct numerical solution giving contour maps of the elevation of the interface 1 and transverse
velocity vat ¢t = 1.5 and ¢t = 2.75 for a = 0.5, v = 0.5. Breaking occurs at ¢t = 3.0.
On the other hand, the profile of the wave crestis where
determined by condition 7, = 0. This implies that the
y (o p b=b(1,y) and d=d(t,y). (48)

x coordinate of the wave crestis O, = O, = O/a.
Thus, we can call ®, the wave phase. As long as a
~ 1, ®, = O. Further, from (4.1)-(4.4) it can be
shown that

m. = ate 0P, (4.6a)

T]' = %e—y(ég)x + <_®, + 2@ %)e_y®¢x7 (46b)

n+ =2 e (B, + (~®y +20 %)e"‘b‘bx-

(4.6¢)

This prompts us to search for an approximate solution
for the transverse velocity v in the form

v = be?®D, + de 7 (PE),, 4.7)

We will satisfy the original equations in an average
sense (see below) to obtain a description of the evo-
lution of the wave amplitudes and phase. Note that
(4.7) is consistent with the zero net transverse flow
condition, and it appears to be a good approximation
for v, at least for short periods of time.

We seek the relationships between a, b, d, ® under
the following constraints:

a=1+ 0O(a), (4.9a)
b,d,aya,0, 0 < 0(a), (4.9b)

and
6 <1. (4.9¢)

Substituting expressions (4.6) —(4.8) into the basic
equations (2.1)—(2.2) yields
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FiG. 4. Evidence for the uniform phase zone: the wave height along the wave crest—solid line,
the wave height vs distance offshore—dashed line; for a = 0.5, y = 0.5.

, > a,
<—®, +20% 4+ aaze‘y> — + g
a 2 a

2

= y(2b — b,) %— + y(2d — d,)®¢, (4.10a)

2

b2 1 ade — bd®, — d(®E), + %@g

2
( a,) P2
-{®,-20=2)—=0, (4.10b)
al 2
with the nonlinear terms proportional to y®b, y0,d
in (4.10a) and to ®,5, ©,d in (4.10b) omitted. Even-
tually all of them would give a correction of O(ya?).
Now we can obtain weighted integrals of (4.10a)
and (4.10b) with respect to x, using ®™ and ®"'¢ (m
positive) as weighting functions to give

(@, - 20 %) + ¥(2b — b,) = aa’e™ (4.11a)
a,

- %4 y(2d-d)=0 (4.11b)

b,—(®y—2®%)—rd=0 (4.11c)

d,+‘—;¥+qb=o. (4.11d)

Another way to arrive at a similar system, based on a
nontraditional use of the averaged-Lagrangian formal-
ism, is given in appendix B. Also note that (4.11a) and
(4.11b) ensure that (4.10a) is satisfied exactly. The
general formulas for r, g are

r=r(m) 2:’1 - :
m f ¢’m+2d€
®m+ld€

L

q=q(m)= . (4.12)

m+1J‘ oe2de

and their behavior versus m is presented in Fig. 6 for
our particular choice of ®(£) [see (3.1)]. For a rea-
sonable range of m, r and g do not exceed 2—2.5. The
system (4.11) reduces to

A+ % (2B-B)=ae”  (413a)
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FiG. 5. The profiles of the transverse velocity at the time close to
breaking, for two distances offshore (y = 0.1, y = 0.5). The wave is
moving to the right. Positive values of the velocity correspond to
offshore flow, negative to onshore flow. The sharp peak (jetlike flow)

FiG. 6. The behavior of parameters r and g vs m [see Eq. (4.12)].

is caused by the increasing steepness of the wave; for « = 0.5, v Ay + kA, + ¥(24A, — A,))) = ikae™, (4.17)
=05. .
with
Al =0, (4.17a)
1
A, =— (B, + ikB), (4.13b) Alimo = ae™, (4.17b)
where and
A=215 _i and B=b+isd, (414 Aol = e
=T B an =b+isd, (414) Introducing
r\172 ) K2\ /2
k=(rg)'"* and s= (—) (4.15) x =Ae'XY and o=y + - (4.18)
q/ ’ 2
with the boundary and initial conditions leads to the inhomogeneous Klein—Gordon equa-
tion
A =0],=0; B=0]:m (4.16a) .
and X — ¥Xpy + 02X = iake’ ™72 (4.19)
with
A, =B =0],.,. (4.16b)
i 2 : Xl =0, (4.19a)
With errors of O(ya?), Eqs. (4.13) reduce to a single
equation: Xtl=o = @, (4.19b)
TABLE 1.
a=
0.5 0.5 0.125 0.125
y=
0.5 0.125 0.125 0.5
Time of wave breaking 2.95 24 119 13.0
Time of breaking in the absence of rotation 20 20 8.0 8.0
Delay of breaking (ratio of the two above) 1.48 1.20 1.49 1.63
Maximum width of the uniform phase zone 09 0.3 1.1 1.8
Maximum transverse velocity 0.12 0.18 0.13 0.05
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FiG. 7. The evolution of ® at the coast for different k; k = 2—
solid line; k = 1, 3—dot-dashed lines; for s = 2.5. The phase in the
absence of rotation ® = at is given by the dashed line.

(x + x)y=0=0. (4.19¢)

In principle, we can find an explicit solution for (4.17)
or (4.19) in terms of Bessel and exponential functions;
however, the easiest way is just to numerically invert
the Laplace transforms for A or y obtained from (4.17)
or (4.19). Note that formally the term in (4.17) pro-
portional to y is O(a7y), but we have to retain it to
satisfy the boundary condition. It can also be shown
that if one considers higher-order terms in the deriva-
tion in section 1 and then applies the preceding meth-
ods, an additional O(a?) forcing term is obtained on
the right-hand side of (4.17). This does not change the
essential properties of the system.

The question of the particular choice of k and s remains
open. Fortunately, all the parameters proved to be rela-
tively insensitive to changes of k (as an example, see Fig.
7 for the evolution of ® for different &k for s = 2.5). The
variable b proved to be independent of s, and ® and a
are relatively insensitive to changes of s provided s is not
very close to zero. While d depends upon s to a greater
degree, its qualitative behavior does not change with s.
In general, the qualitative behavior of the model solution
does not change over a wide range of values of k and s.
Good quantitative agreement with direct numerical cal-
culations is achieved for k = 2 and s = 2.5. These values
are used in presenting the results below.

As we have already pointed out, the phase 0, = ®/
a determines the shape and location of the crest, while
0 itself determines the time of breaking. In Fig. 8 we
again demonstrate the evolution of ® at the coastline
(y = 0) for @ = 0.5, y = 0.5, along with the phase in
the absence of rotation (® = at) and the phase obtained
from direct numerical calculations. This comparison
shows that the Kelvin wave moves slower, delaying the
onset of breaking in time by up to 50%, as obtained

F1G. 8. The evolution of ® and ., at the coast (y = 0). The moment
when @ reaches unity corresponds to breaking. The solid line denotes
the value of @ at the wall; the dashed line the phase in the absence
of rotation ® = ar; and the dot-dashed line the phase of the wave @,
(location of the crest) from direct numerical calculations. The break
in the dot-dashed line is due to numerical breaking; for « = 0.5,
y =05.

from the direct numerical calculations. Only when «
= 0.5, vy = 0.125 was the delay less than 30% (20%
from the direct numerical calculations). This qualita-
tively confirms our previous numerical results.

Now consider the y-dependence of the phase ®, at
the time of breaking. Again for comparison we present
the phase of a nonlinear wave for which the speed is
just proportional to the amplitude (& = ate™). One
can clearly see the appearance of a uniform phase zone

3.5

w

I
2]

Distance Offshore, y
13 N

-

o
o

% 0.5 1 15
Phase
FiG. 9. Prediction of the profile of the phase @, at the moment of
breaking (solid line) by the analytical model; ® = ate*—dashed
line. The arrow indicates the direction of the wave motion; for a
=0.5,y =05.
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(where phase is almost constant; Fig. 9). In most cases
it extends to the distances of the order of one in our
nondimensional variables. Only for the case a = 0.5,
y = 0.125 did vy appear to be too small and the time
necessary for the onset of breaking too short to clearly
establish the boundary zone of uniform phase. In gen-
eral, the width of the zone increases as 7y increases. In
other words, stronger rotation gives rise to greater
boundary influence on the wave. The process of break-
ing should occur almost simultaneously over the uni-
form phase zone.

In Fig. 10, we show the model results for the decay
of the amplitude at the coastline, together with that
from direct numerical calculations, and the evolution
of the transverse velocity amplitudes b and d at y
= 0.5. The model gives a decay of the amplitude at the
coastline but fails to predict the exact rate of decay.
Next, Fig. 11 shows the contours for 7 and v obtained
from the model (cf., Fig. 3) at time ¢ = 2. Only close
to the time of breaking does the deviation of the trans-
verse velocity from the direct numerical calculations
become visible, a result of limitations in our modeling
for v. The dipole structure of the transverse velocity is
clearly seen and contours of the elevation of the free
surface give a good qualitative description of the wave.
Despite some good quantitative agreement, overall the
analytical model gives only a qualitative description of
the phenomena.
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FiG. 10. (a) The wave amplitude evolution at the coast (y = 0)
from the analytical model (solid line) and from direct numerical cal-
culations (dot-dashed line). (b) The evolution of the transverse ve-
locity amplitudes b and 4 at y = 0.5 from the analytical model; for «
=05,y =05.
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FiG. 11. Contour maps for the elevation of the free surface n and
transverse velocity v at time ¢+ = 2 for a = 0.5, ¥ = 0.5 from the
analytical model (cf. Fig. 3). Breaking occurs at # = 3.

Finally, all the conclusions of this section based
on the use of the model hold for any choice of the
initial function ®(x), provided the initial distur-
bance is localized and symmetric and its character-
istic length is of the order of 1. Therefore, our re-
sults are quite general in describing the qualitative
features of nonlinear nondispersive Kelvin wave
evolution.

5. An arbitrary slope of the initial profile

As mentioned above, we defined the initial condi-
tions corresponding to a Kelvin wave in y [see (1.3)].
However, the question of more general initial trans-
verse structure rather than a simple exponential
exp(—y) is worth separate consideration.

Let us return to the equations describing the x-inte-
grated variables 7 and ¥ [see (2.9) and (2.10)]. Now
the initial profile is

N|=0 = ®(x)E(y) (5.1a)
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or
fli=o = E(3) J‘_m P(x)dx. (5.1b)
If we introduce
w=—0, = + 7, (5.2)
it obeys the equation
w, + y(w —w,,) =0, (5.3)
with the boundary and initial conditions
w|-o=E+E,, (5.3a)
Wil =0 = 0, (5.3b)
w|,—0 = 0, (5.3c)
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the first one being zero for the exponential profile.
The solution for (5.3) can be written as

w= J. q(1) sinly cos[ty'?(1 + I*)'*]dl, (5.4)

where

q(l) = %J‘ (E + E,) coslydy. (5.5)

4]
From this integral representation it is clear that for any
reasonable choice of E(y), w will go to zero for large
enough time. Hence we can conclude that

7 =f ndx = Ce™, (5.6)
C being some constant, and
¥ =f vdx = 0, (5.7)

regardless of the initial transverse profile. The characteristic
time for the adjustment is y ~'/>. For much larger times,
the integrals in (5.6) and (5.7) will be almost equal to their
asymptotic values. That is, for long times the mass distri-
bution in the wave tends to that of the nonlinear Kelvin
wave we have just considered. The ratio of a™' to y~'2
will determine whether this happens before breaking. We
also note that E(y) itself cannot be chosen arbitrarily since
the no-flow condition at the coast requires that it behave
like exp(—y) for small y. These factors lead to a similar
wave evolution for different initial profiles in y.

We conducted a number of numerical experiments,
that confirming waves with different initial transverse
structure developed similar features, including break-
ing over the uniform phase zone. Figure 12 reveals
some differences in the evolution of the amplitude at
the coast for the initial transverse structure ~e~ >,
~e™? and ~e™ (a = 0.125, y = 0.5). In the first
two cases the initial adjustment time is given accurately
by ¥ ~'/2. Then the amplitudes slowly decay with time.

Fic. 12. The evolution of the amplitude at the coast for three dif-
ferent initial transverse structures with slopes ~e™"?, ™, and ~e™%,
starting from the top plot. For the first and the third cases the ad-
justment time is given accurately by y~'? and is shown by open
arrows. The irregularities at the end of the plots indicated by filled
arrows correspond to breaking; for a = 0.125, y = 0.5.

The wave with the faster initial transverse decay ex-
periences a stronger decrease in amplitude, while the
characteristic lengths do not change. This effectively
decreases the nonlinearity for such waves, which
makes them more stable and longer lived.

6. Conclusions

From the above discussion we can conclude that
nonlinear nondispersive Kelvin waves may display
some features that are independent of the details of the
analytical model. The delay of breaking, if it occurs,
and the establishment of a zone of uniform phase ad-
jacent to the coast are among such features that depend
on the combined action of rotation and transverse ef-
fects. As in' the corresponding linear problem, the in-
fluence of the coastal boundary is felt to distances com-
parable to the Rossby radius but is now extended to
include the nonlinear phenomenon of breaking.

The delay in breaking and the establishment of the
uniform phase zone is related to the transverse mass
flux associated with the jetlike flow at the front of the
wave. Moving away from the coast, the offshore ve-
locity increases at first, corresponding to an offshore
flux. After reaching its maximum, it decreases mono-
tonically, corresponding to a deposition of mass off-
shore. On the longer timescales this leads to a uniform
speed of the wave front, since increasing steepness
leads to a greater offshore flux from regions of larger
to smaller nonlinearity. We see from both the numerical
and analytical solutions that this mass flux leads to the
uniform phase zone and breaking almost simultane-
ously across the zone. To the extent that the numerical
solutions resolve it, the approach to breaking is typical
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of long nonlinear waves in hyperbolic systems. The
onset of breaking is determined by the evolution of the
wave phase and appears to be independent of the local
wave amplitude, which varies with distance from the
boundary.

As with models of long nonlinear waves in nonro-
tating systems, in the absence of dispersion all waves
of finite mass break, while dispersion suppresses break-
ing (Whitham 1974). We expect that in nature whether
or not hyperbolic breaking occurs will depend not only
on the presence of dispersion but also on the effects of
viscosity and background turbulence leading to the dis-
sipation of the wave energy. In addition, other hydro-
dynamic instabilities (e.g., Kelvin—Helmholtz) may
set in prior to breaking, leading to wave-generated tur-
bulence and dissipation. In the absence of dissipation
we have made estimates of the time and distance to
breaking for an internal Kelvin wave of 10-m ampli-
tude, 5-km length, and characteristic period 1.5 h, for
a Rossby radius of 10 km (appendix A). For these
parameters we expect the distance and time to breaking
to be about 80 km and 21 hours, respectively.

In another example, a Kelvin wave of 50-m ampli-
tude, 50-km length, propagating in the marine atmo-
spheric layer adjacent to the Californian coast (height
500 m, Rossby radius of 150 km—from Hermann et
al. 1990) will have a characteristic period of about 1
h. This gives the distance and time to breaking as 750
km and 14 hours.
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APPENDIX A
Estimates of Parameters in the Evolution Equations

A detailed derivation of coupled evolution equations
for long nonlinear internal waves in a two-layer fluid
is given by Tomasson (1991) (see also Renouard et al.
1992). These equations include three-dimensional, ro-
tational, and dispersive effects:

M+ N+ anne + B + Y(v, —v) =0
v,+n,+n=0.

(A.1)
(A.2)

This set of equations is asymptotically equivalent to the
modified Kadomtsev—Petviashvili (KP) equation
(Grimshaw and Melville 1989), which can be obtained
by assuming that v, = —v,, and cancelling v from (A.1)
and (A.2).

From Tomasson (1991 ) the expressions for «, 3, and
7y are

3h
a = EI (A.3a)
1/ H\?
B = 5 (Z) (A.3b)
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Y= 2 RO > IC

where h is a typical wave amplitude, L, is a typical
wavelength, H is an equivalent depth of the interface,
and Ro is the Rossby radius of deformation. If fis the
Coriolis parameter, ¢ is the linear phase speed of the
waves, g is the acceleration of gravity, and Ap/p is a
relative change of the density on the interface, then

172
c= (é’l gH> and Ro=~. (A4)
p f

We choose the following values for an oceanic Kelvin
wave:

Aplp =107, H=100m,
h=10m, L, =S5km.
For these values ¢ = 1 ms~', Ro = 10 km, with
a =015 y=0125 and B =0.67x107*.

The above example confirms that the dispersion for
such a Kelvin wave may be very small with respect to
the rotational and nonlinear effects, and we can neglect
the dispersion for a rather large range of wavelengths.
So for the values of H and Ap/p selected, one may
apply our basic system; that is, « ~ y and 8 < a if,
roughly, 3 km =< L, =< 10 ki, or if the wave period is
between 1 and 3 hours. Nevertheless, the smallness of
B for larger scales does not rule out the possibility that,
when the wave is steepening, local dispersion may arise
as an important factor in determining the detailed char-
acter of the breaking itself. Also notice that the deri-
vation of the equations requires that «, 5, and y be
much smaller than 1. This implies L <€ Ro. However,
even for L, = 1/2 Ro, y = 0.12 is already much less
than 1. Therefore, we may relax this condition and re-
quire only L, < Ro, which should still ensure accept-
able accuracy.

APPENDIX B
Lagrangian Formulation for the Analytical Model

The application of the average-Lagrangian technique
(Whitham 1974) is nontraditional for hyperbolic or qua-
sihyperbolic systems. Usually it is used for the description
of the linear or nonlinear waves in dispersive media (Fe-
dorov and Malomed 1992). However, we believe that it
can be applied to hyperbolic waves as well.

It can be shown that the Lagrangian for the system
(2.1) and (2.2) is

_1 a s ¥ ¥
L_2¢x¢t+6(¢x) +‘yll/x< )?

272 H T

(B.1)

where ¢, ¢ are potential functions and = ¢,, v = ¢,.
It can also be written as
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1
L=—2-n¢,+agn3 + y%(tp,—v) + YU (b, + ).
(B2)

Now we integrate the expressions (4.6) through (4.8)
for n and v to obtain

@2
d=R+0 5 (B.3)
@2
¢ =L erde + (25 0 — @,)e‘y—, (B.4)
a a 2
a, _ a B2
o, + ¢ =Zye Y®E + <2;y® - ®y)e S
(B.5)
(I>2
Y = be™ > + de 7 PE, (B.6)
where
R=RE = f@(ﬁ)dﬁ. (B.7)
Introducing
0
6= e (B.8)
reduces (B.4) and (B.5) to
=ﬂ =¥ — a2 —ygz
¢ =— e —a 0,e > (B.9)

and

2

3
b, + b = %e‘y{)f ~a’@,e” —. (B.I0)

Substituting into the Lagrangian, integrating over
x, and making several transformations gives
the averaged Lagrangian (with higher-order terms
omitted)

e[ 1 a
2

a’e™ + %(db, — bd)

Y . Y . a
) gh* — 5 fd* — yda*®, — yb Zy] . (B.11)
Applying the Eulerian variational principle to L suc-
cessively with respect to a, ®, d, and b, we obtain a
set of equations similar to those derived before, with 7,
g in place of r and g:
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a’®, + y(2b — b,) = aa’e™
—%+y(2d—dy)=0

b—a*®,—fd=0
ay o
d+=+gb=0. (B.12)

The expressions for 7, §, and I are
& 3 N 202
r= 7 P (I)de;

ci=% (®E)idx; 1=f d3dx. (B.13)

—o0

In principle, 7 and § depend on @ and, consequently,
on ¢t and y. To obtain simpler linear equations we
should replace them with some constant effective val-
ues. An advantage of this approach is that regardless
of particular functions in the expansion for v, the final
equations (B.12) will be unchanged, while the coeffi-
cients 7, § will be modified. This proves to be a rather
universal character of the system.

REFERENCES

Baines, P. G., 1980: The dynamics of the southerly buster. Aust.
Meteor. Mag., 28, 175-200.

Bannon, P. R., 1981: Synoptic scale forcing of coastal flows: Forced
double Kelvin waves in the atmosphere. Quart. J. Roy. Meteor.
Soc., 107, 313-327.

Beardsley, R. C., C. E. Dorman, C. A. Friche, L. K. Rosenfeld, and
C. D. Winant, 1987: Local atmospheric forcing during the
CODE. Part 1: A description of the marine boundary layer and
atmospheric conditions over a northern California upwelling re-
gion. J. Geophys. Res., 92, 1467-1488.

Bennet, J. R., 1973: A theory of large-amplitude Kelvin waves. J.
Phys. Oceanogr., 3, 57-60.

Boyd, J. P, 1980: The nonlinear equatorial Kelvin wave. J. Phys.
Oceanogr., 10, 1-11.

Dorman, C. E., 1985: Evidence of Kelvin waves in california’s ma-
rine layer and related eddy generation. Mon. Wea. Rev., 113,
827-839.

Fedorov, A. V., and B. A. Malomed, 1992: Generation of flexural
waves on a quasi-one-dimensional KP soliton. Wave Motion,
15, 221-227. :

Gill, A. E., 1977: Coastally trapped waves in the atmosphere. Quart.
J. Roy. Meteor. Soc., 103, 431-440.

Grimshaw, R., 1985: Evolution equations for weakly nonlinear, long

internal waves in a rotating fluid. Stud. Appl. Math., 73, 1-33.

, and W. K. Melville, 1989: On the derivation of the modified

Kadomtsev—Petviashvili equation. Stud. Appl. Math., 80, 183—

202.

Hermann, A. J., B. M. Hickey, C. F. Mass, and M. D. Albright, 1990:
Orographically trapped coastal wind events in the Pacific North-
west and their oceanic response. J. Geophys. Res., 95(c8),
13 169-13 193.

Hsieh, W. W., M. K. Daley, and R. C. Wajsowitcz, 1983: The free
Kelvin wave in finite-difference numerical models. J. Phys.
Oceanogr., 13, 1383-1397.

Hua, B., and F. Thomasset, 1983: A numerical study of the effects
of coastline geometry on wind-induced upwelling in the Gulf of
Lions. J. Phys. Oceanogr., 13, 678—-694.




NovEMBER 1995

Katsis, C., and T. R. Akylas, 1987: Solitary internal waves in a
rotating channel: A numerical study. Phys. Fluids, 30, 297—
301.

Macomb, E. S., 1986: The interaction of nonlinear waves and cur-
rents with coastal topography. M.S. thesis, Dept. of Civil En-
gineering, Massachusetts Institute of Technology.

Mark, J. R., 1974: Acoustic Radar Investigations of Boundary Layer
Phenomena. Rep. NAS8-28659. Dept. of Meteorology, Univer-
sity of Oklahoma.

Maxworthy, T., 1983: Experiments on solitary internal Kelvin waves.
J. Fluid Mech., 129, 356-383.

Melville, W. K., G. G. Tomasson, and D. P. Renouard, 1989: On the
stability of Kelvin waves. J. Fluid Mech., 206, 1-23.

, D. P. Renouard, and X. Zhang, 1990: On the generation of
nonlinear internal Kelvin waves in a rotating channel. J. Geo-
phys. Res., 95(C10), 18 247-18 254.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag.

FEDOROV AND MELVILLE

2531

Renouard, D. P., G. Chabert D’Hires, and X. Zhang, 1987: An ex-
perimental study of strongly nonlinear waves in rotating system.
J. Fluid Mech., 177, 381-39%4.

——, G. G. Tomasson, and W. K. Melville, 1992: An experimental
and numerical study of nonlinear internal waves. Phys. Fluids
A, 5, 1401-1411.

Smith, R. K., N. Crook, and G. Roff, 1982: The moming glory: An
extraordinary atmospheric undular bore. Quarz. J. Roy. Meteor.
Soc., 108, 937-956.

Tomasson, G. G., 1991: Nonlinear waves in a channel: Three-di-
mensional and rotational effects. Ph.D. thesis, Dept. of Civil
Engineering, Massachusetts Institute of Technology.

——, and W. K. Melville, 1990: Nonlinear and dispersive effects in

Kelvin waves. Phys. Fluids A, 2(2), 189—-193.

, and , 1992: Geostrophic adjustment in a channel: Nonlin-
ear and dispersive effects. J. Fluid Mech., 241, 23-57.

Whitham, G. B., 1974: Linear and Nonlinear Waves. Wiley.




